Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2022 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2022 Volume 23 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Patterns of indolence in prostate cancer (Review)

  • Authors:
    • Minas Sakellakis
    • Laura Jacqueline Flores
    • Sumankalai Ramachandran
  • View Affiliations / Copyright

    Affiliations: Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece, Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA, Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
    Copyright: © Sakellakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 351
    |
    Published online on: March 28, 2022
       https://doi.org/10.3892/etm.2022.11278
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Although prostate cancer is a major cause of cancer‑related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long‑lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long‑term dormancy.
View Figures

Figure 1

Figure 2

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar

2 

Wadosky KM and Koochekpour S: Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 7:64447–64470. 2016.PubMed/NCBI View Article : Google Scholar

3 

Varkaris A, Katsiampoura AD, Araujo JC, Gallick GE and Corn PG: Src signaling pathways in prostate cancer. Cancer Metastasis Rev. 33:595–606. 2014.PubMed/NCBI View Article : Google Scholar

4 

Koinis F, Corn P, Parikh N, Song J, Vardaki I, Mourkioti I, Lin SH, Logothetis C, Panaretakis T and Gallick G: Resistance to MET/VEGFR2 inhibition by cabozantinib is mediated by YAP/TBX5-dependent induction of FGFR1 in castration-resistant prostate cancer. Cancers (Basel). 12(244)2020.PubMed/NCBI View Article : Google Scholar

5 

Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, Krainer M, Bergman A, Hoelzer W, De Wit R, et al: Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 34:3005–3013. 2016.PubMed/NCBI View Article : Google Scholar

6 

Michaelson MD, Oudard S, Ou YC, Sengeløv L, Saad F, Houede N, Ostler P, Stenzl A, Daugaard G, Jones R, et al: Randomized, placebo-controlled, phase III trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer. J Clin Oncol. 32:76–82. 2014.PubMed/NCBI View Article : Google Scholar

7 

Spreafico A, Chi KN, Sridhar SS, Smith DC, Carducci MA, Kavsak P, Wong TS, Wang L, Ivy SP, Mukherjee SD, et al: A randomized phase II study of cediranib alone versus cediranib in combination with dasatinib in docetaxel resistant, castration resistant prostate cancer patients. Invest New Drugs. 32:1005–1016. 2014.PubMed/NCBI View Article : Google Scholar

8 

Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018.PubMed/NCBI View Article : Google Scholar

9 

Denmeade SR and Isaacs JT: A history of prostate cancer treatment. Nat Rev Cancer. 2:389–396. 2002.PubMed/NCBI View Article : Google Scholar

10 

Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, et al: A contemporary prostate cancer grading system: A validated alternative to the gleason score. Eur Urol. 69:428–435. 2016.PubMed/NCBI View Article : Google Scholar

11 

Johansson JE, Holmberg L, Johansson S, Bergström R and Adami HO: Fifteen-year survival in prostate cancer. A prospective, population-based study in Sweden. JAMA. 277:467–471. 1997.PubMed/NCBI

12 

Simpkin AJ, Tilling K, Martin RM, Lane JA, Hamdy FC, Holmberg L, Neal DE, Metcalfe C and Donovan JL: Systematic review and meta-analysis of factors determining change to radical treatment in active surveillance for localized prostate cancer. Eur Urol. 67:993–1005. 2015.PubMed/NCBI View Article : Google Scholar

13 

Musunuru HB, Yamamoto T, Klotz L, Ghanem G, Mamedov A, Sethukavalan P, Jethava V, Jain S, Zhang L, Vesprini D and Loblaw A: Active surveillance for intermediate risk prostate cancer: Survival outcomes in the sunnybrook experience. J Urol. 196:1651–1658. 2016.PubMed/NCBI View Article : Google Scholar

14 

Herlemann A, Huang HC, Alam R, Tosoian JJ, Kim HL, Klein EA, Simko JP, Chan JM, Lane BR, Davis JW, et al: Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 23:136–143. 2020.PubMed/NCBI View Article : Google Scholar

15 

Kornberg Z, Cooperberg MR, Cowan JE, Chan JM, Shinohara K, Simko JP, Tenggara I and Carroll PR: A 17-gene genomic prostate score as a predictor of adverse pathology in men on active surveillance. J Urol. 202:702–709. 2019.PubMed/NCBI View Article : Google Scholar

16 

Spratt DE, Zhang J, Santiago-Jiménez M, Dess RT, Davis JW, Den RB, Dicker AP, Kane CJ, Pollack A, Stoyanova R, et al: Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J Clin Oncol. 36:581–590. 2018.PubMed/NCBI View Article : Google Scholar

