
Biology of interleukin‑37 and its role in autoimmune diseases (Review)
- Authors:
- Huiqiong Zeng
- Kaixia Zhou
- Zhizhong Ye
-
Affiliations: Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China, School of Biomedical Sciences, CUHK‑GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China - Published online on: June 7, 2022 https://doi.org/10.3892/etm.2022.11422
- Article Number: 495
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Iwasaki A and Medzhitov R: Control of adaptive immunity by the innate immune system. Nat Immunol. 16:343–353. 2015.PubMed/NCBI View Article : Google Scholar | |
Dinarello CA, Nold-Petry C, Nold M, Fujita M, Li S, Kim S and Bufler P: Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol. 46:1067–1081. 2016.PubMed/NCBI View Article : Google Scholar | |
Conti P, Lessiani G, Kritas SK, Ronconi G, Caraffa A and Theoharides TC: Mast cells emerge as mediators of atherosclerosis: Special emphasis on IL-37 inhibition. Tissue Cell. 49:393–400. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang X, Xu K, Chen S, Li Y and Li M: Role of interleukin-37 in inflammatory and autoimmune diseases. Iran J Immunol. 15:165–174. 2018.PubMed/NCBI View Article : Google Scholar | |
Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P and Dinarello CA: IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 11:1014–1022. 2010.PubMed/NCBI View Article : Google Scholar | |
Sims JE and Smith DE: The IL-1 family: Regulators of immunity. Nat Rev Immunol. 10:89–102. 2010.PubMed/NCBI View Article : Google Scholar | |
Pan G, Risser P, Mao W, Baldwin DT, Zhong AW, Filvaroff E, Yansura D, Lewis L, Eigenbrot C, Henzel WJ and Vandlen R: IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine. 13:1–7. 2001.PubMed/NCBI View Article : Google Scholar | |
Sharma S, Kulk N, Nold MF, Gräf R, Kim SH, Reinhardt D, Dinarello CA and Bufler P: The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol. 180:5477–5482. 2008.PubMed/NCBI View Article : Google Scholar | |
Quirk S and Agrawal DK: Immunobiology of IL-37: Mechanism of action and clinical perspectives. Expert Rev Clin Immunol. 10:1703–1709. 2014.PubMed/NCBI View Article : Google Scholar | |
Allaire JM, Poon A, Crowley SM, Han X, Sharafian Z, Moore N, Stahl M, Bressler B, Lavoie PM, Jacobson K, et al: Interleukin-37 regulates innate immune signaling in human and mouse colonic organoids. Sci Rep. 11(8206)2021.PubMed/NCBI View Article : Google Scholar | |
Cavalli G and Dinarello CA: Suppression of inflammation and acquired immunity by IL-37. Immunol Rev. 281:179–190. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhao M, Li Y, Guo C, Wang L, Chu H, Zhu F, Li Y, Wang X, Wang Q, Zhao W, et al: IL-37 isoform D downregulates pro-inflammatory cytokines expression in a Smad3-dependent manner. Cell Death Dis. 9(582)2018.PubMed/NCBI View Article : Google Scholar | |
Dinarello CA: Introduction to the interleukin-1 family of cytokines and receptors: Drivers of innate inflammation and acquired immunity. Immunol Rev. 281:5–7. 2018.PubMed/NCBI View Article : Google Scholar | |
Mei Y and Liu H: IL-37: An anti-inflammatory cytokine with antitumor functions. Cancer Rep (Hoboken). 2(e1151)2019.PubMed/NCBI View Article : Google Scholar | |
Ellisdon AM, Nold-Petry CA, D'Andrea L, Cho SX, Lao JC, Rudloff I, Ngo D, Lo CY, Soares da Costa TP, Perugini MA, et al: Homodimerization attenuates the anti-inflammatory activity of interleukin-37. Sci Immunol. 2(eaaj1548)2017.PubMed/NCBI View Article : Google Scholar | |
Smithrithee R, Niyonsaba F, Kiatsurayanon C, Ushio H, Ikeda S, Okumura K and Ogawa H: Human β-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes. J Dermatol Sci. 77:46–53. 2015.PubMed/NCBI View Article : Google Scholar | |
