|
1
|
Iwasaki A and Medzhitov R: Control of
adaptive immunity by the innate immune system. Nat Immunol.
16:343–353. 2015.PubMed/NCBI View
Article : Google Scholar
|
|
2
|
Dinarello CA, Nold-Petry C, Nold M, Fujita
M, Li S, Kim S and Bufler P: Suppression of innate inflammation and
immunity by interleukin-37. Eur J Immunol. 46:1067–1081.
2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Conti P, Lessiani G, Kritas SK, Ronconi G,
Caraffa A and Theoharides TC: Mast cells emerge as mediators of
atherosclerosis: Special emphasis on IL-37 inhibition. Tissue Cell.
49:393–400. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wang X, Xu K, Chen S, Li Y and Li M: Role
of interleukin-37 in inflammatory and autoimmune diseases. Iran J
Immunol. 15:165–174. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Nold MF, Nold-Petry CA, Zepp JA, Palmer
BE, Bufler P and Dinarello CA: IL-37 is a fundamental inhibitor of
innate immunity. Nat Immunol. 11:1014–1022. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
6
|
Sims JE and Smith DE: The IL-1 family:
Regulators of immunity. Nat Rev Immunol. 10:89–102. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Pan G, Risser P, Mao W, Baldwin DT, Zhong
AW, Filvaroff E, Yansura D, Lewis L, Eigenbrot C, Henzel WJ and
Vandlen R: IL-1H, an interleukin 1-related protein that binds IL-18
receptor/IL-1Rrp. Cytokine. 13:1–7. 2001.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Sharma S, Kulk N, Nold MF, Gräf R, Kim SH,
Reinhardt D, Dinarello CA and Bufler P: The IL-1 family member 7b
translocates to the nucleus and down-regulates proinflammatory
cytokines. J Immunol. 180:5477–5482. 2008.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Quirk S and Agrawal DK: Immunobiology of
IL-37: Mechanism of action and clinical perspectives. Expert Rev
Clin Immunol. 10:1703–1709. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Allaire JM, Poon A, Crowley SM, Han X,
Sharafian Z, Moore N, Stahl M, Bressler B, Lavoie PM, Jacobson K,
et al: Interleukin-37 regulates innate immune signaling in human
and mouse colonic organoids. Sci Rep. 11(8206)2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Cavalli G and Dinarello CA: Suppression of
inflammation and acquired immunity by IL-37. Immunol Rev.
281:179–190. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhao M, Li Y, Guo C, Wang L, Chu H, Zhu F,
Li Y, Wang X, Wang Q, Zhao W, et al: IL-37 isoform D downregulates
pro-inflammatory cytokines expression in a Smad3-dependent manner.
Cell Death Dis. 9(582)2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Dinarello CA: Introduction to the
interleukin-1 family of cytokines and receptors: Drivers of innate
inflammation and acquired immunity. Immunol Rev. 281:5–7.
2018.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Mei Y and Liu H: IL-37: An
anti-inflammatory cytokine with antitumor functions. Cancer Rep
(Hoboken). 2(e1151)2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ellisdon AM, Nold-Petry CA, D'Andrea L,
Cho SX, Lao JC, Rudloff I, Ngo D, Lo CY, Soares da Costa TP,
Perugini MA, et al: Homodimerization attenuates the
anti-inflammatory activity of interleukin-37. Sci Immunol.
2(eaaj1548)2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Smithrithee R, Niyonsaba F, Kiatsurayanon
C, Ushio H, Ikeda S, Okumura K and Ogawa H: Human β-defensin-3
increases the expression of interleukin-37 through CCR6 in human
keratinocytes. J Dermatol Sci. 77:46–53. 2015.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Bai J, Li Y, Li M, Tan S and Wu D: IL-37
as a potential biotherapeutics of inflammatory diseases. Curr Drug
Targets. 21:855–863. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Pan Y, Wen X, Hao D, Wang Y, Wang L, He G
and Jiang X: The role of IL-37 in skin and connective tissue
diseases. Biomed Pharmacother. 122(109705)2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Theoharides TC, Tsilioni I and Conti P:
Mast cells may regulate the anti-inflammatory activity of IL-37.