17 

Spratt DE, Yousefi K, Deheshi S, Ross AE, Den RB, Schaeffer EM, Trock BJ, Zhang J, Glass AG, Dicker AP, et al: Individual patient-level meta-analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J Clin Oncol. 35:1991–1998. 2017.PubMed/NCBI View Article : Google Scholar

18 

Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD and Walsh PC: Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 281:1591–1597. 1999.PubMed/NCBI View Article : Google Scholar

19 

Boorjian SA, Thompson RH, Tollefson MK, Rangel LJ, Bergstralh EJ, Blute ML and Karnes RJ: Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: The impact of time from surgery to recurrence. Eur Urol. 59:893–899. 2011.PubMed/NCBI View Article : Google Scholar

20 

Martin NE, Chen MH, Beard CJ, Nguyen PL, Loffredo MJ, Renshaw AA, Kantoff PW and D'Amico AV: Natural history of untreated prostate specific antigen radiorecurrent prostate cancer in men with favorable prognostic indicators. Prostate Cancer. 2014(912943)2014.PubMed/NCBI View Article : Google Scholar

21 

Trock BJ, Han M, Freedland SJ, Humphreys EB, DeWeese TL, Partin AW and Walsh PC: Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA. 299:2760–2769. 2008.PubMed/NCBI View Article : Google Scholar

22 

Stone L: Prostate cancer: ADT after radical prostatectomy-when and how? Nat Rev Urol. 13(367)2016.PubMed/NCBI View Article : Google Scholar

23 

Muralidhar V, Mahal BA and Nguyen PL: Conditional cancer-specific mortality in T4, N1, or M1 prostate cancer: Implications for long-term prognosis. Radiat Oncol. 10(155)2015.PubMed/NCBI View Article : Google Scholar

24 

Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et al: Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 367:1187–1197. 2012.PubMed/NCBI View Article : Google Scholar

25 

James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, Ritchie AWS, Amos CL, Gilson C, Jones RJ, et al: Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 377:338–351. 2017.PubMed/NCBI View Article : Google Scholar

26 

Chandrasekar T, Yang JC, Gao AC and Evans CP: Targeting molecular resistance in castration-resistant prostate cancer. BMC Med. 13(206)2015.PubMed/NCBI View Article : Google Scholar

27 

Fine SW: Neuroendocrine tumors of the prostate. Mod Pathol. 31 (S1):S122–S132. 2018.PubMed/NCBI View Article : Google Scholar

28 

Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 163:1011–1025. 2015.PubMed/NCBI View Article : Google Scholar

29 

Hieronymus H, Schultz N, Gopalan A, Carver BS, Chang MT, Xiao Y, Heguy A, Huberman K, Bernstein M, Assel M, et al: Copy number alteration burden predicts prostate cancer relapse. Proc Natl Acad Sci USA. 111:11139–11144. 2014.PubMed/NCBI View Article : Google Scholar

30 

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative genomic profiling of human prostate cancer. Cancer Cell. 18:11–22. 2010.PubMed/NCBI View Article : Google Scholar

31 

Paris PL, Andaya A, Fridlyand J, Jain AN, Weinberg V, Kowbel D, Brebner JH, Simko J, Watson JE, Volik S, et al: Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum Mol Genet. 13:1303–1313. 2004.PubMed/NCBI View Article : Google Scholar

32 

Chu LW, Troncoso P, Johnston DA and Liang JC: Genetic markers useful for distinguishing between organ-confined and locally advanced prostate cancer. Genes Chromosomes Cancer. 36:303–312. 2003.PubMed/NCBI View Article : Google Scholar

33 

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 310:644–648. 2005.PubMed/NCBI View Article : Google Scholar

34 

Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS, Tewari AK, Kitabayashi N, Moss BJ, Chee MS, et al: FusionSeq: A modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol. 11(R104)2010.PubMed/NCBI View Article : Google Scholar

35 

Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, et al: MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38(e178)2010.PubMed/NCBI View Article : Google Scholar

36 

Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA and Schalken JA: ETS gene fusions in prostate cancer: From discovery to daily clinical practice. Eur Urol. 56:275–286. 2009.PubMed/NCBI View Article : Google Scholar

37 

Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016.PubMed/NCBI View Article : Google Scholar