Bai J, Li Y, Li M, Tan S and Wu D: IL-37 as a potential biotherapeutics of inflammatory diseases. Curr Drug Targets. 21:855–863. 2020.PubMed/NCBI View Article : Google Scholar | |
Pan Y, Wen X, Hao D, Wang Y, Wang L, He G and Jiang X: The role of IL-37 in skin and connective tissue diseases. Biomed Pharmacother. 122(109705)2020.PubMed/NCBI View Article : Google Scholar | |
Theoharides TC, Tsilioni I and Conti P: Mast cells may regulate the anti-inflammatory activity of IL-37. Int J Mol Sci. 20(3701)2019.PubMed/NCBI View Article : Google Scholar | |
Conti P, Caraffa A, Mastrangelo F, Tettamanti L, Ronconi G, Frydas I, Kritas SK and Theoharides TC: Critical role of inflammatory mast cell in fibrosis: Potential therapeutic effect of IL-37. Cell Prolif. 51(e12475)2018.PubMed/NCBI View Article : Google Scholar | |
He L, Liang Z, Zhao F, Peng L and Chen Z: Modulation of IL-37 expression by triptolide and triptonide in THP-1 cells. Cell Mol Immunol. 12:515–518. 2015.PubMed/NCBI View Article : Google Scholar | |
Tete S, Tripodi D, Rosati M, Conti F, Maccauro G, Saggini A, Cianchetti E, Caraffa A, Antinolfi P, Toniato E, et al: IL-37 (IL-1F7) the newest anti-inflammatory cytokine which suppresses immune responses and inflammation. Int J Immunopathol Pharmacol. 25:31–38. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang J, Shen Y, Li C, Liu C, Wang ZH, Li YS, Ke X and Hu GH: IL-37 attenuates allergic process via STAT6/STAT3 pathways in murine allergic rhinitis. Int Immunopharmacol. 69:27–33. 2019.PubMed/NCBI View Article : Google Scholar | |
Ye L, Jiang B, Deng J, Du J, Xiong W, Guan Y, Wen Z, Huang K and Huang Z: IL-37 alleviates rheumatoid arthritis by suppressing IL-17 and IL-17-triggering cytokine production and limiting Th17 cell proliferation. J Immunol. 194:5110–5119. 2015.PubMed/NCBI View Article : Google Scholar | |
Li S, Neff CP, Barber K, Hong J, Luo Y, Azam T, Palmer BE, Fujita M, Garlanda C, Mantovani A, et al: Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc Natl Acad Sci USA. 112:2497–2502. 2015.PubMed/NCBI View Article : Google Scholar | |
An B, Liu X, Li G and Yuan H: Interleukin-37 ameliorates coxsackievirus B3-induced viral myocarditis by modulating the Th17/regulatory T cell immune response. J Cardiovasc Pharmacol. 69:305–313. 2017.PubMed/NCBI View Article : Google Scholar | |
Xu WD, Zhao Y and Liu Y: Insights into IL-37, the role in autoimmune diseases. Autoimmun Rev. 14:1170–1175. 2015.PubMed/NCBI View Article : Google Scholar | |
Gu J, Gao X, Pan X, Peng X, Li Y and Li M: High-level expression and one-step purification of a soluble recombinant human interleukin-37b in Escherichia coli. Protein Expr Purif. 108:18–22. 2015.PubMed/NCBI View Article : Google Scholar | |
Li W, Ding F, Zhai Y, Tao W, Bi J, Fan H, Yin N and Wang Z: IL-37 is protective in allergic contact dermatitis through mast cell inhibition. Int Immunopharmacol. 83(106476)2020.PubMed/NCBI View Article : Google Scholar | |
Robuffo I, Toniato E, Tettamanti L, Mastrangelo F, Ronconi G, Frydas I, Caraffa Al, Kritas SK and Conti P: Mast cell in innate immunity mediated by proinflammatory and antiinflammatory IL-1 family members. J Biol Regul Homeost Agents. 31:837–842. 2017.PubMed/NCBI | |
Wu W, Wang W, Wang Y, Li W, Yu G, Li Z, Fang C, Shen Y, Sun Z, Han L, et al: IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-κB/S6K signalings. Acta Biochim Biophys Sin (Shanghai). 47:597–603. 2015.PubMed/NCBI View Article : Google Scholar | |
Conti P, Caraffa A, Ronconi G, Kritas SK, Mastrangelo F, Tettamanti L, Frydas I and Theoharides TC: Mast cells participate in allograft rejection: Can IL-37 play an inhibitory role? Inflamm Res. 67:747–755. 2018.PubMed/NCBI View Article : Google Scholar | |