Int J Mol Sci. 20(3701)2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Conti P, Caraffa A, Mastrangelo F,
Tettamanti L, Ronconi G, Frydas I, Kritas SK and Theoharides TC:
Critical role of inflammatory mast cell in fibrosis: Potential
therapeutic effect of IL-37. Cell Prolif. 51(e12475)2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
He L, Liang Z, Zhao F, Peng L and Chen Z:
Modulation of IL-37 expression by triptolide and triptonide in
THP-1 cells. Cell Mol Immunol. 12:515–518. 2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Tete S, Tripodi D, Rosati M, Conti F,
Maccauro G, Saggini A, Cianchetti E, Caraffa A, Antinolfi P,
Toniato E, et al: IL-37 (IL-1F7) the newest anti-inflammatory
cytokine which suppresses immune responses and inflammation. Int J
Immunopathol Pharmacol. 25:31–38. 2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Wang J, Shen Y, Li C, Liu C, Wang ZH, Li
YS, Ke X and Hu GH: IL-37 attenuates allergic process via
STAT6/STAT3 pathways in murine allergic rhinitis. Int
Immunopharmacol. 69:27–33. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Ye L, Jiang B, Deng J, Du J, Xiong W, Guan
Y, Wen Z, Huang K and Huang Z: IL-37 alleviates rheumatoid
arthritis by suppressing IL-17 and IL-17-triggering cytokine
production and limiting Th17 cell proliferation. J Immunol.
194:5110–5119. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Li S, Neff CP, Barber K, Hong J, Luo Y,
Azam T, Palmer BE, Fujita M, Garlanda C, Mantovani A, et al:
Extracellular forms of IL-37 inhibit innate inflammation in vitro
and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc
Natl Acad Sci USA. 112:2497–2502. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
An B, Liu X, Li G and Yuan H:
Interleukin-37 ameliorates coxsackievirus B3-induced viral
myocarditis by modulating the Th17/regulatory T cell immune
response. J Cardiovasc Pharmacol. 69:305–313. 2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Xu WD, Zhao Y and Liu Y: Insights into
IL-37, the role in autoimmune diseases. Autoimmun Rev.
14:1170–1175. 2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Gu J, Gao X, Pan X, Peng X, Li Y and Li M:
High-level expression and one-step purification of a soluble
recombinant human interleukin-37b in Escherichia coli. Protein Expr
Purif. 108:18–22. 2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Li W, Ding F, Zhai Y, Tao W, Bi J, Fan H,
Yin N and Wang Z: IL-37 is protective in allergic contact
dermatitis through mast cell inhibition. Int Immunopharmacol.
83(106476)2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Robuffo I, Toniato E, Tettamanti L,
Mastrangelo F, Ronconi G, Frydas I, Caraffa Al, Kritas SK and Conti
P: Mast cell in innate immunity mediated by proinflammatory and
antiinflammatory IL-1 family members. J Biol Regul Homeost Agents.
31:837–842. 2017.PubMed/NCBI
|
|
31
|
Wu W, Wang W, Wang Y, Li W, Yu G, Li Z,
Fang C, Shen Y, Sun Z, Han L, et al: IL-37b suppresses T cell
priming by modulating dendritic cell maturation and cytokine
production via dampening ERK/NF-κB/S6K signalings. Acta Biochim
Biophys Sin (Shanghai). 47:597–603. 2015.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Conti P, Caraffa A, Ronconi G, Kritas SK,
Mastrangelo F, Tettamanti L, Frydas I and Theoharides TC: Mast
cells participate in allograft rejection: Can IL-37 play an
inhibitory role? Inflamm Res. 67:747–755. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Luo Y, Cai X, Liu S, Wang S, Nold-Petry
CA, Nold MF, Bufler P, Norris D, Dinarello CA and Fujita M:
Suppression of antigen-specific adaptive immunity by IL-37 via
induction of tolerogenic dendritic cells. Proc Natl Acad Sci USA.
