|
1
|
Zietz BP and Dunkelberg H: The history of
the plague and the research on the causative agent Yersinia
pestis. Int J Hyg Environ Health. 207:165–178. 2004.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Drancourt M and Raoult D: Molecular
history of plague. Clin Microbiol Infect. 22:911–915.
2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Devignat R: Varieties of Pasteurella
pestis; new hypothesis. Bull World Health Organ. 4:247–263.
1951.PubMed/NCBI(In Undetermined Language).
|
|
4
|
Brubaker RR: Factors promoting acute and
chronic diseases caused by yersiniae. Clin Microbiol Rev.
4:309–324. 1991.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Dai E, Tong Z, Wang X, Li M, Cui B, Dai R,
Zhou D, Pei D, Song Y, Zhang J, et al: Identification of different
regions among strains of Yersinia pestis by suppression
subtractive hybridization. Res Microbiol. 156:785–789.
2005.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Drancourt M: Plague in the genomic area.
Clin Microbiol Infect. 18:224–230. 2012.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Brubaker RR: The genus Yersinia:
Biochemistry and genetics of virulence. Curr Top Microbiol Immunol.
57:111–158. 1972.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zhou D, Tong Z, Song Y, Han Y, Pei D, Pang
X, Zhai J, Li M, Cui B, Qi Z, et al: Genetics of metabolic
variations between Yersinia pestis biovars and the proposal
of a new biovar, microtus. J Bacteriol. 186:5147–5152.
2004.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Perry RD and Fetherston JD: Yersinia
pestis-etiologic agent of plague. Clin Microbiol Rev. 10:35–66.
1997.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Mordechai L, Eisenberg M, Newfield TP,
Izdebski A, Kay JE and Poinar H: The justinianic plague: An
inconsequential pandemic? Proc Natl Acad Sci USA. 116:25546–25554.
2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Susat J, Bonczarowska JH,
Pētersone-Gordina E, Immel A, Nebel A, Gerhards G and Krause-Kyora
B: Yersinia pestis strains from Latvia show depletion of the
pla virulence gene at the end of the second plague pandemic. Sci
Rep. 10(14628)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bramanti B, Dean KR, Walløe L and
Chr*Stenseth N: The third plague pandemic in Europe. Proc Biol Sci.
286(20182429)2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Nikiforov VV, Gao H, Zhou L and Anisimov
A: Plague: Clinics, diagnosis and treatment. Adv Exp Med Biol.
918:293–312. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jullien S, Dissanayake HA and Chaplin M:
Rapid diagnostic tests for plague. Cochrane Database Syst Rev.
6(CD013459)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Hinnebusch J and Schwan TG: New method for
plague surveillance using polymerase chain reaction to detect
Yersinia pestis in fleas. J Clin Microbiol. 31:1511–1514.
1993.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Wake A: Pathogenicity of Yersinia
pestis: Microbiological and molecular aspect. Nihon Saikingaku
Zasshi. 50:651–669. 1995.PubMed/NCBI View Article : Google Scholar : (In Japanese).
|
|
17
|
Platonov ME, Evseeva VV, Dentovskaya SV
and Anisimov AP: Molecular typing of Yersinia pestis. Mol
Gen Mikrobiol Virusol. 3–12. 2013.PubMed/NCBI(In Russian).
|
|
18
|
Wolkowicz T: The utility and perspectives
of NGS-based methods in BSL-3 and BSL-4 laboratory-sequencing and
analysis strategies. Brief Funct Genomics. 17:471–476.
2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Neubauer H, Sprague LD, Scholz H and
Hensel A: Diagnosis o Yersinia enterocolitica infections: A
review on classical identification techniques and new molecular
biological methods. Berl Munch Tierarztl Wochenschr. 114:1–7.
2001.PubMed/NCBI(In German).
|
|
20
|
Jones SW, Dobson ME, Francesconi SC,
Schoske R and Crawford R: DNA assays for detection, identification
and individualization of select agent microorganisms. Croat Med J.
46:522–529. 2005.PubMed/NCBI
|
|
21
|
Gaweł J, Bartoszcze M and Osiak B:
Yersinia pestis pathogenesis and diagnostics. Przegl
Epidemiol. 60:315–321. 2006.PubMed/NCBI(In Polish).
|
|
22
|
Yang R: Plague: Recognition, treatment and
prevention. J Clin Microbiol. 56:e01519–17. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Marshall JD Jr, Mangiafico JA and
Cavanaugh DC: Comparison of the reliability and sensitivity of
three serological procedures in detecting antibody to Yersinia
pestis (Pasteurella pestis). Appl Microbiol. 24:202–204.
