|
1
|
Chu SM, Shih WT, Yang YH, Chen PC and Chu
YH: Use of traditional Chinese medicine in patients with
hyperlipidemia: A population-based study in Taiwan. J
Ethnopharmacol. 168:129–135. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
World Health Organization. World health
statistics 2021: Monitoring health for the SDGs, sustainable
development goals. Geneva: World Health Organization. Licence: CC
BY-NC-SA 3.0 IGO, 2021.
|
|
3
|
Navar-Boggan AM, Peterson ED, D'Agostino
RB Sr, Neely B, Sniderman AD and Pencina MJ: Hyperlipidemia in
early adulthood increases long-term risk of coronary heart disease.
Circulation. 131:451–458. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Tang H, Zeng Q, Tang T, Wei Y and Pu P:
Kaempferide improves glycolipid metabolism disorder by activating
PPARγ in high-fat-diet-fed mice. Life Sci.
270(119133)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Cheon SY, Chung KS, Lee KJ, Choi HY, Ham
IH, Jung DH, Cha YY and An HJ: HVC1 ameliorates hyperlipidemia and
inflammation in LDLR-/- mice. BMC Complement Altern Med.
17(222)2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Deng YF, Huang XL, Su M, Yu PX, Zhang Z,
Liu QH, Wang GP and Liu MY: Hypolipidemic effect of SIPI-7623, a
derivative of an extract from oriental wormwood, through farnesoid
X receptor antagonism. Chin J Nat Med. 16:572–579. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Zhu M, Hao S, Liu T, Yang L, Zheng P,
Zhang L and Ji G: Lingguizhugan decoction improves non-alcoholic
fatty liver disease by altering insulin resistance and lipid
metabolism related genes: A whole trancriptome study by RNA-Seq.
Oncotarget. 8:82621–82631. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Chen HL, Tsai TC, Tsai YC, Liao JW, Yen CC
and Chen CM: Kefir peptides prevent high-fructose corn
syrup-induced non-alcoholic fatty liver disease in a murine model
by modulation of inflammation and the JAK2 signaling pathway. Nutr
Diabetes. 6(e237)2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Liu CP, Chau PC, Chang CT, An LM, Yeh JL,
Chen IJ and Wu BN: KMUP-1, a GPCR modulator, attenuates
triglyceride accumulation involved MAPKs/Akt/PPARγ and PKA/PKG/HSL
signaling in 3T3-L1 preadipocytes. Molecules.
23(2433)2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Lin LY, Huang BC, Chen KC and Peng RY:
Integrated anti-hyperlipidemic bioactivity of whole Citrus
grandis [L.] osbeck fruits-multi-action mechanism evidenced using
animal and cell models. Food Funct. 11:2978–2996. 2020.
|
|
11
|
Deng N, He Z, Guo R, Zheng B, Li T and Liu
RH: Highland barley whole grain (Hordeum vulgare L.) ameliorates
hyperlipidemia by modulating cecal microbiota, miRNAs, and AMPK
pathways in leptin receptor-deficient db/db mice. J Agric Food
Chem. 68:11735–11746. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Manickam R and Wahli W: Roles of
peroxisome proliferator-activated receptor β/δ in skeletal muscle
physiology. Biochimie. 136:42–48. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Capitão A, Lopes-Marques M, Páscoa I,
Ruivo R, Mendiratta N, Fonseca E, Castro LFC and Santos MM: The
echinodermata PPAR: Functional characterization and exploitation by
the model lipid homeostasis regulator tributyltin. Environ Pollut.
263(114467)2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Du H, Li C, Wang Z, He Y, Wang Y, Zhou H,
Wan H and Yang J: Effects of Danhong injection on dyslipidemia and
cholesterol metabolism in high-fat diets fed rats. J
Ethnopharmacol. 274(114058)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Rong Q, Han B, Li Y, Yin H, Li J and Hou
Y: Berberine reduces lipid accumulation by promoting fatty acid
oxidation in renal tubular epithelial cells of the diabetic kidney.