Luo Y, Cai X, Liu S, Wang S, Nold-Petry CA, Nold MF, Bufler P, Norris D, Dinarello CA and Fujita M: Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells. Proc Natl Acad Sci USA. 111:15178–15183. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhan Q, Zeng Q, Song R, Zhai Y, Xu D, Fullerton DA, Dinarello CA and Meng X: IL-37 suppresses MyD88-mediated inflammatory responses in human aortic valve interstitial cells. Mol Med. 23:83–91. 2017.PubMed/NCBI View Article : Google Scholar | |
Luo C, Shu Y, Luo J, Liu D, Huang DS, Han Y, Chen C, Li YC, Zou JM, Qin J, et al: Intracellular IL-37b interacts with Smad3 to suppress multiple signaling pathways and the metastatic phenotype of tumor cells. Oncogene. 36:2889–2899. 2017.PubMed/NCBI View Article : Google Scholar | |
Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC, et al: IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol. 16:354–365. 2015.PubMed/NCBI View Article : Google Scholar | |
Luo P, Peng S, Yan Y, Ji P and Xu J: IL-37 inhibits M1-like macrophage activation to ameliorate temporomandibular joint inflammation through the NLRP3 pathway. Rheumatology (Oxford). 59:3070–3080. 2020.PubMed/NCBI View Article : Google Scholar | |
Kim SK, Choe JY and Park KY: Activation of CpG-ODN-induced TLR9 signaling inhibited by interleukin-37 in U937 human macrophages. Yonsei Med J. 62:1023–1031. 2021.PubMed/NCBI View Article : Google Scholar | |
Li T, Zhu D, Mou T, Guo Z, Pu J and Wu Z: Interleukin-37 induces apoptosis and autophagy of SMMC-7721 cells by inhibiting phosphorylation of mTOR. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 33:440–445. 2017.PubMed/NCBI(In Chinese). | |
Hou T, Sun X, Zhu J, Hon KL, Jiang P, Chu IM, Tsang MS, Lam CW, Zeng H and Wong CK: IL-37 ameliorating allergic inflammation in atopic dermatitis through regulating microbiota and AMPK-mTOR signaling pathway-modulated autophagy mechanism. Front Immunol. 11(752)2020.PubMed/NCBI View Article : Google Scholar | |
Kim MS, Baek AR, Lee JH, Jang AS, Kim DJ, Chin SS and Park SW: IL-37 attenuates lung fibrosis by inducing autophagy and regulating TGF-β1 production in mice. J Immunol. 203:2265–2275. 2019.PubMed/NCBI View Article : Google Scholar | |
Rausch Osthoff AK, Niedermann K, Braun J, Adams J, Brodin N, Dagfinrud H, Duruoz T, Esbensen BA, Günther KP, Hurkmans E, et al: 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann Rheum Dis. 77:1251–1260. 2018.PubMed/NCBI View Article : Google Scholar | |
Ngian GS: Rheumatoid arthritis. Aust Fam Physician. 39:626–628. 2010.PubMed/NCBI | |
Zhao PW, Jiang WG, Wang L, Jiang ZY, Shan YX and Jiang YF: Plasma levels of IL-37 and correlation with TNF-α, IL-17A, and disease activity during DMARD treatment of rheumatoid arthritis. PLoS One. 9(e95346)2014.PubMed/NCBI View Article : Google Scholar | |
Xia T, Zheng XF, Qian BH, Fang H, Wang JJ, Zhang LL, Pang YF, Zhang J, Wei XQ, Xia ZF and Zhao DB: Plasma interleukin-37 is elevated in patients with rheumatoid arthritis: Its correlation with disease activity and Th1/Th2/Th17-related cytokines. Dis Markers. 2015(795043)2015.PubMed/NCBI View Article : Google Scholar | |
Ragab D, Mobasher S and Shabaan E: Elevated levels of IL-37 correlate with T cell activation status in rheumatoid arthritis patients. Cytokine. 113:305–310. 2019.PubMed/NCBI View Article : Google Scholar | |
Song L, Wang Y, Sui Y, Sun J, Li D, Li G, Liu J, Li T and Shu Q: High interleukin-37 (IL-37) expression and increased mucin-domain containing-3 (TIM-3) on peripheral T cells in patients with rheumatoid arthritis. Med Sci Monit. 24:5660–5667. 2018.PubMed/NCBI View Article : Google Scholar | |