1972.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kopylov PKh, Platonov ME, Ablamunits VG,
Kombarova TI, Ivanov SA, Kadnikova LA, Somov AN, Dentovskaya SV,
Uversky VN and Anisimov AP: Yersinia pestis caf1 protein:
Effect of sequence polymorphism on intrinsic disorder propensity,
serological cross-reactivity and cross-protectivity of isoforms.
PLoS One. 11(e0162308)2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Shepherd AJ, Leman PA, Hummitzsch DE and
Swanepoel R: A comparison of serological techniques for plague
surveillance. Trans R Soc Trop Med Hyg. 78:771–773. 1984.PubMed/NCBI View Article : Google Scholar
|
|
26
|
de*Almeida AM and Ferreira LC: Evaluation
of three serological tests for the detection of human plague in
northeast Brazil. Mem Inst Oswaldo Cruz. 87:87–92. 1992.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Smith DR, Rossi CA, Kijek TM, Henchal EA
and Ludwig GV: Comparison of dissociation-enhanced lanthanide
fluorescent immunoassays to enzyme-linked immunosorbent assays for
detection of staphylococcal enterotoxin B, Yersinia
pestis-specific F1 antigen and Venezuelan equine encephalitis
virus. Clin Diagn Lab Immunol. 8:1070–1075. 2001.PubMed/NCBI View Article : Google Scholar
|
|
28
|
McDonough KA, Schwan TG, Thomas RE and
Falkow S: Identification of a Yersinia pestis-specific DNA
probe with potential for use in plague surveillance. J Clin
Microbiol. 26:2515–2519. 1988.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Bulat SA, Mikhaĭlo NV and Koroliuk AM: The
gene identification of bacterial species and serovariants by the
polymerase chain reaction with universal oligonucleotides: The
reidentification of earlier isolated strains of Yersinia
pseudotuberculosis. Zh Mikrobiol Epidemiol Immunobiol. 2–7.
1991.PubMed/NCBI(In Russian).
|
|
30
|
Eroshenko GA, Odinokov GN, Kukleva LM,
Pavlova AI, Krasnov IaM, Shavina NIu, Guseva NP, Vinogradova NA and
Kutyrev VV: Standard algorithm of molecular typing of Yersinia
pestis strains. Zh Mikrobiol Epidemiol Immunobiol. 25–35.
2012.PubMed/NCBI(In Russian).
|
|
31
|
Tong ZZ, Zhou DS, Song YJ, Zhang L, Pei D,
Han YP, Pang X, Li M, Cui BZ, Wang J, et al: Genetic variations in
the pgm locus among natural isolates of Yersinia pestis. J
Gen Appl Microbiol. 51:11–19. 2005.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kim W, Song MO, Song W, Kim KJ, Chung SI,
Choi CS and Park YH: Comparison of 16S rDNA analysis and rep-PCR
genomic fingerprinting for molecular identification of Yersinia
pseudotuberculosis. Antonie Van Leeuwenhoek. 83:125–133.
2003.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Li Y, Dai E, Cui Y, Li M, Zhang Y, Wu M,
Zhou D, Guo Z, Dai X, Cui B, et al: Different region analysis for
genotyping Yersinia pestis isolates from China. PLoS One.
3(e2166)2008.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Kingston JJ, Tuteja U, Kapil M, Murali HS
and Batra HV: Genotyping of Indian Yersinia pestis strains
by MLVA and repetitive DNA sequence based PCRs. Antonie Van
Leeuwenhoek. 96:303–312. 2009.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Motin VL, Georgescu AM, Elliott JM, Hu P,
Worsham PL, Ott LL, Slezak TR, Sokhansanj BA, Regala WM, Brubaker
RR and Garcia E: Genetic variability of Yersinia pestis
isolates as predicted by PCR-based IS100 genotyping and analysis of
structural genes encoding glycerol-3-phosphate dehydrogenase
(glpD). J Bacteriol. 184:1019–1027. 2002.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Bogdanovich T, Carniel E, Fukushima H and
Skurnik M: Use of O-antigen gene cluster-specific PCRs for the
identification and O-genotyping of Yersinia
pseudotuberculosis and Yersinia pestis. J Clin
Microbiol. 41:5103–5112. 2003.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Savostina EP, Popov IuA, Kashmanova TN and
Iashechkin IuI: Analysis of genomic polymorphism of typical and
atypical strains of the plague pathogen using polymerase chain
reaction with universal primers. Mol Gen Mikrobiol Virusol. 22–26.