Front Pharmacol. 12(729384)2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Song J, Qiu H, Du P, Mou F, Nie Z, Zheng Y
and Wang M: Polyphenols extracted from Shanxi-aged vinegar exert
hypolipidemic effects on OA-induced HepG2 cells via the
PPARα-LXRα-ABCA1 pathway. J Food Biochem. 46(e14029)2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhu K, Tan F, Mu J, Yi R, Zhou XR and Zhao
X: Anti-obesity effects of lactobacillus fermentum CQPC05 isolated
from sichuan pickle in high-fat diet-induced obese mice through
PPAR-α signaling pathway. Microorganisms. 7(194)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chen XF, Tian MX, Sun RQ, Zhang ML, Zhou
LS, Jin L, Chen LL, Zhou WJ, Duan KL, Chen YJ, et al: SIRT5
inhibits peroxisomal ACOX1 to prevent oxidative damage and is
downregulated in liver cancer. EMBO Rep. 19(e45124)2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Schlaepfer IR and Joshi M: CPT1A-mediated
fat oxidation, mechanisms, and therapeutic potential.
Endocrinology. 161(bqz046)2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Yan S, Wang X, Yang C, Wang J, Wang Y, Wu
B, Qiao L, Zhao J, Mohammad P, Zheng X, et al: Insights into walnut
lipid metabolism from metabolome and transcriptome analysis. Front
Genet. 12(715731)2021.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Hafiane A and Genest J: ATP binding
cassette A1 (ABCA1) mediates microparticle formation during
high-density lipoprotein (HDL) biogenesis. Atherosclerosis.
257:90–99. 2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chen K, Ma Z, Yan X, Liu J, Xu W, Li Y,
Dai Y, Zhang Y and Xiao H: Investigation of the lipid-lowering
mechanisms and active ingredients of danhe granule on
hyperlipidemia based on systems pharmacology. Front Pharmacol.
11(528)2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Takei K, Nakagawa Y, Wang Y, Han SI, Satoh
A, Sekiya M, Matsuzaka T and Shimano H: Effects of K-877, a novel
selective PPARα modulator, on small intestine contribute to the
amelioration of hyperlipidemia in low-density lipoprotein receptor
knockout mice. J Pharmacol Sci. 133:214–222. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Malek MA, Hoang MH, Jia Y, Lee JH, Jun HJ,
Lee DH, Lee HJ, Lee C, Lee MK, Hwang BY and Lee SJ:
Ombuin-3-O-β-D-glucopyranoside from Gynostemma pentaphyllum is a
dual agonistic ligand of peroxisome proliferator-activated
receptors α and δ/β. Biochem Biophys Res Commun. 430:1322–1328.
2013.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Toral M, Romero M, Jiménez R, Mahmoud AM,
Barroso E, Gómez-Guzmán M, Sánchez M, Cogolludo Á, García-Redondo
AB, Briones AM, et al: Carnitine palmitoyltransferase-1
up-regulation by PPAR-β/δ prevents lipid-induced endothelial
dysfunction. Clin Sci (Lond). 129:823–837. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Jiang Y, Chen L, Wang H, Narisi B and Chen
B: Li-Gan-Shi-Liu-Ba-Wei-San improves non-alcoholic fatty liver
disease through enhancing lipid oxidation and alleviating oxidation
stress. J Ethnopharmacol. 176:499–507. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Sun L, He X, Zhang T, Han Y and Tao G:
Knockdown of mesenchymal stem cell-derived exosomal LOC100129516
suppresses the symptoms of atherosclerosis via upregulation of the
PPARγ/LXRα/ABCA1 signaling pathway. Int J Mol Med.
48(208)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Li Y, Sheng Y, Lu X, Guo X, Xu G, Han X,
An L and Du P: Isolation and purification of acidic polysaccharides
from Agaricus blazei Murill and evaluation of their
lipid-lowering mechanism. Int J Biol Macromol. 157:276–287.
2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Wang D, Tian M, Qi Y, Chen G, Xu L, Zou X,
Wang K, Dong H and Lu F: Jinlida granule inhibits palmitic acid
induced-intracellular lipid accumulation and enhances autophagy in
NIT-1 pancreatic β cells through AMPK activation. J Ethnopharmacol.
161:99–107. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y,
Wang D and Yang Y: AMPK orchestrates an elaborate cascade
protecting tissue from fibrosis and aging. Ageing Res Rev.
38:18–27. 2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhang T, Yamamoto N and Ashida H:
Chalcones suppress fatty acid-induced lipid accumulation through a
LKB1/AMPK signaling pathway in HepG2 cells. Food Funct.