111:15178–15183. 2014.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhan Q, Zeng Q, Song R, Zhai Y, Xu D,
Fullerton DA, Dinarello CA and Meng X: IL-37 suppresses
MyD88-mediated inflammatory responses in human aortic valve
interstitial cells. Mol Med. 23:83–91. 2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Luo C, Shu Y, Luo J, Liu D, Huang DS, Han
Y, Chen C, Li YC, Zou JM, Qin J, et al: Intracellular IL-37b
interacts with Smad3 to suppress multiple signaling pathways and
the metastatic phenotype of tumor cells. Oncogene. 36:2889–2899.
2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Nold-Petry CA, Lo CY, Rudloff I, Elgass
KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC,
et al: IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to
carry out its multifaceted anti-inflammatory program upon innate
signal transduction. Nat Immunol. 16:354–365. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Luo P, Peng S, Yan Y, Ji P and Xu J: IL-37
inhibits M1-like macrophage activation to ameliorate
temporomandibular joint inflammation through the NLRP3 pathway.
Rheumatology (Oxford). 59:3070–3080. 2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Kim SK, Choe JY and Park KY: Activation of
CpG-ODN-induced TLR9 signaling inhibited by interleukin-37 in U937
human macrophages. Yonsei Med J. 62:1023–1031. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Li T, Zhu D, Mou T, Guo Z, Pu J and Wu Z:
Interleukin-37 induces apoptosis and autophagy of SMMC-7721 cells
by inhibiting phosphorylation of mTOR. Xi Bao Yu Fen Zi Mian Yi Xue
Za Zhi. 33:440–445. 2017.PubMed/NCBI(In Chinese).
|
|
40
|
Hou T, Sun X, Zhu J, Hon KL, Jiang P, Chu
IM, Tsang MS, Lam CW, Zeng H and Wong CK: IL-37 ameliorating
allergic inflammation in atopic dermatitis through regulating
microbiota and AMPK-mTOR signaling pathway-modulated autophagy
mechanism. Front Immunol. 11(752)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Kim MS, Baek AR, Lee JH, Jang AS, Kim DJ,
Chin SS and Park SW: IL-37 attenuates lung fibrosis by inducing
autophagy and regulating TGF-β1 production in mice. J Immunol.
203:2265–2275. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Rausch Osthoff AK, Niedermann K, Braun J,
Adams J, Brodin N, Dagfinrud H, Duruoz T, Esbensen BA, Günther KP,
Hurkmans E, et al: 2018 EULAR recommendations for physical activity
in people with inflammatory arthritis and osteoarthritis. Ann Rheum
Dis. 77:1251–1260. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ngian GS: Rheumatoid arthritis. Aust Fam
Physician. 39:626–628. 2010.PubMed/NCBI
|
|
44
|
Zhao PW, Jiang WG, Wang L, Jiang ZY, Shan
YX and Jiang YF: Plasma levels of IL-37 and correlation with TNF-α,
IL-17A, and disease activity during DMARD treatment of rheumatoid
arthritis. PLoS One. 9(e95346)2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Xia T, Zheng XF, Qian BH, Fang H, Wang JJ,
Zhang LL, Pang YF, Zhang J, Wei XQ, Xia ZF and Zhao DB: Plasma
interleukin-37 is elevated in patients with rheumatoid arthritis:
Its correlation with disease activity and Th1/Th2/Th17-related
cytokines. Dis Markers. 2015(795043)2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ragab D, Mobasher S and Shabaan E:
Elevated levels of IL-37 correlate with T cell activation status in
rheumatoid arthritis patients. Cytokine. 113:305–310.
2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Song L, Wang Y, Sui Y, Sun J, Li D, Li G,
Liu J, Li T and Shu Q: High interleukin-37 (IL-37) expression and
increased mucin-domain containing-3 (TIM-3) on peripheral T cells
in patients with rheumatoid arthritis. Med Sci Monit. 24:5660–5667.
2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Xia L, Shen H and Lu J: Elevated serum and
synovial fluid levels of interleukin-37 in patients with rheumatoid
arthritis: Attenuated the production of inflammatory cytokines.
Cytokine. 76:553–557. 2015.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yang L, Zhang J, Tao J, Tao J and Lu T:
Elevated serum levels of Interleukin-37 are associated with
inflammatory cytokines and disease activity in rheumatoid
arthritis. APMIS. 123:1025–1031. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Wan LL, Wang XD and Ci ZC: Expression of
TLR4 in peripheral blood of patients with 274 rheumatoid arthritis
and its correlation with IL-37 level. World J Complex Med. 2:23–25.