2004.PubMed/NCBI(In Russian).
|
|
38
|
Nikiforov KA, Oglodin EG, Kukleva LM,
Eroshenko GA, Germanchuk VG, Devdariani ZL and Kutyrev VV:
Subspecies differentiation of Yersinia pestis strains by PCR
with hybridization-fluorescent detection. Zh Mikrobiol Epidemiol
Immunobiol. 22–27. 2017.PubMed/NCBI(In English, Russian).
|
|
39
|
Matero P, Pasanen T, Laukkanen R, Tissari
P, Tarkka E, Vaara M and Skurnik M: Real-time multiplex PCR assay
for detection of Yersinia pestis and Yersinia
pseudotuberculosis. APMIS. 117:34–44. 2009.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Bai Y, Motin V, Enscore RE, Osikowicz L,
Rosales Rizzo M, Hojgaard A, Kosoy M and Eisen RJ: Pentaplex
real-time PCR for differential detection of Yersinia pestis
and Y. pseudotuberculosis and application for testing fleas
collected during plague epizootics. Microbiologyopen.
9(e1105)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Franklin HA, Stapp P and Cohen A:
Polymerase chain reaction (PCR) identification of rodent blood
meals confirms host sharing by flea vectors of plague. J Vector
Ecol. 35:363–371. 2010.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Engelthaler DM, Hinnebusch BJ, Rittner CM
and Gage KL: Quantitative competitive PCR as a technique for
exploring flea-Yersina pestis dynamics. Am J Trop Med Hyg.
62:552–560. 2000.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Hinnebusch BJ, Gage KL and Schwan TG:
Estimation of vector infectivity rates for plague by means of a
standard curve-based competitive polymerase chain reaction method
to quantify Yersinia pestis in fleas. Am J Trop Med Hyg.
58:562–569. 1998.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Dai R, He J, Zha X, Wang Y, Zhang X, Gao
H, Yang X, Li J, Xin Y, Wang Y, et al: A novel mechanism of
streptomycin resistance in Yersinia pestis: Mutation in the
rpsL gene. PLoS Negl Trop Dis. 15(e0009324)2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Steinberger-Levy I, Shifman O, Zvi A,
Ariel N, Beth-Din A, Israeli O, Gur D, Aftalion M, Maoz S and Ber
R: A rapid molecular test for determining Yersinia pestis
susceptibility to ciprofloxacin by the quantification of
differentially expressed marker genes. Front Microbiol.
7(763)2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Lindler LE, Fan W and Jahan N: Detection
of ciprofloxacin-resistant Yersinia pestis by fluorogenic
PCR using the LightCycler. J Clin Microbiol. 39:3649–3655.
2001.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Shifman O, Steinberger-Levy I,
Aloni-Grinstein R, Gur D, Aftalion M, Ron I, Mamroud E, Ber R and
Rotem S: A rapid antimicrobial susceptibility test for determining
Yersinia pestis susceptibility to Doxycycline by RT-PCR
quantification of RNA markers. Front Microbiol.
10(754)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Ehlers J, Krüger A, Rakotondranary SJ,
Ratovonamana RY, Poppert S, Ganzhorn JU and Tappe D: Molecular
detection of Rickettsia spp., Borrelia spp.,
Bartonella spp. and Yersinia pestis in ectoparasites
of endemic and domestic animals in southwest Madagascar. Acta Trop.
205(105339)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Leal NC and Almeida AM: Diagnosis of
plague and identification of virulence markers in Yersinia
pestis by multiplex-PCR. Rev Inst Med Trop Sao Paulo.
41:339–342. 1999.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Griffin KA, Martin DJ, Rosen LE, Sirochman
MA, Walsh DP, Wolfe LL and Miller MW: Detection of Yersinia
pestis DNA in prairie dog-associated fleas by polymerase chain
reaction assay of purified DNA. J Wildl Dis. 46:636–643.
2010.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Neubauer H, Meyer H, Prior J, Aleksic S,
Hensel A and Splettstösser W: A combination of different polymerase
chain reaction (PCR) assays for the presumptive identification of
Yersinia pestis. J Vet Med B Infect Dis Vet Public Health.
47:573–580. 2000.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Mize EL and Britten HB: Detections of
Yersinia pestis east of the known distribution of active
plague in the United States. Vector Borne Zoonotic Dis. 16:88–95.
2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Safari Foroshani N, Karami A and Pourali
F: Simultaneous and rapid detection of Salmonella typhi,
Bacillus anthracis, and Yersinia pestis by using
multiplex polymerase chain reaction (PCR). Iran Red Crescent Med J.