Xia L, Shen H and Lu J: Elevated serum and synovial fluid levels of interleukin-37 in patients with rheumatoid arthritis: Attenuated the production of inflammatory cytokines. Cytokine. 76:553–557. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang L, Zhang J, Tao J, Tao J and Lu T: Elevated serum levels of Interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis. APMIS. 123:1025–1031. 2015.PubMed/NCBI View Article : Google Scholar | |
Wan LL, Wang XD and Ci ZC: Expression of TLR4 in peripheral blood of patients with 274 rheumatoid arthritis and its correlation with IL-37 level. World J Complex Med. 2:23–25. 2016. | |
Chen X, Tian J, Zhang J and Su J: Expression and clinical significance of serum IL-37 and soluble PD-1 in patients with rheumatoid arthritis. Chin J Immunol. 33:422–425. 2017. | |
Akram N, Jamal A, Ullah S, Waqar AB and Iqbal K: Expression level of serum interleukin-37 in rheumatoid arthritis patients and its correlation with disease activity score. Adv Life Sci. 5:159–165. 2018. | |
Ke Q, Huang Z, Yu H, et al: Expression and significance of interleukin-37 in PBMCs from rheumatoid arthritis patients. Int J Lab Med. 41:754–757. 2020.(In Chinese). | |
Liu Y and Gao W: Interleukin-37 inhibits proliferation, migration and induces apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RAFLS) by inhibiting STAT3. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 36:236–241. 2020.PubMed/NCBI(In Chinese). | |
Zhu J, Xie C, Qiu H and Shi L: Correlation between level of interleukin-37 and rheumatoid arthritis progression. Int J Gen Med. 14:1905–1910. 2021.PubMed/NCBI View Article : Google Scholar | |
El-Barbary AM, Hussein MS, Almedany SH, Rageh EM, Alsalawy AM, Aboelhawa MA, Elkholy RM, Shafik NM and Elharoun AS: Role of interleukin 37 as a novel proangiogenic factor in juvenile idiopathic arthritis. J Clin Rheumatol. 25:85–90. 2019.PubMed/NCBI View Article : Google Scholar | |
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S and Shahrara S: The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 18:433–448. 2015.PubMed/NCBI View Article : Google Scholar | |
MacDonald IJ, Liu SC, Su CM, Wang YH, Tsai CH and Tang CH: Implications of angiogenesis involvement in arthritis. Int J Mol Sci. 19(2012)2018.PubMed/NCBI View Article : Google Scholar | |
Sabi EM, Singh A, Althafar ZM, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Alqahtani HM and Bungau S: Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology. 30:737–748. 2022.PubMed/NCBI View Article : Google Scholar | |
Hu F, Mu R, Zhu J, Shi L, Li Y, Liu X, Shao W, Li G, Li M, Su Y, et al: Hypoxia and hypoxia-inducible factor-1α provoke toll-like receptor signalling-induced inflammation in rheumatoid arthritis. Ann Rheum Dis. 73:928–936. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wu H and Deng R: Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur J Pharmacol. 910(174500)2021.PubMed/NCBI View Article : Google Scholar | |
Ba X, Huang Y, Shen P, Huang Y, Wang H, Han L, Lin WJ, Yan HJ, Xu LJ, Qin K, et al: WTD attenuating rheumatoid arthritis via suppressing angiogenesis and modulating the PI3K/AKT/mTOR/HIF-1α pathway. Front Pharmacol. 12(696802)2021.PubMed/NCBI View Article : Google Scholar | |
Zhu J, Su C, Chen Y, Hao X and Jiang J: Electroacupuncture on ST36 and GB39 acupoints inhibits synovial angiogenesis via downregulating HIF-1α/VEGF expression in a rat model of adjuvant arthritis. Evid Based Complement Alternat Med. 2019(5741931)2019.PubMed/NCBI View Article : Google Scholar | |
Feng X and Chen Y: Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target. 26:845–857. 2018.PubMed/NCBI View Article : Google Scholar | |
Pei B, Xu S, Liu T, Pan F, Xu J and Ding C: Associations of the IL-1F7 gene polymorphisms with rheumatoid arthritis in Chinese Han population. Int J Immunogenet. 40:199–203. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhang XY, Zuo Y, Li C, Tu X, Xu HJ, Guo JP, Li ZG and Mu R: IL1F7 gene polymorphism is not associated with rheumatoid arthritis susceptibility in the Northern Chinese Han population: A case-control study. Chin Med J (Engl). 131:171–179. 2018.PubMed/NCBI View Article : Google Scholar | |