2016.
|
|
51
|
Chen X, Tian J, Zhang J and Su J:
Expression and clinical significance of serum IL-37 and soluble
PD-1 in patients with rheumatoid arthritis. Chin J Immunol.
33:422–425. 2017.
|
|
52
|
Akram N, Jamal A, Ullah S, Waqar AB and
Iqbal K: Expression level of serum interleukin-37 in rheumatoid
arthritis patients and its correlation with disease activity score.
Adv Life Sci. 5:159–165. 2018.
|
|
53
|
Ke Q, Huang Z, Yu H, et al: Expression and
significance of interleukin-37 in PBMCs from rheumatoid arthritis
patients. Int J Lab Med. 41:754–757. 2020.(In Chinese).
|
|
54
|
Liu Y and Gao W: Interleukin-37 inhibits
proliferation, migration and induces apoptosis of rheumatoid
arthritis fibroblast-like synoviocytes (RAFLS) by inhibiting STAT3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 36:236–241. 2020.PubMed/NCBI(In Chinese).
|
|
55
|
Zhu J, Xie C, Qiu H and Shi L: Correlation
between level of interleukin-37 and rheumatoid arthritis
progression. Int J Gen Med. 14:1905–1910. 2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
El-Barbary AM, Hussein MS, Almedany SH,
Rageh EM, Alsalawy AM, Aboelhawa MA, Elkholy RM, Shafik NM and
Elharoun AS: Role of interleukin 37 as a novel proangiogenic factor
in juvenile idiopathic arthritis. J Clin Rheumatol. 25:85–90.
2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Elshabrawy HA, Chen Z, Volin MV, Ravella
S, Virupannavar S and Shahrara S: The pathogenic role of
angiogenesis in rheumatoid arthritis. Angiogenesis. 18:433–448.
2015.PubMed/NCBI View Article : Google Scholar
|
|
58
|
MacDonald IJ, Liu SC, Su CM, Wang YH, Tsai
CH and Tang CH: Implications of angiogenesis involvement in
arthritis. Int J Mol Sci. 19(2012)2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Sabi EM, Singh A, Althafar ZM, Behl T,
Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Alqahtani HM
and Bungau S: Elucidating the role of hypoxia-inducible factor in
rheumatoid arthritis. Inflammopharmacology. 30:737–748.
2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Hu F, Mu R, Zhu J, Shi L, Li Y, Liu X,
Shao W, Li G, Li M, Su Y, et al: Hypoxia and hypoxia-inducible
factor-1α provoke toll-like receptor signalling-induced
inflammation in rheumatoid arthritis. Ann Rheum Dis. 73:928–936.
2014.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Wang Y, Wu H and Deng R: Angiogenesis as a
potential treatment strategy for rheumatoid arthritis. Eur J
Pharmacol. 910(174500)2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Ba X, Huang Y, Shen P, Huang Y, Wang H,
Han L, Lin WJ, Yan HJ, Xu LJ, Qin K, et al: WTD attenuating
rheumatoid arthritis via suppressing angiogenesis and modulating
the PI3K/AKT/mTOR/HIF-1α pathway. Front Pharmacol.
12(696802)2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Zhu J, Su C, Chen Y, Hao X and Jiang J:
Electroacupuncture on ST36 and GB39 acupoints inhibits synovial
angiogenesis via downregulating HIF-1α/VEGF expression in a rat
model of adjuvant arthritis. Evid Based Complement Alternat Med.
2019(5741931)2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Feng X and Chen Y: Drug delivery targets
and systems for targeted treatment of rheumatoid arthritis. J Drug
Target. 26:845–857. 2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Pei B, Xu S, Liu T, Pan F, Xu J and Ding
C: Associations of the IL-1F7 gene polymorphisms with rheumatoid
arthritis in Chinese Han population. Int J Immunogenet. 40:199–203.
2013.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zhang XY, Zuo Y, Li C, Tu X, Xu HJ, Guo
JP, Li ZG and Mu R: IL1F7 gene polymorphism is not associated with
rheumatoid arthritis susceptibility in the Northern Chinese Han
population: A case-control study. Chin Med J (Engl). 131:171–179.