15(e9208)2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Engelthaler DM, Gage KL, Montenieri JA,
Chu M and Carter LG: PCR detection of Yersinia pestis in
fleas: Comparison with mouse inoculation. J Clin Microbiol.
37:1980–1984. 1999.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Nyirenda SS, Hang'ombe BM, Mulenga E and
Kilonzo BS: Serological and PCR investigation of Yersinia
pestis in potential reservoir hosts from a plague outbreak
focus in Zambia. BMC Res Notes. 10(345)2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Rahalison L, Vololonirina E, Ratsitorahina
M and Chanteau S: Diagnosis of bubonic plague by PCR in Madagascar
under field conditions. J Clin Microbiol. 38:260–263.
2000.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Nyirenda SS, Hang Ombe BM, Simulundu E,
Mulenga E, Moonga L, Machang U RS, Misinzo G and Kilonzo BS:
Molecular epidemiological investigations of plague in Eastern
Province of Zambia. BMC Microbiol. 18(2)2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Radnedge L, Gamez-Chin S, McCready PM,
Worsham PL and Andersen GL: Identification of nucleotide sequences
for the specific and rapid detection of Yersinia pestis.
Appl Environ Microbiol. 67:3759–3762. 2001.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Tsukano H, Itoh K, Suzuki S and Watanabe
H: Detection and identification of Yersinia pestis by
polymerase chain reaction (PCR) using multiplex primers. Microbiol
Immunol. 40:773–775. 1996.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zhang Z, Wu L, Liang Y, Wang S, He J, Yu D
and Li W: Identification of Yersinia pestis of Xilingele
plateau ecotype isolated from China using insertion sequences as
target. Ann Clin Lab Sci. 49:656–660. 2019.PubMed/NCBI
|
|
61
|
Ziwa MH, Matee MI, Kilonzo BS and
Hang'ombe BM: Evidence of Yersinia pestis DNA in rodents in
plague outbreak foci in Mbulu and Karatu Districts, northern
Tanzania. Tanzan J Health Res. 15:152–157. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zasada AA, Formińska K and Zacharczuk K:
Fast identification of Yersinia pestis, Bacillus
anthracis and Francisella tularensis based on
conventional PCR. Pol J Microbiol. 62:453–455. 2013.PubMed/NCBI
|
|
63
|
Singh R, Pal V, Kumar M, Tripathi NK and
Goel AK: Development of a PCR-lateral flow assay for rapid
detection of Yersinia pestis, the causative agent of plague.
Acta Trop. 220(105958)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Arnold T, Hensel A, Hagen R, Aleksic S,
Neubauer H and Scholz HC: A highly specific one-step PCR-assay for
the rapid discrimination of enteropathogenic Yersinia
enterocolitica from pathogenic Yersinia
pseudotuberculosis and Yersinia pestis. Syst Appl
Microbiol. 24:285–289. 2001.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Trukhachev AL, Ivanova VS, Arsen'eva TE,
Lebedeva SA and Goncharenko EV: Search for primers on the basis of
Yersinia pestis chromosomal DNA for effective PCR
identification of typical and atypical plague pathogen strains.
Klin Lab Diagn. 49–52. 2008.PubMed/NCBI(In Russian).
|
|
66
|
Zhou D, Han Y, Dai E, Pei D, Song Y, Zhai
J, Du Z, Wang J, Guo Z and Yang R: Identification of signature
genes for rapid and specific characterization of Yersinia
pestis. Microbiol Immunol. 48:263–269. 2004.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Fenollar F and Raoult D: Molecular genetic
methods for the diagnosis of fastidious microorganisms. APMIS.
112:785–807. 2004.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Anderson B, Rashid MH, Carter C,
Pasternack G, Rajanna C, Revazishvili T, Dean T, Senecal A and
Sulakvelidze A: Enumeration of bacteriophage particles: Comparative
analysis of the traditional plaque assay and real-time QPCR- and
nanosight-based assays. Bacteriophage. 1:86–93. 2011.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Tomaso H, Jacob D, Eickhoff M, Scholz HC,
Al Dahouk S, Kattar MM, Reischl U, Plicka H, Olsen JS, Nikkari S,
et al: Preliminary validation of real-time PCR assays for the
identification of Yersinia pestis. Clin Chem Lab Med.
46:1239–1244. 2008.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Rachwal PA, Rose HL, Cox V, Lukaszewski
RA, Murch AL and Weller SA: The potential of TaqMan array cards for
detection of multiple biological agents by real-time PCR. PLoS One.
7(e35971)2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Gaddy CE, Cuevas PF, Hartman LJ, Howe GB,
Worsham PL and Minogue TD: Development of real-time PCR assays for
specific detection of hmsH, hmsF, hmsR, and irp2 located within the
102-kb pgm locus of Yersinia pestis. Mol Cell Probes.