5:1134–1141. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wang S, Li C, Sun P, Shi J, Wu X, Liu C,
Peng Z, Han H, Xu S, Yang Y, et al: PCV2 triggers PK-15 Cell
apoptosis through the PLC-IP3R-Ca2+ signaling pathway. Front
Microbiol. 12(674907)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Fujiwara Y, Kawaguchi Y, Fujimoto T,
Kanayama N, Magari M and Tokumitsu H: Differential AMP-activated
protein kinase (AMPK) recognition mechanism of
Ca2+/calmodulin-dependent protein kinase kinase
isoforms. J Biol Chem. 291:13802–13808. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Shin MR, Shin SH and Roh SS: Diospyros
kaki and Citrus unshiu mixture improves disorders of lipid
metabolism in nonalcoholic fatty liver disease. Can J Gastroenterol
Hepatol. 2020(8812634)2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Chang JJ, Hsu MJ, Huang HP, Chung DJ,
Chang YC and Wang CJ: Mulberry anthocyanins inhibit oleic acid
induced lipid accumulation by reduction of lipogenesis and
promotion of hepatic lipid clearance. J Agric Food Chem.
61:6069–6076. 2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kang J, Park J, Kim HL, Jung Y, Youn DH,
Lim S, Song G, Park H, Jin JS, Kwak HJ and Um JY:
Secoisolariciresinol diglucoside inhibits adipogenesis through the
AMPK pathway. Eur J Pharmacol. 820:235–244. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhang X, Song Y, Feng M, Zhou X, Lu Y, Gao
L, Yu C, Jiang X and Zhao J: Thyroid-stimulating hormone decreases
HMG-CoA reductase phosphorylation via AMP-activated protein kinase
in the liver. J Lipid Res. 56:963–971. 2015.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Cao K, Lv W, Liu X, Fan Y, Wang K, Feng Z
and Liu J, Zang W, Xing L and Liu J: Herba houttuyniae
extract benefits hyperlipidemic mice via activation of the
AMPK/PGC-1α/Nrf2 cascade. Nutrients. 12(164)2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Song Y, Li X, Liu Y, Hu Y and Yang R:
Arctigenin improves lipid metabolism by regulating AMP-activated
protein kinase and downstream signaling pathways. J Cell Biochem.
120:13275–13288. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Lee KH, Jeong ES, Jang G, Na JR, Park S,
Kang WS, Kim E, Choi H, Kim JS and Kim S: Unripe rubus coreanus
miquel extract containing ellagic acid regulates AMPK, SREBP-2,
HMGCR, and INSIG-1 signaling and cholesterol metabolism in vitro
and in vivo. Nutrients. 12(610)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gallo-Ebert C, Francisco J, Liu HY, Draper
R, Modi K, Hayward MD, Jones BK, Buiakova O, McDonough V and
Nickels JT Jr: Mice lacking ARV1 have reduced signs of metabolic
syndrome and non-alcoholic fatty liver disease. J Biol Chem.
293:5956–5974. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Huang C, Wang J, Hu W, Wang C, Lu X, Tong
L, Wu F and Zhang W: Identification of functional farnesoid X
receptors in brain neurons. FEBS Lett. 590:3233–3242.
2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang T, Zhao M, Lu D, Wang S, Yu F, Guo
L, Wen S and Wu B: REV-ERBα regulates CYP7A1 Through repression of
liver receptor homolog-1. Drug Metab Dispos. 46:248–258.
2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Huang M, Kong B, Zhang M, Rizzolo D,
Armstrong LE, Schumacher JD, Chow MD, Lee YH, Joseph LB, Stofan M,
et al: Enhanced alcoholic liver disease in mice with
intestine-specific farnesoid X receptor deficiency. Lab Invest.
100:1158–1168. 2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Jung D, York JP, Wang L, Yang C, Zhang A,
Francis HL, Webb P, McKeehan WL, Alpini G, Lesage GD, et al:
FXR-induced secretion of FGF15/19 inhibits CYP27 expression in
cholangiocytes through p38 kinase pathway. Pflugers Arch.