2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Shi LP, He Y and Liu ZD: Correlation
between single nucleotide polymorphism of rs3811047 in IL-1 F7 gene
and rheumatoid arthritis susceptibility among Han population in
central plains of China. Asian Pac J Trop Med. 6:73–75.
2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ward MM, Deodhar A, Gensler LS, Dubreuil
M, Yu D, Khan MA, Haroon N, Borenstein D, Wang R, Biehl A, et al:
2019 Update of the American college of rheumatology/spondylitis
association of America/spondyloarthritis research and treatment
network recommendations for the treatment of ankylosing spondylitis
and nonradiographic axial spondyloarthritis. Arthritis Care Res
(Hoboken). 71:1285–1299. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Fawzy RM, Ganeb SS, Said EA and Fouad NA:
Serum level of interleukin-37 and expression of its mRNA in
ankylosing spondylitis patients: Possible role in osteoporosis.
Egypt J Immunol. 23:19–29. 2016.PubMed/NCBI
|
|
70
|
Chen B, Huang K, Ye L, Li Y, Zhang J,
Zhang J, Fan X, Liu X, Li L, Sun J, et al: Interleukin-37 is
increased in ankylosing spondylitis patients and associated with
disease activity. J Transl Med. 13(36)2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Ge R, Pan F, Liao F, Xia G, Mei Y, Shen B,
Zhang T, Gao J, Zhang L, Duan Z, et al: Analysis on the interaction
between IL-1F7 gene and environmental factors on patients with
ankylosing spondylitis: A case-only study. Mol Biol Rep.
38:2281–2284. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Dalbeth N, Merriman TR and Stamp LK: Gout.
Lancet. 388:2039–2052. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Ding L, Li H, Sun B, Wang T, Meng S, Huang
Q, Hong X and Liu D: Elevated interleukin-37 associated with tophus
and pro-inflammatory mediators in Chinese gout patients. Cytokine.
141(155468)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Liu L, Xue Y, Zhu Y, Xuan D, Yang X, Liang
M, Wang J, Zhu X, Zhang J and Zou H: Interleukin 37 limits
monosodium urate crystal-induced innate immune responses in human
and murine models of gout. Arthritis Res Ther.
18(268)2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Zeng M, Dang W, Chen B, Qing Y, Xie W,
Zhao M and Zhou J: IL-37 inhibits the production of
pro-inflammatory cytokines in MSU crystal-induced inflammatory
response. Clin Rheumatol. 35:2251–2258. 2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Zhao L, Zhao T, Yang X, Cao L, Xu R, Liu
J, Lin C, Yu Y, Xuan D, Zhu X, et al: IL-37 blocks gouty
inflammation by shaping macrophages into a non-inflammatory
phagocytic phenotype. Rheumatology (Oxford).
(keac009)2022.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
77
|
Onuora S: IL-37 linked to gout
pathogenesis and treatment. Nat Rev Rheumatol.
16(250)2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Wan W, Shi Y, Ji L, Li X, Xu X and Zhao D:
Interleukin-37 contributes to the pathogenesis of gout by affecting
PDZ domain-containing 1 protein through the nuclear factor-kappa B
pathway. J Int Med Res. 48(300060520948717)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Klück V, van Deuren RC, Cavalli G, Shaukat
A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N,
et al: Rare genetic variants in interleukin-37 link this
anti-inflammatory cytokine to the pathogenesis and treatment of
gout. Ann Rheum Dis. 79:536–544. 2020.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Mandl LA: Osteoarthritis year in review
2018: Clinical. Osteoarthritis Cartilage. 27:359–364.
2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Luo P, Feng C, Jiang C, Ren X, Gou L, Ji P
and Xu J: IL-37b alleviates inflammation in the temporomandibular
joint cartilage via IL-1R8 pathway. Cell Prolif.
52(e12692)2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ding L, Hong X, Sun B, Huang Q, Wang X,
Liu X, Li L, Huang Z and Liu D: IL-37 is associated with
osteoarthritis disease activity and suppresses proinflammatory
cytokines production in synovial cells. Sci Rep.