28:288–295. 2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Riehm JM, Rahalison L, Scholz HC, Thoma B,
Pfeffer M, Razanakoto LM, Al Dahouk S, Neubauer H and Tomaso H:
Detection of Yersinia pestis using real-time PCR in patients
with suspected bubonic plague. Mol Cell Probes. 25:8–12.
2011.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Yang S, Rothman RE, Hardick J, Kuroki M,
Hardick A, Doshi V, Ramachandran P and Gaydos CA: Rapid polymerase
chain reaction-based screening assay for bacterial biothreat
agents. Acad Emerg Med. 15:388–392. 2008.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Amoako KK, Goji N, Macmillan T, Said KB,
Druhan S, Tanaka E and Thomas EG: Development of multitarget
real-time PCR for the rapid, specific, and sensitive detection of
Yersinia pestis in milk and ground beef. J Food Prot.
73:18–25. 2010.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Liu J, Ochieng C, Wiersma S, Ströher U,
Towner JS, Whitmer S, Nichol ST, Moore CC, Kersh GJ, Kato C, et al:
Development of a TaqMan array card for acute-febrile-illness
outbreak investigation and surveillance of emerging pathogens,
including Ebola virus. J Clin Microbiol. 54:49–58. 2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Hindson BJ, McBride MT, Makarewicz AJ,
Henderer BD, Setlur US, Smith SM, Gutierrez DM, Metz TR, Nasarabadi
SL, Venkateswaran KS, et al: Autonomous detection of aerosolized
biological agents by multiplexed immunoassay with polymerase chain
reaction confirmation. Anal Chem. 77:284–289. 2005.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Woubit A, Yehualaeshet T, Habtemariam T
and Samuel T: Novel genomic tools for specific and real-time
detection of biothreat and frequently encountered foodborne
pathogens. J Food Prot. 75:660–670. 2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Higgins JA, Ezzell J, Hinnebusch BJ,
Shipley M, Henchal EA and Ibrahim MS: 5' nuclease PCR assay to
detect Yersinia pestis. J Clin Microbiol. 36:2284–2288.
1998.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Tomaso H, Reisinger EC, Al Dahouk S,
Frangoulidis D, Rakin A, Landt O and Neubauer H: Rapid detection of
Yersinia pestis with multiplex real-time PCR assays using
fluorescent hybridisation probes. FEMS Immunol Med Microbiol.
38:117–126. 2003.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Skottman T, Piiparinen H, Hyytiäinen H,
Myllys V, Skurnik M and Nikkari S: Simultaneous real-time PCR
detection of Bacillus anthracis, Francisella
tularensis and Yersinia pestis. Eur J Clin Microbiol
Infect Dis. 26:207–211. 2007.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Comer JE, Lorange EA and Hinnebusch BJ:
Examining the vector-host-pathogen interface with quantitative
molecular tools. Methods Mol Biol. 431:123–131. 2008.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Stewart A, Satterfield B, Cohen M, O'Neill
K and Robison R: A quadruplex real-time PCR assay for the detection
of Yersinia pestis and its plasmids. J Med Microbiol.
57:324–331. 2008.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chase CJ, Ulrich MP, Wasieloski LP Jr,
Kondig JP, Garrison J, Lindler LE and Kulesh DA: Real-time PCR
assays targeting a unique chromosomal sequence of Yersinia
pestis. Clin Chem. 51:1778–1785. 2005.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Sergueev KV, He Y, Borschel RH, Nikolich
MP and Filippov AA: Rapid and sensitive detection of Yersinia
pestis using amplification of plague diagnostic bacteriophages
monitored by real-time PCR. PLoS One. 5(e11337)2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Satterfield BC, Kulesh DA, Norwood DA,
Wasieloski LP Jr, Caplan MR and West JA: Tentacle probes:
Differentiation of difficult single-nucleotide polymorphisms and
deletions by presence or absence of a signal in real-time PCR. Clin
Chem. 53:2042–2050. 2007.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Sting R, Eisenberg T and Hrubenja M: Rapid
and reasonable molecular identification of bacteria and fungi in
microbiological diagnostics using rapid real-time PCR and sanger
sequencing. J Microbiol Methods. 159:148–156. 2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Saikaly PE, Barlaz MA and de*Los*Reyes
FL*III: Development of quantitative real-time PCR assays for
detection and quantification of surrogate biological warfare agents
in building debris and leachate. Appl Environ Microbiol.