38 

Tzelepi V, Logotheti S, Efstathiou E, Troncoso P, Aparicio A, Sakellakis M, Hoang A, Perimenis P, Melachrinou M, Logothetis C and Zolota V: Epigenetics and prostate cancer: Defining the timing of DNA methyltransferase deregulation during prostate cancer progression. Pathology. 52:218–227. 2020.PubMed/NCBI View Article : Google Scholar

39 

Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C and Altucci L: Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics. 13(125)2021.PubMed/NCBI View Article : Google Scholar

40 

Ngollo M, Dagdemir A, Karsli-Ceppioglu S, Judes G, Pajon A, Penault-Llorca F, Boiteux JP, Bignon YJ, Guy L and Bernard-Gallon DJ: Epigenetic modifications in prostate cancer. Epigenomics. 6:415–426. 2014.PubMed/NCBI View Article : Google Scholar

41 

Kumaraswamy A, Welker Leng KR, Westbrook TC, Yates JA, Zhao SG, Evans CP, Feng FY, Morgan TM and Alumkal JJ: Recent advances in epigenetic biomarkers and epigenetic targeting in prostate cancer. Eur Urol. 80:71–81. 2021.PubMed/NCBI View Article : Google Scholar

42 

Weinhold B: Epigenetics: The science of change. Environ Health Perspect. 114:A160–A167. 2006.PubMed/NCBI View Article : Google Scholar

43 

Sugiura M, Sato H, Kanesaka M, Imamura Y, Sakamoto S, Ichikawa T and Kaneda A: Epigenetic modifications in prostate cancer. Int J Urol. 28:140–149. 2021.PubMed/NCBI View Article : Google Scholar

44 

Dawson MA: The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science. 355:1147–1152. 2017.PubMed/NCBI View Article : Google Scholar

45 

Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, et al: Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA. 95:6870–6875. 1998.PubMed/NCBI View Article : Google Scholar

46 

Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM and Kolodner R: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57:808–811. 1997.PubMed/NCBI

47 

Shih AH, Abdel-Wahab O, Patel JP and Levine RL: The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 12:599–612. 2012.PubMed/NCBI View Article : Google Scholar

48 

Ge R, Wang Z, Montironi R, Jiang Z, Cheng M, Santoni M, Huang K, Massari F, Lu X, Cimadamore A, et al: Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 31:470–479. 2020.PubMed/NCBI View Article : Google Scholar

49 

Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z, Irizarry RA, Morgan J, Hicks J, DeWeese TL, et al: DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 68:8954–8967. 2008.PubMed/NCBI View Article : Google Scholar

50 

Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, Weinstein AS, Friedl V, Zhang C, Witte ON, et al: Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: A multi-institutional prospective study. J Clin Oncol. 36:2492–2503. 2018.PubMed/NCBI View Article : Google Scholar

51 

Davies A, Zoubeidi A and Selth LA: The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr Relat Cancer. 27:R35–R50. 2020.PubMed/NCBI View Article : Google Scholar

52 

Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, Smith BA, Cheng C, Tsai BL, Cheng D, et al: Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 362:91–95. 2018.PubMed/NCBI View Article : Google Scholar

53 

McCabe MT, Davis JN and Day ML: Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res. 65:3624–3632. 2005.PubMed/NCBI View Article : Google Scholar

54 

Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY, Lu YY, Tang YA, Yang YC, Yang PC and Wang YC: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 70:5807–5817. 2010.PubMed/NCBI View Article : Google Scholar

55 

Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al: The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 439:871–874. 2006.PubMed/NCBI View Article : Google Scholar

56 

Shan J, Al-Muftah MA, Al-Kowari MK, Abuaqel SWJ, Al-Rumaihi K, Al-Bozom I, Li P and Chouchane L: Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer. Cell Death Discov. 5(139)2019.PubMed/NCBI View Article : Google Scholar

57 

Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, Cyrta J, Sboner A, Noorzad Z, MacDonald T, et al: N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell. 30:563–577. 2016.PubMed/NCBI View Article : Google Scholar

58 

Shah N, Wang P, Wongvipat J, Karthaus WR, Abida W, Armenia J, Rockowitz S, Drier Y, Bernstein BE, Long HW, et al: Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. Elife. 6(e27861)2017.PubMed/NCBI View Article : Google Scholar

59 

Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, Powell MJ, Yang T, Gu W, Avantaggiati ML, et al: Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol. 26:8122–8135. 2006.PubMed/NCBI View Article : Google Scholar