Shi LP, He Y and Liu ZD: Correlation between single nucleotide polymorphism of rs3811047 in IL-1 F7 gene and rheumatoid arthritis susceptibility among Han population in central plains of China. Asian Pac J Trop Med. 6:73–75. 2013.PubMed/NCBI View Article : Google Scholar | |
Ward MM, Deodhar A, Gensler LS, Dubreuil M, Yu D, Khan MA, Haroon N, Borenstein D, Wang R, Biehl A, et al: 2019 Update of the American college of rheumatology/spondylitis association of America/spondyloarthritis research and treatment network recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Care Res (Hoboken). 71:1285–1299. 2019.PubMed/NCBI View Article : Google Scholar | |
Fawzy RM, Ganeb SS, Said EA and Fouad NA: Serum level of interleukin-37 and expression of its mRNA in ankylosing spondylitis patients: Possible role in osteoporosis. Egypt J Immunol. 23:19–29. 2016.PubMed/NCBI | |
Chen B, Huang K, Ye L, Li Y, Zhang J, Zhang J, Fan X, Liu X, Li L, Sun J, et al: Interleukin-37 is increased in ankylosing spondylitis patients and associated with disease activity. J Transl Med. 13(36)2015.PubMed/NCBI View Article : Google Scholar | |
Ge R, Pan F, Liao F, Xia G, Mei Y, Shen B, Zhang T, Gao J, Zhang L, Duan Z, et al: Analysis on the interaction between IL-1F7 gene and environmental factors on patients with ankylosing spondylitis: A case-only study. Mol Biol Rep. 38:2281–2284. 2011.PubMed/NCBI View Article : Google Scholar | |
Dalbeth N, Merriman TR and Stamp LK: Gout. Lancet. 388:2039–2052. 2016.PubMed/NCBI View Article : Google Scholar | |
Ding L, Li H, Sun B, Wang T, Meng S, Huang Q, Hong X and Liu D: Elevated interleukin-37 associated with tophus and pro-inflammatory mediators in Chinese gout patients. Cytokine. 141(155468)2021.PubMed/NCBI View Article : Google Scholar | |
Liu L, Xue Y, Zhu Y, Xuan D, Yang X, Liang M, Wang J, Zhu X, Zhang J and Zou H: Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout. Arthritis Res Ther. 18(268)2016.PubMed/NCBI View Article : Google Scholar | |
Zeng M, Dang W, Chen B, Qing Y, Xie W, Zhao M and Zhou J: IL-37 inhibits the production of pro-inflammatory cytokines in MSU crystal-induced inflammatory response. Clin Rheumatol. 35:2251–2258. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhao L, Zhao T, Yang X, Cao L, Xu R, Liu J, Lin C, Yu Y, Xuan D, Zhu X, et al: IL-37 blocks gouty inflammation by shaping macrophages into a non-inflammatory phagocytic phenotype. Rheumatology (Oxford). (keac009)2022.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Onuora S: IL-37 linked to gout pathogenesis and treatment. Nat Rev Rheumatol. 16(250)2020.PubMed/NCBI View Article : Google Scholar | |
Wan W, Shi Y, Ji L, Li X, Xu X and Zhao D: Interleukin-37 contributes to the pathogenesis of gout by affecting PDZ domain-containing 1 protein through the nuclear factor-kappa B pathway. J Int Med Res. 48(300060520948717)2020.PubMed/NCBI View Article : Google Scholar | |
Klück V, van Deuren RC, Cavalli G, Shaukat A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N, et al: Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis. 79:536–544. 2020.PubMed/NCBI View Article : Google Scholar | |
Mandl LA: Osteoarthritis year in review 2018: Clinical. Osteoarthritis Cartilage. 27:359–364. 2019.PubMed/NCBI View Article : Google Scholar | |
Luo P, Feng C, Jiang C, Ren X, Gou L, Ji P and Xu J: IL-37b alleviates inflammation in the temporomandibular joint cartilage via IL-1R8 pathway. Cell Prolif. 52(e12692)2019.PubMed/NCBI View Article : Google Scholar | |