466:1011–1019. 2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Matsui S, Yamane T, Takita T, Oishi Y and
Kobayashi-Hattori K: The hypocholesterolemic activity of Momordica
charantia fruit is mediated by the altered cholesterol- and bile
acid-regulating gene expression in rat liver. Nutr Res. 33:580–585.
2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Huang F, Zheng X, Ma X, Jiang R, Zhou W,
Zhou S, Zhang Y, Lei S, Wang S, Kuang J, et al: Theabrownin from
Pu-erh tea attenuates hypercholesterolemia via modulation of gut
microbiota and bile acid metabolism. Nat Commun.
10(4971)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Altomonte J, Cong L, Harbaran S, Richter
A, Xu J, Meseck M and Dong HH: Foxo1 mediates insulin action on
apoC-III and triglyceride metabolism. J Clin Invest. 114:1493–1503.
2004.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kamagate A, Qu S, Perdomo G, Su D, Kim DH,
Slusher S, Meseck M and Dong HH: FoxO1 mediates insulin-dependent
regulation of hepatic VLDL production in mice. J Clin Invest.
118:2347–2364. 2008.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Link W: Introduction to FOXO biology.
Methods Mol Biol. 1890:1–9. 2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Bao S, Wu YL, Wang X, Han S, Cho S, Ao W
and Nan JX: Agriophyllum oligosaccharides ameliorate hepatic injury
in type 2 diabetic db/db mice targeting
INS-R/IRS-2/PI3K/AKT/PPAR-γ/Glut4 signal pathway. J Ethnopharmacol.
257(112863)2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zhu M, Qin YC, Gao CQ, Yan HC, Li XG and
Wang XQ: Extracellular glutamate-induced mTORC1 activation via the
IR/IRS/PI3K/Akt pathway enhances the expansion of porcine
intestinal stem cells. J Agric Food Chem. 67:9510–9521.
2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhang W, Hou C, Du L, Zhang X, Yang M,
Chen L and Li J: Protective action of pomegranate peel polyphenols
in type 2 diabetic rats via the translocation of Nrf2 and FoxO1
regulated by the PI3K/Akt pathway. Food Funct. 12:11408–11419.
2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Chen YJ, Chen CC, Li TK, Wang PH, Liu LR,
Chang FY, Wang YC, Yu YH, Lin SP, Mersmann HJ and Ding ST:
Docosahexaenoic acid suppresses the expression of FoxO and its
target genes. J Nutr Biochem. 23:1609–1616. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hooper AJ, Burnett JR and Watts GF:
Contemporary aspects of the biology and therapeutic regulation of
the microsomal triglyceride transfer protein. Circ Res.
116:193–205. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Upton GV: Lipids, cardiovascular disease,
and oral contraceptives: A practical perspective. Fertil Steril.
53:1–12. 1990.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Xu LN, Yin LH, Jin Y, Qi Y, Han X, Xu YW,
Liu KX, Zhao YY and Peng JY: Effect and possible mechanisms of
dioscin on ameliorating metabolic glycolipid metabolic disorder in
type-2-diabetes. Phytomedicine. 67(153139)2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Maximus PS, Al Achkar Z, Hamid PF, Hasnain
SS and Peralta CA: Adipocytokines: Are they the theory of
everything? Cytokine. 133(155144)2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Pyrzak B, Ruminska M, Popko K and Demkow
U: Adiponectin as a biomarker of the metabolic syndrome in children
and adolescents. Eur J Med Res. 15 (Suppl 2):S147–S151.
2010.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Münzberg H and Morrison CD: Structure,
production and signaling of leptin. Metabolism. 64:13–23.
2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Yadav A, Kataria MA, Saini V and Yadav A:
Role of leptin and adiponectin in insulin resistance. Clin Chim
Acta. 417:80–84. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Richard AJ and Stephens JM: The role of
JAK-STAT signaling in adipose tissue function. Biochim Biophys
Acta. 1842:431–439. 2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wang T, Fahrmann JF, Lee H, Li YJ,
Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al:
JAK/STAT3-regulated fatty acid β-oxidation is critical for breast
cancer stem cell self-renewal and chemoresistance. Cell Metab.