60 

Zhang X, Coleman IM, Brown LG, True LD, Kollath L, Lucas JM, Lam HM, Dumpit R, Corey E, Chéry L, et al: SRRM4 expression and the loss of REST activity may promote the emergence of the neuroendocrine phenotype in castration-resistant prostate cancer. Clin Cancer Res. 21:4698–4708. 2015.PubMed/NCBI View Article : Google Scholar

61 

Li Y, Donmez N, Sahinalp C, Xie N, Wang Y, Xue H, Mo F, Beltran H, Gleave M, Wang Y, et al: SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur Urol. 71:68–78. 2017.PubMed/NCBI View Article : Google Scholar

62 

Nam RK, Benatar T, Amemiya Y, Wallis CJD, Romero JM, Tsagaris M, Sherman C, Sugar L and Seth A: MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget. 9:19159–19176. 2018.PubMed/NCBI View Article : Google Scholar

63 

Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, et al: EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 338:1465–1469. 2012.PubMed/NCBI View Article : Google Scholar

64 

Kim J, Lee Y, Lu X, Song B, Fong KW, Cao Q, Licht JD, Zhao JC and Yu J: Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 25:2808–2820.e4. 2018.PubMed/NCBI View Article : Google Scholar

65 

Bilusic M, Madan RA and Gulley JL: Immunotherapy of prostate cancer: Facts and hopes. Clin Cancer Res. 23:6764–6770. 2017.PubMed/NCBI View Article : Google Scholar

66 

Vitkin N, Nersesian S, Siemens DR and Koti M: The tumor immune contexture of prostate cancer. Front Immunol. 10(603)2019.PubMed/NCBI View Article : Google Scholar

67 

Fridman WH, Zitvogel L, Sautès-Fridman C and Kroemer G: The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 14:717–734. 2017.PubMed/NCBI View Article : Google Scholar

68 

Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480:480–489. 2011.PubMed/NCBI View Article : Google Scholar

69 

Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016.PubMed/NCBI View Article : Google Scholar

70 

Leclerc BG, Charlebois R, Chouinard G, Allard B, Pommey S, Saad F and Stagg J: CD73 expression is an independent prognostic factor in prostate cancer. Clin Cancer Res. 22:158–166. 2016.PubMed/NCBI View Article : Google Scholar

71 

Ness N, Andersen S, Valkov A, Nordby Y, Donnem T, Al-Saad S, Busund LT, Bremnes RM and Richardsen E: Infiltration of CD8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer. Prostate. 74:1452–1461. 2014.PubMed/NCBI View Article : Google Scholar

72 

Petitprez F, Fossati N, Vano Y, Freschi M, Becht E, Lucianò R, Calderaro J, Guédet T, Lacroix L, Rancoita PMV, et al: PD-L1 expression and CD8+ T-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer. Eur Urol Focus. 5:192–196. 2019.PubMed/NCBI View Article : Google Scholar

73 

Zhao SG, Lehrer J, Chang SL, Das R, Erho N, Liu Y, Sjöström M, Den RB, Freedland SJ, Klein EA, et al: The immune landscape of prostate cancer and nomination of PD-L2 as a potential therapeutic target. J Natl Cancer Inst. 111:301–310. 2019.PubMed/NCBI View Article : Google Scholar

74 

Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017.PubMed/NCBI View Article : Google Scholar

75 

Nardone V, Botta C, Caraglia M, Martino EC, Ambrosio MR, Carfagno T, Tini P, Semeraro L, Misso G, Grimaldi A, et al: Tumor infiltrating T lymphocytes expressing FoxP3, CCR7 or PD-1 predict the outcome of prostate cancer patients subjected to salvage radiotherapy after biochemical relapse. Cancer Biol Ther. 17:1213–1220. 2016.PubMed/NCBI View Article : Google Scholar

76 

Lundholm M, Hägglöf C, Wikberg ML, Stattin P, Egevad L, Bergh A, Wikström P, Palmqvist R and Edin S: Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions. Sci Rep. 5(15651)2015.PubMed/NCBI View Article : Google Scholar

77 

Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, et al: TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 554:544–548. 2018.PubMed/NCBI View Article : Google Scholar

78 

Heninger E, Krueger TE, Thiede SM, Sperger JM, Byers BL, Kircher MR, Kosoff D, Yang B, Jarrard DF, McNeel DG and Lang JM: Inducible expression of cancer-testis antigens in human prostate cancer. Oncotarget. 7:84359–84374. 2016.PubMed/NCBI View Article : Google Scholar

79 

Sanda MG, Restifo NP, Walsh JC, Kawakami Y, Nelson WG, Pardoll DM and Simons JW: Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst. 87:280–285. 1995.PubMed/NCBI View Article : Google Scholar

