Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
August-2022 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2022 Volume 24 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review)

  • Authors:
    • Yanan Zhang
    • Zhanli Wang
    • Wenrui Wang
    • Hui Yu
    • Min Jin
  • View Affiliations / Copyright

    Affiliations: Inner Mongolia Key Laboratory of Disease‑Related Biomarkers, Baotou Medical College, Baotou, Inner Mongolia 014060, P.R. China, General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, Inner Mongolia 010031, P.R. China
  • Article Number: 511
    |
    Published online on: June 14, 2022
       https://doi.org/10.3892/etm.2022.11438
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Plague is an acute bacterial infection caused by Yersinia pestis. The three major clinical forms of plague are bubonic, pneumonic and septicemic, which have high case‑mortality rates. Therefore, rapid and reliable diagnostic tools are crucial. Currently, bacteriological means and traditional serological assays are used for detecting infection with Y. pestis. However, such methods have their limitations. Polymerase chain reaction (PCR) is one of the most useful tools for rapid diagnosis of plague. The present review introduced the main PCR techniques and their applications for detecting and confirmation of Y. pestis. The advantages and disadvantages of the different PCR methods were also summarized.
View Figures

Figure 1

Figure 2

View References

1 

Zietz BP and Dunkelberg H: The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health. 207:165–178. 2004.PubMed/NCBI View Article : Google Scholar

2 

Drancourt M and Raoult D: Molecular history of plague. Clin Microbiol Infect. 22:911–915. 2016.PubMed/NCBI View Article : Google Scholar

3 

Devignat R: Varieties of Pasteurella pestis; new hypothesis. Bull World Health Organ. 4:247–263. 1951.PubMed/NCBI(In Undetermined Language).

4 

Brubaker RR: Factors promoting acute and chronic diseases caused by yersiniae. Clin Microbiol Rev. 4:309–324. 1991.PubMed/NCBI View Article : Google Scholar

5 

Dai E, Tong Z, Wang X, Li M, Cui B, Dai R, Zhou D, Pei D, Song Y, Zhang J, et al: Identification of different regions among strains of Yersinia pestis by suppression subtractive hybridization. Res Microbiol. 156:785–789. 2005.PubMed/NCBI View Article : Google Scholar

6 

Drancourt M: Plague in the genomic area. Clin Microbiol Infect. 18:224–230. 2012.PubMed/NCBI View Article : Google Scholar

7 

Brubaker RR: The genus Yersinia: Biochemistry and genetics of virulence. Curr Top Microbiol Immunol. 57:111–158. 1972.PubMed/NCBI View Article : Google Scholar

8 

Zhou D, Tong Z, Song Y, Han Y, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z, et al: Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol. 186:5147–5152. 2004.PubMed/NCBI View Article : Google Scholar

9 

Perry RD and Fetherston JD: Yersinia pestis-etiologic agent of plague. Clin Microbiol Rev. 10:35–66. 1997.PubMed/NCBI View Article : Google Scholar

10 

Mordechai L, Eisenberg M, Newfield TP, Izdebski A, Kay JE and Poinar H: The justinianic plague: An inconsequential pandemic? Proc Natl Acad Sci USA. 116:25546–25554. 2019.PubMed/NCBI View Article : Google Scholar

11 

Susat J, Bonczarowska JH, Pētersone-Gordina E, Immel A, Nebel A, Gerhards G and Krause-Kyora B: Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci Rep. 10(14628)2020.PubMed/NCBI View Article : Google Scholar

12 

Bramanti B, Dean KR, Walløe L and Chr*Stenseth N: The third plague pandemic in Europe. Proc Biol Sci. 286(20182429)2019.PubMed/NCBI View Article : Google Scholar

13 

Nikiforov VV, Gao H, Zhou L and Anisimov A: Plague: Clinics, diagnosis and treatment. Adv Exp Med Biol. 918:293–312. 2016.PubMed/NCBI View Article : Google Scholar

14 

Jullien S, Dissanayake HA and Chaplin M: Rapid diagnostic tests for plague. Cochrane Database Syst Rev. 6(CD013459)2020.PubMed/NCBI View Article : Google Scholar

15 

Hinnebusch J and Schwan TG: New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas. J Clin Microbiol. 31:1511–1514. 1993.PubMed/NCBI View Article : Google Scholar

16 

Wake A: Pathogenicity of Yersinia pestis: Microbiological and molecular aspect. Nihon Saikingaku Zasshi. 50:651–669. 1995.PubMed/NCBI View Article : Google Scholar : (In Japanese).