73:6557–6565. 2007.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Thomas MC, Janzen TW, Huscyzynsky G,
Mathews A and Amoako KK: Development of a novel multiplexed qPCR
and pyrosequencing method for the detection of human pathogenic
yersiniae. Int J Food Microbiol. 257:247–253. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Mostafavi E, Ghasemi A, Rohani M,
Molaeipoor L, Esmaeili S, Mohammadi Z, Mahmoudi A, Aliabadian M and
Johansson A: Molecular survey of tularemia and plague in small
mammals from Iran. Front Cell Infect Microbiol.
8(215)2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Hennebique A, Gas F, Batina H, De Araujo
C, Bizet K and Maurin M: Evaluation of the biotoxis qPCR detection
kit for Francisella tularensis detection in clinical and
environmental samples. J Clin Microbiol. 59:e01434–20.
2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Christensen DR, Hartman LJ, Loveless BM,
Frye MS, Shipley MA, Bridge DL, Richards MJ, Kaplan RS, Garrison J,
Baldwin CD, et al: Detection of biological threat agents by
real-time PCR: Comparison of assay performance on the R.A.P.I.D.,
the LightCycler, and the smart cycler platforms. Clin Chem.
52:141–145. 2006.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Matero P, Hemmilä H, Tomaso H, Piiparinen
H, Rantakokko-Jalava K, Nuotio L and Nikkari S: Rapid field
detection assays for Bacillus anthracis, Brucella
spp., Francisella tularensis and Yersinia pestis.
Clin Microbiol Infect. 17:34–43. 2011.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Mölsä M, Hemmilä H, Katz A, Niemimaa J,
Forbes KM, Huitu O, Stuart P, Henttonen H and Nikkari S: Monitoring
biothreat agents (Francisella tularensis, Bacillus
anthracis and Yersinia pestis) with a portable real-time
PCR instrument. J Microbiol Methods. 115:89–93. 2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Elsholz B, Nitsche A, Achenbach J,
Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R and Wörl R:
Electrical microarrays for highly sensitive detection of multiplex
PCR products from biological agents. Biosens Bioelectron.
24:1737–1743. 2009.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Stenkova AM, Isaeva MP and Rasskazov VA:
Development of a multiplex PCR for detection of the Yersinia genus
with identification of pathogenic species (Y. pestis, Y.
pseudotuberculosis, Y. enterocolitica). Mol Gen
Mikrobiol Virusol. 18–23. 2008.PubMed/NCBI(In Russian).
|
|
96
|
Stevenson HL, Bai Y, Kosoy MY, Montenieri
JA, Lowell JL, Chu MC and Gage KL: Detection of novel
Bartonella strains and Yersinia pestis in prairie
dogs and their fleas (Siphonaptera: Ceratophyllidae and Pulicidae)
using multiplex polymerase chain reaction. J Med Entomol.
40:329–337. 2003.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Demeure CE, Dussurget O, Mas Fiol G, Le
Guern AS, Savin C and Pizarro-Cerdá J: Yersinia pestis and
plague: An updated view on evolution, virulence determinants,
immune subversion, vaccination, and diagnostics. Genes Immun.
20:357–370. 2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Woron AM, Nazarian EJ, Egan C, McDonough
KA, Cirino NM, Limberger RJ and Musser KA: Development and
evaluation of a 4-target multiplex real-time polymerase chain
reaction assay for the detection and characterization of
Yersinia pestis. Diagn Microbiol Infect Dis. 56:261–268.
2006.PubMed/NCBI View Article : Google Scholar
|
|
99
|
He J, Kraft AJ, Fan J, Van Dyke M, Wang L,
Bose ME, Khanna M, Metallo JA and Henrickson KJ: Simultaneous
detection of CDC category ‘A’ DNA and RNA bioterrorism agents by
use of multiplex PCR & RT-PCR enzyme hybridization assays.
Viruses. 1:441–459. 2009.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Vanlalhmuaka Thavachelvam K, Tuteja U,
Sarika K, Nagendra S and Kumar S: Reverse line blot macroarray for
simultaneous detection and characterization of four biological
warfare agents. Indian J Microbiol. 53:41–47. 2013.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Batra SA, Krupanidhi S and Tuteja U: A
sensitive & specific multiplex PCR assay for simultaneous
detection of Bacillus anthracis, Yersinia pestis,
Burkholderia pseudomallei & Brucella species.
Indian J Med Res. 138:111–116. 2013.PubMed/NCBI
|
|
102
|
Regan JF, Makarewicz AJ, Hindson BJ, Metz
TR, Gutierrez DM, Corzett TH, Hadley DR, Mahnke RC, Henderer BD,
Breneman JW IV, et al: Environmental monitoring for biological
threat agents using the autonomous pathogen detection system with
multiplexed polymerase chain reaction. Anal Chem. 80:7422–7429.