80 

Martini M, Testi MG, Pasetto M, Picchio MC, Innamorati G, Mazzocco M, Ugel S, Cingarlini S, Bronte V, Zanovello P, et al: IFN-gamma-mediated upmodulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine. 28:3548–3557. 2010.PubMed/NCBI View Article : Google Scholar

81 

Chen L and Guo D: The functions of tumor suppressor PTEN in innate and adaptive immunity. Cell Mol Immunol. 14:581–589. 2017.PubMed/NCBI View Article : Google Scholar

82 

Ivashkiv LB and Donlin LT: Regulation of type I interferon responses. Nat Rev Immunol. 14:36–49. 2014.PubMed/NCBI View Article : Google Scholar

83 

Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, et al: STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 6(7736)2015.PubMed/NCBI View Article : Google Scholar

84 

Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6:202–216. 2016.PubMed/NCBI View Article : Google Scholar

85 

Jiao S, Subudhi SK, Aparicio A, Ge Z, Guan B, Miura Y and Sharma P: Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell. 179:1177–1190.e13. 2019.PubMed/NCBI View Article : Google Scholar

86 

Stultz J and Fong L: How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 24:697–717. 2021.PubMed/NCBI View Article : Google Scholar

87 

Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, et al: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15:700–712. 2014.PubMed/NCBI View Article : Google Scholar

88 

Bonollo F, Thalmann GN, Kruithof-de Julio M and Karkampouna S: The role of cancer-associated fibroblasts in prostate cancer tumorigenesis. Cancers (Basel). 12(1887)2020.PubMed/NCBI View Article : Google Scholar

89 

Blom S, Erickson A, Östman A, Rannikko A, Mirtti T, Kallioniemi O and Pellinen T: Fibroblast as a critical stromal cell type determining prognosis in prostate cancer. Prostate. 79:1505–1513. 2019.PubMed/NCBI View Article : Google Scholar

90 

Suhovskih AV, Kashuba VI, Klein G and Grigorieva EV: Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways. Cell Adh Migr. 11:39–53. 2017.PubMed/NCBI View Article : Google Scholar

91 

Ma JB, Bai JY, Zhang HB, Gu L, He D and Guo P: Downregulation of collagen COL4A6 is associated with prostate cancer progression and metastasis. Genet Test Mol Biomarkers. 24:399–408. 2020.PubMed/NCBI View Article : Google Scholar

92 

Ren X, Chen X, Fang K, Zhang X, Wei X, Zhang T, Li G, Lu Z, Song N, Wang S and Qin C: COL5A2 promotes proliferation and invasion in prostate cancer and is one of seven gleason-related genes that predict recurrence-free survival. Front Oncol. 11(583083)2021.PubMed/NCBI View Article : Google Scholar

93 

Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M and Abou-Kheir W: Tumor microenvironment in prostate cancer: Toward identification of novel molecular biomarkers for diagnosis, prognosis, and therapy development. Front Genet. 12(652747)2021.PubMed/NCBI View Article : Google Scholar

94 

Zhang Z, Karthaus WR, Lee YS, Gao VR, Wu C, Russo JW, Liu M, Mota JM, Abida W, Linton E, et al: Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell. 38:279–296.e9. 2020.PubMed/NCBI View Article : Google Scholar

95 

Lawrence MG, Pidsley R, Niranjan B, Papargiris M, Pereira BA, Richards M, Teng L, Norden S, Ryan A, Frydenberg M, et al: Alterations in the methylome of the stromal tumour microenvironment signal the presence and severity of prostate cancer. Clin Epigenetics. 12(48)2020.PubMed/NCBI View Article : Google Scholar

96 

Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K, Agarwal P, Duong F, Angara B, Tripathi M, Liu Z, et al: Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest. 128:4472–4484. 2018.PubMed/NCBI View Article : Google Scholar

97 

Singh M, Jha R, Melamed J, Shapiro E, Hayward SW and Lee P: Stromal androgen receptor in prostate development and cancer. Am J Pathol. 184:2598–2607. 2014.PubMed/NCBI View Article : Google Scholar

98 

Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J and Iżycka-Świeszewska E: Complexity of neural component of tumor microenvironment in prostate cancer. Pathobiology. 87:87–99. 2020.PubMed/NCBI View Article : Google Scholar

99 

March B, Lockhart KR, Faulkner S, Smolny M, Rush R and Hondermarck H: ELISA-based quantification of neurotrophic growth factors in urine from prostate cancer patients. FASEB Bioadv. 3:888–896. 2021.PubMed/NCBI View Article : Google Scholar