17 

Platonov ME, Evseeva VV, Dentovskaya SV and Anisimov AP: Molecular typing of Yersinia pestis. Mol Gen Mikrobiol Virusol. 3–12. 2013.PubMed/NCBI(In Russian).

18 

Wolkowicz T: The utility and perspectives of NGS-based methods in BSL-3 and BSL-4 laboratory-sequencing and analysis strategies. Brief Funct Genomics. 17:471–476. 2018.PubMed/NCBI View Article : Google Scholar

19 

Neubauer H, Sprague LD, Scholz H and Hensel A: Diagnosis o Yersinia enterocolitica infections: A review on classical identification techniques and new molecular biological methods. Berl Munch Tierarztl Wochenschr. 114:1–7. 2001.PubMed/NCBI(In German).

20 

Jones SW, Dobson ME, Francesconi SC, Schoske R and Crawford R: DNA assays for detection, identification and individualization of select agent microorganisms. Croat Med J. 46:522–529. 2005.PubMed/NCBI

21 

Gaweł J, Bartoszcze M and Osiak B: Yersinia pestis pathogenesis and diagnostics. Przegl Epidemiol. 60:315–321. 2006.PubMed/NCBI(In Polish).

22 

Yang R: Plague: Recognition, treatment and prevention. J Clin Microbiol. 56:e01519–17. 2017.PubMed/NCBI View Article : Google Scholar

23 

Marshall JD Jr, Mangiafico JA and Cavanaugh DC: Comparison of the reliability and sensitivity of three serological procedures in detecting antibody to Yersinia pestis (Pasteurella pestis). Appl Microbiol. 24:202–204. 1972.PubMed/NCBI View Article : Google Scholar

24 

Kopylov PKh, Platonov ME, Ablamunits VG, Kombarova TI, Ivanov SA, Kadnikova LA, Somov AN, Dentovskaya SV, Uversky VN and Anisimov AP: Yersinia pestis caf1 protein: Effect of sequence polymorphism on intrinsic disorder propensity, serological cross-reactivity and cross-protectivity of isoforms. PLoS One. 11(e0162308)2016.PubMed/NCBI View Article : Google Scholar

25 

Shepherd AJ, Leman PA, Hummitzsch DE and Swanepoel R: A comparison of serological techniques for plague surveillance. Trans R Soc Trop Med Hyg. 78:771–773. 1984.PubMed/NCBI View Article : Google Scholar

26 

de*Almeida AM and Ferreira LC: Evaluation of three serological tests for the detection of human plague in northeast Brazil. Mem Inst Oswaldo Cruz. 87:87–92. 1992.PubMed/NCBI View Article : Google Scholar

27 

Smith DR, Rossi CA, Kijek TM, Henchal EA and Ludwig GV: Comparison of dissociation-enhanced lanthanide fluorescent immunoassays to enzyme-linked immunosorbent assays for detection of staphylococcal enterotoxin B, Yersinia pestis-specific F1 antigen and Venezuelan equine encephalitis virus. Clin Diagn Lab Immunol. 8:1070–1075. 2001.PubMed/NCBI View Article : Google Scholar

28 

McDonough KA, Schwan TG, Thomas RE and Falkow S: Identification of a Yersinia pestis-specific DNA probe with potential for use in plague surveillance. J Clin Microbiol. 26:2515–2519. 1988.PubMed/NCBI View Article : Google Scholar

29 

Bulat SA, Mikhaĭlo NV and Koroliuk AM: The gene identification of bacterial species and serovariants by the polymerase chain reaction with universal oligonucleotides: The reidentification of earlier isolated strains of Yersinia pseudotuberculosis. Zh Mikrobiol Epidemiol Immunobiol. 2–7. 1991.PubMed/NCBI(In Russian).