Ding L, Hong X, Sun B, Huang Q, Wang X, Liu X, Li L, Huang Z and Liu D: IL-37 is associated with osteoarthritis disease activity and suppresses proinflammatory cytokines production in synovial cells. Sci Rep. 7(11601)2017.PubMed/NCBI View Article : Google Scholar | |
van Geffen EW, van Caam APM, Schreurs W, van de Loo FA, van Lent PLEM, Koenders MI, Thudium CS, Bay-Jensen AC, Blaney Davidson EN and van der Kraan PM: IL-37 diminishes proteoglycan loss in human OA cartilage: Donor-specific link between IL-37 and MMP-3. Osteoarthritis Cartilage. 27:148–157. 2019.PubMed/NCBI View Article : Google Scholar | |
van Geffen EW, van Caam AP, van Beuningen HM, Vitters EL, Schreurs W, van de Loo FA, van Lent PL, Koenders MI, Blaney Davidson EN and van der Kraan PM: IL37 dampens the IL1β-induced catabolic status of human OA chondrocytes. Rheumatology (Oxford). 56:351–361. 2017.PubMed/NCBI View Article : Google Scholar | |
Kiriakidou M and Ching CL: Systemic lupus erythematosus. Ann Intern Med. 172:ITC81–ITC96. 2020.PubMed/NCBI View Article : Google Scholar | |
Tawfik MG, Nasef SI, Omar HH and Ghaly MS: Serum interleukin-37: A new player in lupus nephritis? Int J Rheum Dis. 20:996–1001. 2017.PubMed/NCBI View Article : Google Scholar | |
Godsell J, Rudloff I, Kandane-Rathnayake R, Hoi A, Nold MF, Morand EF and Harris J: Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep. 6(34604)2016.PubMed/NCBI View Article : Google Scholar | |
Song L, Qiu F, Fan Y, Ding F, Liu H, Shu Q, Liu W and Li X: Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J Clin Immunol. 33:111–117. 2013.PubMed/NCBI View Article : Google Scholar | |
Ye L, Ji L, Wen Z, Zhou Y, Hu D, Li Y, Yu T, Chen B, Zhang J, Ding L, et al: IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: Its correlate with disease activity. J Transl Med. 12(69)2014.PubMed/NCBI View Article : Google Scholar | |
Wu GC, Li HM, Wang JB, Leng RX, Wang DG and Ye DQ: Elevated plasma interleukin-37 levels in systemic lupus erythematosus patients. Lupus. 25:1377–1380. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu Q, Zhou J, Yuan ZC, Lan YY, Xu WD and Huang AF: Association between IL-37 and systemic lupus erythematosus risk. Immunol Invest: Jan 17, 2021 (Epub ahead of print). | |
Bowman SJ: Primary Sjögren's syndrome. Lupus. 27 (1 Suppl):S32–S35. 2018.PubMed/NCBI View Article : Google Scholar | |
Liuqing W, Liping X, Hui S and Jing L: Elevated IL-37, IL-18 and IL-18BP serum concentrations in patients with primary Sjögren's syndrome. J Investig Med. 65:717–721. 2017.PubMed/NCBI View Article : Google Scholar | |
Hatemi G, Christensen R, Bang D, Bodaghi B, Celik AF, Fortune F, Gaudric J, Gul A, Kötter I, Leccese P, et al: 2018 Update of the EULAR recommendations for the management of Behçet's syndrome. Ann Rheum Dis. 77:808–818. 2018.PubMed/NCBI View Article : Google Scholar | |
Ben Dhifallah I, Borhani-Haghighi A, Hamzaoui A and Hamzaoui K: Decreased level of IL-37 correlates negatively with inflammatory cytokines in cerebrospinal fluid of patients with neuro-Behcet's disease. Iran J Immunol. 16:299–310. 2019.PubMed/NCBI View Article : Google Scholar | |
Ye Z, Wang C, Kijlstra A, Zhou X and Yang P: A possible role for interleukin 37 in the pathogenesis of Behcet's disease. Curr Mol Med. 14:535–542. 2014.PubMed/NCBI View Article : Google Scholar | |
Bouali E, Kaabachi W, Hamzaoui A and Hamzaoui K: Interleukin-37 expression is decreased in Behçet's disease and is associated with inflammation. Immunol Lett. 167:87–94. 2015.PubMed/NCBI View Article : Google Scholar | |
Kacem O, Kaabachi W, Dhifallah IB, Hamzaoui A and Hamzaoui K: Elevated expression of TSLP and IL-33 in Behçet's disease skin lesions: IL-37 alleviate inflammatory effect of TSLP. Clin Immunol. 192:14–19. 2018.PubMed/NCBI View Article : Google Scholar | |