100 

Irshad S, Bansal M, Castillo-Martin M, Zheng T, Aytes A, Wenske S, Le Magnen C, Guarnieri P, Sumazin P, Benson MC, et al: A molecular signature predictive of indolent prostate cancer. Sci Transl Med. 5(202ra122)2013.PubMed/NCBI View Article : Google Scholar

101 


López-Domínguez JA, Rodríguez-López S, Ahumada-Castro U, Desprez PY, Konovalenko M, Laberge RM, Cárdenas C, Villalba JM and Campisi J: Cdkn1a transcript variant 2 is a marker of aging and cellular senescence. Aging (Albany NY). 13:13380–13392. 2021.PubMed/NCBI View Article : Google Scholar

102 

Yang F, Zhang Y, Ressler SJ, Ittmann MM, Ayala GE, Dang TD, Wang F and Rowley DR: FGFR1 is essential for prostate cancer progression and metastasis. Cancer Res. 73:3716–3724. 2013.PubMed/NCBI View Article : Google Scholar

103 

Coutu DL and Galipeau J: Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY). 3:920–33. 2011.PubMed/NCBI View Article : Google Scholar

104 

Adlkofer K, Martini R, Aguzzi A, Zielasek J, Toyka KV and Suter U: Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet. 11:274–280. 1995.PubMed/NCBI View Article : Google Scholar

105 

Suter U and Snipes GJ: Peripheral myelin protein 22: Facts and hypotheses. J Neurosci Res. 40:145–151. 1995.PubMed/NCBI View Article : Google Scholar

106 

Wagner J, Damaschke N, Yang B, Truong M, Guenther C, McCormick J, Huang W and Jarrard D: Overexpression of the novel senescence marker β-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLoS One. 10(e0124366)2015.PubMed/NCBI View Article : Google Scholar

107 

Prata LGPL, Ovsyannikova IG, Tchkonia T and Kirkland JL: Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol. 40(101275)2018.PubMed/NCBI View Article : Google Scholar

108 

Wang B, Kohli J and Demaria M: Senescent cells in cancer therapy: Friends or foes? Trends Cancer. 6:838–857. 2020.PubMed/NCBI View Article : Google Scholar

109 

Hwang HJ, Jung SH, Lee HC, Han NK, Bae IH, Lee M, Han YH, Kang YS, Lee SJ, Park HJ, et al: Identification of novel therapeutic targets in the secretome of ionizing radiation-nduced senescent tumor cells. Oncol Rep. 35:841–850. 2016.PubMed/NCBI View Article : Google Scholar

110 

Ewald JA, Desotelle JA, Wilding G and Jarrard DF: Therapy-induced senescence in cancer. J Natl Cancer Inst. 102:1536–1546. 2010.PubMed/NCBI View Article : Google Scholar

111 

Parisotto M, Grelet E, El Bizri R and Metzger D: Senescence controls prostatic neoplasia driven by Pten loss. Mol Cell Oncol. 6(1511205)2018.PubMed/NCBI View Article : Google Scholar

112 

Jung SH, Hwang HJ, Kang D, Park HA, Lee HC, Jeong D, Lee K, Park HJ, Ko YG and Lee JS: mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene. 38:1639–1650. 2019.PubMed/NCBI View Article : Google Scholar

113 

Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, et al: Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 2005.PubMed/NCBI View Article : Google Scholar

114 

Blute ML Jr, Damaschke N, Wagner J, Yang B, Gleave M, Fazli L, Shi F, Abel EJ, Downs TM, Huang W and Jarrard DF: Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS One. 12(e0172048)2017.PubMed/NCBI View Article : Google Scholar

115 

Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z, Machala M, Kozubík A and Souček K: Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. 13:526–536. 2011.PubMed/NCBI View Article : Google Scholar

116 

Zhao SG, Chang SL, Erho N, Yu M, Lehrer J, Alshalalfa M, Speers C, Cooperberg MR, Kim W, Ryan CJ, et al: Associations of luminal and basal subtyping of prostate cancer with prognosis and response to androgen deprivation therapy. JAMA Oncol. 3:1663–1672. 2017.PubMed/NCBI View Article : Google Scholar

117 

Ahmed HU, Arya M, Freeman A and Emberton M: Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy? Lancet Oncol. 13:e509–e517. 2012.PubMed/NCBI View Article : Google Scholar

