|
1
|
Omim.org: OMIM Entry-# 618512-
O'Donell-Luria-Rodan Syndrome; ODLURO. https://www.omim.org/entry/618512> Accessed August
3, 2021.
|
|
2
|
Velmans C, O'Donnell-Luria AH, Argilli E,
Tran Mau-Them F, Vitobello A, Chan MC, Fung JL, Rech M, Abicht A,
Aubert Mucca M, et al: O'Donnell-Luria-Rodan syndrome: Description
of a second multinational cohort and refinement of the phenotypic
spectrum. J Med Genet, 2021 (Epub ahead of print). doi:
10.1136/jmedgenet-2020-107470.
|
|
3
|
Zhang X, Novera W, Zhang Y and Deng LW:
MLL5 (KMT2E): Structure, function, and clinical relevance. Cell Mol
Life Sci. 74:2333–2344. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
O'Donnell-Luria AH, Pais LS, Faundes V,
Wood JC, Sveden A, Luria V, Abou Jamra R, Accogli A, Amburgey K,
Anderlid BM, et al: Heterozygous variants in KMT2E cause a spectrum
of neurodevelopmental disorders and epilepsy. Am J Hum Genet.
104:1210–1222. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Shen E, Shulha H, Weng Z and Akbarian S:
Regulation of histone H3K4 methylation in brain development and
disease. Philos Trans R Soc Lond B Biol Sci.
369(20130514)2014.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Li Y, Fan L, Luo R, Yang Z, Yuan M, Zhang
J and Gan J: Case Report: De novo variants of KMT2E cause
O'Donnell-Luria-Rodan syndrome: Additional cases and literature
review. Front Pediatr. 9(641841)2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Dong S, Walker MF, Carriero NJ, DiCola M,
Willsey AJ, Ye AY, Waqar Z, Gonzalez LE, Overton JD, Frahm S, et
al: De novo insertions and deletions of predominantly paternal
origin are associated with autism spectrum disorder. Cell Rep.
9:16–23. 2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Schell R, Martin N Mullis, Takeshi Matsui,
Ryan Foree and IM Ehrenreich: Genetic basis of a spontaneous
mutation’s expressivity. BioRxiv, 2020.
doi:10.1101/2020.04.03.024547.
|
|
9
|
Cooper DN, Krawczak M, Polychronakos C,
Tyler-Smith C and Kehrer-Sawatzki H: Where genotype is not
predictive of phenotype: Towards an understanding of the molecular
basis of reduced penetrance in human inherited disease. Hum Genet.
132:1077–1130. 2013.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Shulha HP, Cheung I, Whittle C, Wang J,
Virgil D, Lin CL, Guo Y, Lessard A, Akbarian S and Weng Z:
Epigenetic signatures of autism: TrimethylatedH3K4landscapes in
prefrontal neurons. Arch Gen Psychiatry. 69:314–324.
2012.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zech M, Boesch S, Maier EM, Borggraefe I,
Vill K, Laccone F, Pilshofer V, Ceballos-Baumann A, Alhaddad B,
Berutti R, et al: Haploinsufficiency ofKMT2B, encoding the
lysine-specific histone methyltransferase 2B, results in
early-onset generalized dystonia. Am J Hum Genet. 99:1377–1387.
2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sharawat IK, Panda PK and Dawman L:
Clinical characteristics and genotype-phenotype correlation in
children with KMT2E gene-related neurodevelopmental disorders:
Report of two new cases and review of published literature.
Neuropediatrics. 52:98–104. 2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Conforti R, Iovine S, Santangelo G,
Capasso R, Cirillo M, Fratta M and Caranci F: ODLURO syndrome:
Personal experience and review of the literature. Radiol Med.
126:316–322. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Bosemani T, Orman G, Boltshauser E, Tekes
A, Huisman TA and Poretti A: Congenital abnormalities of the
posterior fossa. Radiographics. 35:200–220. 2015.PubMed/NCBI View Article : Google Scholar
|