7(11601)2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
van Geffen EW, van Caam APM, Schreurs W,
van de Loo FA, van Lent PLEM, Koenders MI, Thudium CS, Bay-Jensen
AC, Blaney Davidson EN and van der Kraan PM: IL-37 diminishes
proteoglycan loss in human OA cartilage: Donor-specific link
between IL-37 and MMP-3. Osteoarthritis Cartilage. 27:148–157.
2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
van Geffen EW, van Caam AP, van Beuningen
HM, Vitters EL, Schreurs W, van de Loo FA, van Lent PL, Koenders
MI, Blaney Davidson EN and van der Kraan PM: IL37 dampens the
IL1β-induced catabolic status of human OA chondrocytes.
Rheumatology (Oxford). 56:351–361. 2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Kiriakidou M and Ching CL: Systemic lupus
erythematosus. Ann Intern Med. 172:ITC81–ITC96. 2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Tawfik MG, Nasef SI, Omar HH and Ghaly MS:
Serum interleukin-37: A new player in lupus nephritis? Int J Rheum
Dis. 20:996–1001. 2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Godsell J, Rudloff I, Kandane-Rathnayake
R, Hoi A, Nold MF, Morand EF and Harris J: Clinical associations of
IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep.
6(34604)2016.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Song L, Qiu F, Fan Y, Ding F, Liu H, Shu
Q, Liu W and Li X: Glucocorticoid regulates interleukin-37 in
systemic lupus erythematosus. J Clin Immunol. 33:111–117.
2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Ye L, Ji L, Wen Z, Zhou Y, Hu D, Li Y, Yu
T, Chen B, Zhang J, Ding L, et al: IL-37 inhibits the production of
inflammatory cytokines in peripheral blood mononuclear cells of
patients with systemic lupus erythematosus: Its correlate with
disease activity. J Transl Med. 12(69)2014.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wu GC, Li HM, Wang JB, Leng RX, Wang DG
and Ye DQ: Elevated plasma interleukin-37 levels in systemic lupus
erythematosus patients. Lupus. 25:1377–1380. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Wu Q, Zhou J, Yuan ZC, Lan YY, Xu WD and
Huang AF: Association between IL-37 and systemic lupus
erythematosus risk. Immunol Invest: Jan 17, 2021 (Epub ahead of
print).
|
|
92
|
Bowman SJ: Primary Sjögren's syndrome.
Lupus. 27 (1 Suppl):S32–S35. 2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Liuqing W, Liping X, Hui S and Jing L:
Elevated IL-37, IL-18 and IL-18BP serum concentrations in patients
with primary Sjögren's syndrome. J Investig Med. 65:717–721.
2017.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Hatemi G, Christensen R, Bang D, Bodaghi
B, Celik AF, Fortune F, Gaudric J, Gul A, Kötter I, Leccese P, et
al: 2018 Update of the EULAR recommendations for the management of
Behçet's syndrome. Ann Rheum Dis. 77:808–818. 2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Ben Dhifallah I, Borhani-Haghighi A,
Hamzaoui A and Hamzaoui K: Decreased level of IL-37 correlates
negatively with inflammatory cytokines in cerebrospinal fluid of
patients with neuro-Behcet's disease. Iran J Immunol. 16:299–310.
2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Ye Z, Wang C, Kijlstra A, Zhou X and Yang
P: A possible role for interleukin 37 in the pathogenesis of
Behcet's disease. Curr Mol Med. 14:535–542. 2014.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Bouali E, Kaabachi W, Hamzaoui A and
Hamzaoui K: Interleukin-37 expression is decreased in Behçet's
disease and is associated with inflammation. Immunol Lett.
167:87–94. 2015.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Kacem O, Kaabachi W, Dhifallah IB,
Hamzaoui A and Hamzaoui K: Elevated expression of TSLP and IL-33 in
Behçet's disease skin lesions: IL-37 alleviate inflammatory effect
of TSLP. Clin Immunol. 192:14–19. 2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Tan H, Deng B, Yu H, Yang Y, Ding L, Zhang
Q, Qin J, Kijlstra A, Chen R and Yang P: Genetic analysis of innate
immunity in Behcet's disease identifies an association with IL-37
and IL-18RAP. Sci Rep. 6(35802)2016.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Provan D, Arnold DM, Bussel JB, Chong BH,
Cooper N, Gernsheimer T, Ghanima W, Godeau B, González-López TJ,
Grainger J, et al: Updated international consensus report on the
investigation and management of primary immune thrombocytopenia.