118 

Sharma M and Miyamoto H: Percent Gleason pattern 4 in stratifying the prognosis of patients with intermediate-risk prostate cancer. Transl Androl Urol. 7 (Suppl 4):S484–S489. 2018.PubMed/NCBI View Article : Google Scholar

119 

Eksi SE, Chitsazan A, Sayar Z, Thomas GV, Fields AJ, Kopp RP, Spellman PT and Adey AC: Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat Commun. 12(7292)2021.PubMed/NCBI View Article : Google Scholar

120 

Ross AE, Marchionni L, Vuica-Ross M, Cheadle C, Fan J, Berman DM and Schaeffer EM: Gene expression pathways of high grade localized prostate cancer. Prostate. 71:1568–1577. 2011.PubMed/NCBI View Article : Google Scholar

121 

Skacel M, Ormsby AH, Pettay JD, Tsiftsakis EK, Liou LS, Klein EA, Levin HS, Zippe CD and Tubbs RR: Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: A differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray. Hum Pathol. 32:1392–1397. 2001.PubMed/NCBI View Article : Google Scholar

122 

Susaki E and Nakayama KI: Multiple mechanisms for p27(Kip1) translocation and degradation. Cell Cycle. 6:3015–3020. 2007.PubMed/NCBI View Article : Google Scholar

123 

Padar A, Sathyanarayana UG, Suzuki M, Maruyama R, Hsieh JT, Frenkel EP, Minna JD and Gazdar AF: Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res. 9:4730–4734. 2003.PubMed/NCBI

124 

Guo Y, Sklar GN, Borkowski A and Kyprianou N: Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res. 3:2269–2274. 1997.PubMed/NCBI

125 

True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, Beer TM, Gelmann E, Datta M, Mostaghel E, et al: A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci USA. 103:10991–10996. 2006.PubMed/NCBI View Article : Google Scholar

126 

Fleischmann A, Huland H, Mirlacher M, Wilczak W, Simon R, Erbersdobler A, Sauter G and Schlomm T: Prognostic relevance of Bcl-2 overexpression in surgically treated prostate cancer is not caused by increased copy number or translocation of the gene. Prostate. 72:991–997. 2012.PubMed/NCBI View Article : Google Scholar

127 

Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta KJ, et al: Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 39:41–51. 2007.PubMed/NCBI View Article : Google Scholar

128 

Hendriksen PJ, Dits NF, Kokame K, Veldhoven A, van Weerden WM, Bangma CH, Trapman J and Jenster G: Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res. 66:5012–5020. 2006.PubMed/NCBI View Article : Google Scholar

129 

West AF, O'Donnell M, Charlton RG, Neal DE and Leung HY: Correlation of vascular endothelial growth factor expression with fibroblast growth factor-8 expression and clinico-pathologic parameters in human prostate cancer. Br J Cancer. 85:576–583. 2001.PubMed/NCBI View Article : Google Scholar

130 

Erbersdobler A, Isbarn H, Dix K, Steiner I, Schlomm T, Mirlacher M, Sauter G and Haese A: Prognostic value of microvessel density in prostate cancer: A tissue microarray study. World J Urol. 28:687–692. 2010.PubMed/NCBI View Article : Google Scholar

131 

Mucci LA, Powolny A, Giovannucci E, Liao Z, Kenfield SA, Shen R, Stampfer MJ and Clinton SK: Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol. 27:5627–5633. 2009.PubMed/NCBI View Article : Google Scholar

132 

Killingsworth MC and Wu X: Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate. Pathobiology. 78:24–34. 2011.PubMed/NCBI View Article : Google Scholar

133 

Lin D, Bayani J and Wang Y, Sadar MD, Yoshimoto M, Gout PW, Squire JA and Wang Y: Development of metastatic and non-metastatic tumor lines from a patient's prostate cancer specimen-identification of a small subpopulation with metastatic potential in the primary tumor. Prostate. 70:1636–1644. 2010.PubMed/NCBI View Article : Google Scholar

134 

Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, et al: Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med. 198:1391–1402. 2003.PubMed/NCBI View Article : Google Scholar

135 

Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ and Krek W: Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 425:307–311. 2003.PubMed/NCBI View Article : Google Scholar

136 

Yu-Lee LY, Lee YC, Pan J, Lin SC, Pan T, Yu G, Hawke DH, Pan BF and Lin SH: Bone secreted factors induce cellular quiescence in prostate cancer cells. Sci Rep. 9(18635)2019.PubMed/NCBI View Article : Google Scholar