2008.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Wilson WJ, Erler AM, Nasarabadi SL,
Skowronski EW and Imbro PM: A multiplexed PCR-coupled liquid bead
array for the simultaneous detection of four biothreat agents. Mol
Cell Probes. 19:137–144. 2005.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Tran TN, Signoli M, Fozzati L, Aboudharam
G, Raoult D and Drancourt M: High throughput, multiplexed pathogen
detection authenticates plague waves in medieval Venice, Italy.
PLoS One. 6(e16735)2011.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Melo AC, Almeida AM and Leal NC:
Retrospective study of a plague outbreak by multiplex-PCR. Lett
Appl Microbiol. 37:361–364. 2003.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Deshpande A, Gans J, Graves SW, Green L,
Taylor L, Kim HB, Kunde YA, Leonard PM, Li PE, Mark J, et al: A
rapid multiplex assay for nucleic acid-based diagnostics. J
Microbiol Methods. 80:155–163. 2010.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Weller SA, Cox V, Essex-Lopresti A,
Hartley MG, Parsons TM, Rachwal PA, Stapleton HL and Lukaszewski
RA: Evaluation of two multiplex real-time PCR screening
capabilities for the detection of Bacillus anthracis,
Francisella tularensis and Yersinia pestis in blood
samples generated from murine infection models. J Med Microbiol.
61:1546–1555. 2012.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Trebesius K, Harmsen D, Rakin A, Schmelz J
and Heesemann J: Development of rRNA-targeted PCR and in situ
hybridization with fluorescently labelled oligonucleotides for
detection of Yersinia species. J Clin Microbiol.
36:2557–2564. 1998.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Souza G, Abath F, Leal N, Farias A and
Almeida A: Development and evaluation of a single tube nested PCR
based approach (STNPCR) for the diagnosis of plague. Adv Exp Med
Biol. 603:351–359. 2007.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Glukhov AI, Gordeev SA, Al'tshuler ML,
Zykova IE and Severin SE: Use of nested PCR in detection of the
plague pathogen. Klin Lab Diagn. 48–50. 2003.PubMed/NCBI(In Russian).
|
|
111
|
Belgrader P, Benett W, Hadley D, Long G,
Mariella R Jr, Milanovich F, Nasarabadi S, Nelson W, Richards J and
Stratton P: Rapid pathogen detection using a microchip PCR array
instrument. Clin Chem. 44:2191–2194. 1998.PubMed/NCBI
|
|
112
|
Pingle MR, Granger K, Feinberg P, Shatsky
R, Sterling B, Rundell M, Spitzer E, Larone D, Golightly L and
Barany F: Multiplexed identification of blood-borne bacterial
pathogens by use of a novel 16S rRNA gene PCR-ligase detection
reaction-capillary electrophoresis assay. J Clin Microbiol.
45:1927–1935. 2007.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Jacob D, Sauer U, Housley R, Washington C,
Sannes-Lowery K, Ecker DJ, Sampath R and Grunow R: Rapid and
high-throughput detection of highly pathogenic bacteria by Ibis
PLEX-ID technology. PLoS One. 7(e39928)2012.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Song J, Li PE, Gans J, Vuyisich M,
Deshpande A, Wolinsky M and White PS: Simultaneous pathogen
detection and antibiotic resistance characterization using
SNP-based multiplexed oligonucleotide ligation-PCR (MOL-PCR). Adv
Exp Med Biol. 680:455–464. 2010.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Souza RA, Frazão MR, Almeida AM and Falcão
JP: Rapid and efficient differentiation of Yersinia species
using high-resolution melting analysis. J Microbiol Methods.
115:6–12. 2015.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Jeng K, Hardick J, Rothman R, Yang S, Won
H, Peterson S, Hsieh YH, Masek BJ, Carroll KC and Gaydos CA:
Reverse transcription-PCR-electrospray ionization mass spectrometry
for rapid detection of biothreat and common respiratory pathogens.
J Clin Microbiol. 51:3300–3307. 2013.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Jelinkova P, Hrdy J, Markova J, Dresler J,
Pajer P, Pavlis O, Branich P, Borilova G, Reichelova M, Babak V, et
al: Development and inter-laboratory validation of diagnostics
panel for detection of biothreat bacteria based on MOL-PCR assay.
Microorganisms. 9(38)2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Woubit A, Yehualaeshet T, Roberts S,
Graham M, Kim M and Samuel T: Customizable PCR-microplate array for
differential identification of multiple pathogens. J Food Prot.