Blood Adv. 3:3780–3817. 2019.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Zhan Y, Cheng L, Wu B, Ji L, Chen P, Li F,
Cao J, Ke Y, Yuan L, Min Z, et al: Interleukin (IL)-1 family
cytokines could differentiate primary immune thrombocytopenia from
systemic lupus erythematosus-associated thrombocytopenia. Ann
Transl Med. 9(222)2021.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Chen Z, Qu W, Wang HQ, Xing LM, Wu YH, Liu
ZY, Zhang Y, Liu H, Dong XF, Tao JL and Shao ZH: Relationship of
peripheral blood IL-37 expression with T lymphocytes subsets and NK
cells in patients with primary immune thrombocytopenia. Zhongguo
Shi Yan Xue Ye Xue Za Zhi. 27:1201–1207. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
103
|
Liu L, Feng K, Wang ML, Shu XH, Zhou KS,
Zhou H, Liu XJ and Song YP: Expression of IL-37 in peripheral blood
of adults with primary immune thrombocytopenia. Zhonghua Xue Ye Xue
Za Zhi. 38:628–631. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
104
|
Olek MJ: Multiple sclerosis. Ann Intern
Med. 174:ITC81–ITC96. 2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Farrokhi M, Rezaei A, Amani-Beni A,
Etemadifar M, Kouchaki E and Zahedi A: Increased serum level of
IL-37 in patients with multiple sclerosis and neuromyelitis optica.
Acta Neurol Belg. 115:609–614. 2015.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Kouchaki E, Tamtaji OR, Dadgostar E,
Karami M, Nikoueinejad H and Akbari H: Correlation of serum levels
of IL-33, IL-37, soluble form of vascular endothelial growth factor
receptor 2 (VEGFR2), and circulatory frequency of VEGFR2-expressing
cells with multiple sclerosis severity. Iran J Allergy Asthma
Immunol. 16:329–337. 2017.PubMed/NCBI
|
|
107
|
Giacoppo S, Thangavelu SR, Diomede F,
Bramanti P, Conti P, Trubiani O and Mazzon E: Anti-inflammatory
effects of hypoxia-preconditioned human periodontal ligament cell
secretome in an experimental model of multiple sclerosis: A key
role of IL-37. FASEB J. 31:5592–5608. 2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Schauer AE, Klassert TE, von Lachner C,
Riebold D, Schneeweiß A, Stock M, Müller MM, Hammerschmidt S,
Bufler P, Seifert U, et al: IL-37 causes excessive inflammation and
tissue damage in murine pneumococcal pneumonia. J Innate Immun.
9:403–418. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
McKie EA, Reid JL, Mistry PC, DeWall SL,
Abberley L, Ambery PD and Gil-Extremera B: A study to investigate
the efficacy and safety of an anti-interleukin-18 monoclonal
antibody in the treatment of type 2 diabetes mellitus. PLoS One.
11(e0150018)2016.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Argiriadi MA, Xiang T, Wu C, Ghayur T and
Borhani DW: Unusual water-mediated antigenic recognition of the
proinflammatory cytokine interleukin-18. J Biol Chem.
284:24478–24489. 2009.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Gabay C, Fautrel B, Rech J, Spertini F,
Feist E, Kötter I, Hachulla E, Morel J, Schaeverbeke T, Hamidou MA,
et al: Open-label, multicentre, dose-escalating phase II clinical
trial on the safety and efficacy of tadekinig alfa (IL-18BP) in
adult-onset Still's disease. Ann Rheum Dis. 77:840–847.
2018.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Nnane I, Frederick B, Yao Z, Raible D, Shu
C, Badorrek P, van den Boer M, Branigan P, Duffy K, Baribaud F, et
al: The first-in-human study of CNTO 7160, an anti-interleukin-33
receptor monoclonal antibody, in healthy subjects and patients with
asthma or atopic dermatitis. Br J Clin Pharmacol. 86:2507–2518.
2020.PubMed/NCBI View Article : Google Scholar
|