Tan H, Deng B, Yu H, Yang Y, Ding L, Zhang Q, Qin J, Kijlstra A, Chen R and Yang P: Genetic analysis of innate immunity in Behcet's disease identifies an association with IL-37 and IL-18RAP. Sci Rep. 6(35802)2016.PubMed/NCBI View Article : Google Scholar | |
Provan D, Arnold DM, Bussel JB, Chong BH, Cooper N, Gernsheimer T, Ghanima W, Godeau B, González-López TJ, Grainger J, et al: Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 3:3780–3817. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhan Y, Cheng L, Wu B, Ji L, Chen P, Li F, Cao J, Ke Y, Yuan L, Min Z, et al: Interleukin (IL)-1 family cytokines could differentiate primary immune thrombocytopenia from systemic lupus erythematosus-associated thrombocytopenia. Ann Transl Med. 9(222)2021.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Qu W, Wang HQ, Xing LM, Wu YH, Liu ZY, Zhang Y, Liu H, Dong XF, Tao JL and Shao ZH: Relationship of peripheral blood IL-37 expression with T lymphocytes subsets and NK cells in patients with primary immune thrombocytopenia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:1201–1207. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Liu L, Feng K, Wang ML, Shu XH, Zhou KS, Zhou H, Liu XJ and Song YP: Expression of IL-37 in peripheral blood of adults with primary immune thrombocytopenia. Zhonghua Xue Ye Xue Za Zhi. 38:628–631. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Olek MJ: Multiple sclerosis. Ann Intern Med. 174:ITC81–ITC96. 2021.PubMed/NCBI View Article : Google Scholar | |
Farrokhi M, Rezaei A, Amani-Beni A, Etemadifar M, Kouchaki E and Zahedi A: Increased serum level of IL-37 in patients with multiple sclerosis and neuromyelitis optica. Acta Neurol Belg. 115:609–614. 2015.PubMed/NCBI View Article : Google Scholar | |
Kouchaki E, Tamtaji OR, Dadgostar E, Karami M, Nikoueinejad H and Akbari H: Correlation of serum levels of IL-33, IL-37, soluble form of vascular endothelial growth factor receptor 2 (VEGFR2), and circulatory frequency of VEGFR2-expressing cells with multiple sclerosis severity. Iran J Allergy Asthma Immunol. 16:329–337. 2017.PubMed/NCBI | |
Giacoppo S, Thangavelu SR, Diomede F, Bramanti P, Conti P, Trubiani O and Mazzon E: Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: A key role of IL-37. FASEB J. 31:5592–5608. 2017.PubMed/NCBI View Article : Google Scholar | |
Schauer AE, Klassert TE, von Lachner C, Riebold D, Schneeweiß A, Stock M, Müller MM, Hammerschmidt S, Bufler P, Seifert U, et al: IL-37 causes excessive inflammation and tissue damage in murine pneumococcal pneumonia. J Innate Immun. 9:403–418. 2017.PubMed/NCBI View Article : Google Scholar | |
McKie EA, Reid JL, Mistry PC, DeWall SL, Abberley L, Ambery PD and Gil-Extremera B: A study to investigate the efficacy and safety of an anti-interleukin-18 monoclonal antibody in the treatment of type 2 diabetes mellitus. PLoS One. 11(e0150018)2016.PubMed/NCBI View Article : Google Scholar | |
Argiriadi MA, Xiang T, Wu C, Ghayur T and Borhani DW: Unusual water-mediated antigenic recognition of the proinflammatory cytokine interleukin-18. J Biol Chem. 284:24478–24489. 2009.PubMed/NCBI View Article : Google Scholar | |
Gabay C, Fautrel B, Rech J, Spertini F, Feist E, Kötter I, Hachulla E, Morel J, Schaeverbeke T, Hamidou MA, et al: Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still's disease. Ann Rheum Dis. 77:840–847. 2018.PubMed/NCBI View Article : Google Scholar | |
Nnane I, Frederick B, Yao Z, Raible D, Shu C, Badorrek P, van den Boer M, Branigan P, Duffy K, Baribaud F, et al: The first-in-human study of CNTO 7160, an anti-interleukin-33 receptor monoclonal antibody, in healthy subjects and patients with asthma or atopic dermatitis. Br J Clin Pharmacol. 86:2507–2518. 2020.PubMed/NCBI View Article : Google Scholar |