27:136–150. 2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Lin X, Shi H, Cui Y, Wang X, Zhang J, Yu W
and Wei M: Dendrobium mixture regulates hepatic gluconeogenesis in
diabetic rats via the phosphoinositide-3-kinase/protein kinase B
signaling pathway. Exp Ther Med. 16:204–212. 2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Chen Y, Lu W, Jin Z, Yu J and Shi B:
Carbenoxolone ameliorates hepatic lipid metabolism and inflammation
in obese mice induced by high fat diet via regulating the
JAK2/STAT3 signaling pathway. Int Immunopharmacol.
74(105498)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Olmos-Ortiz A, Olivares-Huerta A,
García-Quiroz J, Zariñán T, Chavira R, Zaga-Clavellina V, Avila E,
Halhali A, Durand M, Larrea F and Díaz L: Placentas associated with
female neonates from pregnancies complicated by urinary tract
infections have higher cAMP content and cytokines expression than
males. Am J Reprod Immunol. 86(e13434)2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Gold MG, Gonen T and Scott JD: Local cAMP
signaling in disease at a glance. J Cell Sci. 126:4537–4543.
2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Hanna R, Nour-Eldine W, Saliba Y,
Dagher-Hamalian C, Hachem P, Abou-Khalil P, Mika D, Varin A, El
Hayek MS, Pereira L, et al: Cardiac phosphodiesterases are
differentially increased in diabetic cardiomyopathy. Life Sci.
283(119857)2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Frezza E, Martin J and Lavery R: A
molecular dynamics study of adenylyl cyclase: The impact of ATP and
G-protein binding. PLoS One. 13(e0196207)2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Leukes V, Walzl G and du Plessis N:
Myeloid-derived suppressor cells as target of phosphodiesterase-5
inhibitors in host-directed therapeutics for tuberculosis. Front
Immunol. 11(451)2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
El Awdan SA, Abdel Rahman RF, Ibrahim HM,
Hegazy RR, El Marasy SA, Badawi M and Arbid MS: Regression of
fibrosis by cilostazol in a rat model of thioacetamide-induced
liver fibrosis: Up regulation of hepatic cAMP, and modulation of
inflammatory, oxidative stress and apoptotic biomarkers. PLoS One.
14(e0216301)2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ge M, Guo R, Lou HX and Zhang W: Extract
of paecilomyces hepiali mycelia induces lipolysis through
PKA-mediated phosphorylation of hormone-sensitive lipase and
ERK-mediated downregulation of perilipin in 3T3-L1 adipocytes. BMC
Complement Altern Med. 18(326)2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Xiao N, Yang LL, Yang YL, Liu LW, Li J,
Liu B, Liu K, Qi LW and Li P: Ginsenoside Rg5 inhibits
succinate-associated lipolysis in adipose tissue and prevents
muscle insulin resistance. Front Pharmacol. 8(43)2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Du Q, Zhang S, Li A, Mohammad IS, Liu B
and Li Y: Astragaloside IV inhibits adipose lipolysis and reduces
hepatic glucose production via Akt dependent PDE3B expression in
HFD-Fed mice. Front Physiol. 9(15)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Wu L, Wang Y, Chi G, Shen B, Tian Y, Li Z,
Han L, Zhang Q and Feng H: Morin reduces inflammatory responses and
alleviates lipid accumulation in hepatocytes. J Cell Physiol.
234:19785–19798. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Xu HY, Yu L, Chen JH, Yang LN, Lin C, Shi
XQ and Qin H: Sesamol alleviates obesity-related hepatic steatosis
via activating hepatic PKA pathway. Nutrients.
12(329)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zhao Y, Peng L, Yang LC, Xu XD, Li WJ, Luo
XM and Jin X: Wedelolactone regulates lipid metabolism and improves
hepatic steatosis partly by AMPK activation and up-regulation of
expression of PPARα/LPL and LDLR. PLoS One.
10(e0132720)2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Gong X, Li T, Wan R and Sha L: Cordycepin
attenuates high-fat diet-induced non-alcoholic fatty liver disease
via down-regulation of lipid metabolism and inflammatory responses.
Int Immunopharmacol. 91(107173)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Cao Y, Bei W, Hu Y, Cao L, Huang L, Wang
L, Luo D, Chen Y, Yao X, He W, et al: Hypocholesterolemia of
rhizoma coptidis alkaloids is related to the bile acid by
up-regulated CYP7A1 in hyperlipidemic rats. Phytomedicine.
19:686–692. 2012.PubMed/NCBI View Article : Google Scholar
|