76:1948–1957. 2013.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Malou N, Tran TN, Nappez C, Signoli M, Le
Forestier C, Castex D, Drancourt M and Raoult D: Immuno-PCR-a new
tool for paleomicrobiology: The plague paradigm. PLoS One.
7(e31744)2012.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Mayboroda O, Gonzalez Benito A, Sabaté del
Rio J, Svobodova M, Julich S, Tomaso H, O'Sullivan CK and Katakis
I: Isothermal solid-phase amplification system for detection of
Yersinia pestis. Anal Bioanal Chem. 408:671–676.
2016.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Kane SR, Shah SR and Alfaro TM:
Development of a rapid viability polymerase chain reaction method
for detection of Yersinia pestis. J Microbiol Methods.
162:21–27. 2019.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Iqbal SS, Chambers JP, Goode MT, Valdes JJ
and Brubaker RR: Detection of Yersinia pestis by pesticin
fluorogenic probe-coupled PCR. Mol Cell Probes. 14:109–114.
2000.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Raoult D, Aboudharam G, Crubézy E, Larrouy
G, Ludes B and Drancourt M: Molecular identification by ‘suicide
PCR’ of Yersinia pestis as the agent of medieval black
death. Proc Natl Acad Sci USA. 97:12800–12803. 2000.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Norkina OV, Kulichenko AN, Gintsburg AL,
Tuchkov IV, Popov YuA, Aksenov MU and Drosdov IG: Development of a
diagnostic test for Yersinia pestis by the polymerase chain
reaction. J Appl Bacteriol. 76:240–245. 1994.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Loïez C, Herwegh S, Wallet F, Armand S,
Guinet F and Courcol RJ: Detection of Yersinia pestis in
sputum by real-time PCR. J Clin Microbiol. 41:4873–4875.
2003.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Feng N, Zhou Y, Fan Y, Bi Y, Yang R, Zhou
Y and Wang X: Yersinia pestis detection by loop-mediated
isothermal amplification combined with magnetic bead capture of
DNA. Braz J Microbiol. 49:128–137. 2018.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Leal NC, Abath FG, Alves LC and de*Almeida
AM: A simple PCR-based procedure for plague diagnosis. Rev Inst Med
Trop Sao Paulo. 38:371–373. 1996.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Afanas'ev EN, Briukhanov AF, Briukhanova
GD, Tiumentseva IS, Chzhichzhou S, Zharinova NV, Efremenko VI and
Zharnikova IV: Detection of plague microbe in the fleas by
polymerase chain reaction by using magnetic immunosorbents. Med
Parazitol (Mosk). 33–36. 2004.PubMed/NCBI(In Russian).
|
|
129
|
Coyne SR, Craw PD, Norwood DA and Ulrich
MP: Comparative analysis of the schleicher and schuell IsoCode stix
DNA isolation device and the qiagen qiaamp DNA mini kit. J Clin
Microbiol. 42:4859–4862. 2004.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Dauphin LA, Stephens KW, Eufinger SC and
Bowen MD: Comparison of five commercial DNA extraction kits for the
recovery of Yersinia pestis DNA from bacterial suspensions
and spiked environmental samples. J Appl Microbiol. 108:163–172.
2010.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Gilbert MTP, Cuccui J, White W, Lynnerup
N, Titball RW, Cooper A and Prentice MB: Absence of Yersinia
pestis-specific DNA in human teeth from five European
excavations of putative plague victims. Microbiology (Reading).
150:341–354. 2004.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Hong-Geller E, Valdez YE, Shou Y, Yoshida
TM, Marrone BL and Dunbar JM: Evaluation of Bacillus
anthracis and Yersinia pestis sample collection from
nonporous surfaces by quantitative real-time PCR. Lett Appl
Microbiol. 50:431–437. 2010.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Ramasindrazana B, Parany MN, Rasoamalala
F, Rasoanoro M, Rahajandraibe S, Vogler AJ, Sahl JW,
Andrianaivoarimanana V, Rajerison M and Wagner DM: Local-scale
diversity of Yersinia pestis: A case study from
Ambohitromby, Ankazobe District, Madagascar. Zoonoses Public
Health. 69:61–70. 2022.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Essbauer S, Baumann K, Schlegel M, Faulde
MK, Lewitzki J, Sauer SC, Frangoulidis D, Riehm JM, Dobler G,
Teifke JP, et al: Small mammals as reservoir for zoonotic agents in
Afghanistan. Mil Med. 187:e189–e196. 2022.PubMed/NCBI View Article : Google Scholar
|