137 

Phan TG and Croucher PI: The dormant cancer cell life cycle. Nat Rev Cancer. 20:398–411. 2020.PubMed/NCBI View Article : Google Scholar

138 

Yu-Lee LY, Yu G, Lee YC, Lin SC, Pan J, Pan T, Yu KJ, Liu B, Creighton CJ, Rodriguez-Canales J, et al: Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 78:2911–2924. 2018.PubMed/NCBI View Article : Google Scholar

139 

Esposito M, Guise T and Kang Y: The biology of bone metastasis. Cold Spring Harb Perspect Med. 8(a031252)2018.PubMed/NCBI View Article : Google Scholar

140 

Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, Huang S, Chen X, Lai Y, Du H, et al: Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 216:428–449. 2019.PubMed/NCBI View Article : Google Scholar

141 

Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ and Taichman RS: GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 12:116–127. 2010.PubMed/NCBI View Article : Google Scholar

142 

Singh DK, Patel VG, Oh WK and Aguirre-Ghiso JA: Prostate cancer dormancy and reactivation in bone marrow. J Clin Med. 10(2648)2021.PubMed/NCBI View Article : Google Scholar

143 

Sosa MS: Dormancy programs as emerging antimetastasis therapeutic alternatives. Mol Cell Oncol. 3(e1029062)2015.PubMed/NCBI View Article : Google Scholar

144 

Cackowski FC and Heath EI: Prostate cancer dormancy and recurrence. Cancer Lett. 524:103–108. 2022.PubMed/NCBI View Article : Google Scholar

145 

Cackowski FC, Eber MR, Rhee J, Decker AM, Yumoto K, Berry JE, Lee E, Shiozawa Y, Jung Y, Aguirre-Ghiso JA and Taichman RS: Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J Cell Biochem. 118:891–902. 2017.PubMed/NCBI View Article : Google Scholar

146 

Zhang J, Si J, Gan L, Di C, Xie Y, Sun C, Li H, Guo M and Zhang H: Research progress on therapeutic targeting of quiescent cancer cells. Artif Cells Nanomed Biotechnol. 47:2810–2820. 2019.PubMed/NCBI View Article : Google Scholar

147 

Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, Ekpin E, George A, Zheng Y, Lam HM, et al: NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun. 6(6170)2015.PubMed/NCBI View Article : Google Scholar

148 

Recasens A and Munoz L: Targeting cancer cell dormancy. Trends Pharmacol Sci. 40:128–141. 2019.PubMed/NCBI View Article : Google Scholar

149 

Decker AM, Jung Y, Cackowski FC, Yumoto K, Wang J and Taichman RS: Sympathetic signaling reactivates quiescent disseminated prostate cancer cells in the bone marrow. Mol Cancer Res. 15:1644–1655. 2017.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sakellakis M, Flores LJ and Ramachandran S: Patterns of indolence in prostate cancer (Review). Exp Ther Med 23: 351, 2022.
APA
Sakellakis, M., Flores, L.J., & Ramachandran, S. (2022). Patterns of indolence in prostate cancer (Review). Experimental and Therapeutic Medicine, 23, 351. https://doi.org/10.3892/etm.2022.11278
MLA
Sakellakis, M., Flores, L. J., Ramachandran, S."Patterns of indolence in prostate cancer (Review)". Experimental and Therapeutic Medicine 23.5 (2022): 351.
Chicago
Sakellakis, M., Flores, L. J., Ramachandran, S."Patterns of indolence in prostate cancer (Review)". Experimental and Therapeutic Medicine 23, no. 5 (2022): 351. https://doi.org/10.3892/etm.2022.11278
Copy and paste a formatted citation
x
Spandidos Publications style
Sakellakis M, Flores LJ and Ramachandran S: Patterns of indolence in prostate cancer (Review). Exp Ther Med 23: 351, 2022.
APA
Sakellakis, M., Flores, L.J., & Ramachandran, S. (2022). Patterns of indolence in prostate cancer (Review). Experimental and Therapeutic Medicine, 23, 351. https://doi.org/10.3892/etm.2022.11278
MLA
Sakellakis, M., Flores, L. J., Ramachandran, S."Patterns of indolence in prostate cancer (Review)". Experimental and Therapeutic Medicine 23.5 (2022): 351.
Chicago
Sakellakis, M., Flores, L. J., Ramachandran, S."Patterns of indolence in prostate cancer (Review)". Experimental and Therapeutic Medicine 23, no. 5 (2022): 351. https://doi.org/10.3892/etm.2022.11278
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team