30 

Eroshenko GA, Odinokov GN, Kukleva LM, Pavlova AI, Krasnov IaM, Shavina NIu, Guseva NP, Vinogradova NA and Kutyrev VV: Standard algorithm of molecular typing of Yersinia pestis strains. Zh Mikrobiol Epidemiol Immunobiol. 25–35. 2012.PubMed/NCBI(In Russian).

31 

Tong ZZ, Zhou DS, Song YJ, Zhang L, Pei D, Han YP, Pang X, Li M, Cui BZ, Wang J, et al: Genetic variations in the pgm locus among natural isolates of Yersinia pestis. J Gen Appl Microbiol. 51:11–19. 2005.PubMed/NCBI View Article : Google Scholar

32 

Kim W, Song MO, Song W, Kim KJ, Chung SI, Choi CS and Park YH: Comparison of 16S rDNA analysis and rep-PCR genomic fingerprinting for molecular identification of Yersinia pseudotuberculosis. Antonie Van Leeuwenhoek. 83:125–133. 2003.PubMed/NCBI View Article : Google Scholar

33 

Li Y, Dai E, Cui Y, Li M, Zhang Y, Wu M, Zhou D, Guo Z, Dai X, Cui B, et al: Different region analysis for genotyping Yersinia pestis isolates from China. PLoS One. 3(e2166)2008.PubMed/NCBI View Article : Google Scholar

34 

Kingston JJ, Tuteja U, Kapil M, Murali HS and Batra HV: Genotyping of Indian Yersinia pestis strains by MLVA and repetitive DNA sequence based PCRs. Antonie Van Leeuwenhoek. 96:303–312. 2009.PubMed/NCBI View Article : Google Scholar

35 

Motin VL, Georgescu AM, Elliott JM, Hu P, Worsham PL, Ott LL, Slezak TR, Sokhansanj BA, Regala WM, Brubaker RR and Garcia E: Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD). J Bacteriol. 184:1019–1027. 2002.PubMed/NCBI View Article : Google Scholar

36 

Bogdanovich T, Carniel E, Fukushima H and Skurnik M: Use of O-antigen gene cluster-specific PCRs for the identification and O-genotyping of Yersinia pseudotuberculosis and Yersinia pestis. J Clin Microbiol. 41:5103–5112. 2003.PubMed/NCBI View Article : Google Scholar

37 

Savostina EP, Popov IuA, Kashmanova TN and Iashechkin IuI: Analysis of genomic polymorphism of typical and atypical strains of the plague pathogen using polymerase chain reaction with universal primers. Mol Gen Mikrobiol Virusol. 22–26. 2004.PubMed/NCBI(In Russian).

38 

Nikiforov KA, Oglodin EG, Kukleva LM, Eroshenko GA, Germanchuk VG, Devdariani ZL and Kutyrev VV: Subspecies differentiation of Yersinia pestis strains by PCR with hybridization-fluorescent detection. Zh Mikrobiol Epidemiol Immunobiol. 22–27. 2017.PubMed/NCBI(In English, Russian).

39 

Matero P, Pasanen T, Laukkanen R, Tissari P, Tarkka E, Vaara M and Skurnik M: Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. APMIS. 117:34–44. 2009.PubMed/NCBI View Article : Google Scholar

40 

Bai Y, Motin V, Enscore RE, Osikowicz L, Rosales Rizzo M, Hojgaard A, Kosoy M and Eisen RJ: Pentaplex real-time PCR for differential detection of Yersinia pestis and Y. pseudotuberculosis and application for testing fleas collected during plague epizootics. Microbiologyopen. 9(e1105)2020.PubMed/NCBI View Article : Google Scholar

41 

Franklin HA, Stapp P and Cohen A: Polymerase chain reaction (PCR) identification of rodent blood meals confirms host sharing by flea vectors of plague. J Vector Ecol. 35:363–371. 2010.PubMed/NCBI View Article : Google Scholar

42 

Engelthaler DM, Hinnebusch BJ, Rittner CM and Gage KL: Quantitative competitive PCR as a technique for exploring flea-Yersina pestis dynamics. Am J Trop Med Hyg. 62:552–560. 2000.PubMed/NCBI View Article : Google Scholar

43 

Hinnebusch BJ, Gage KL and Schwan TG: Estimation of vector infectivity rates for plague by means of a standard curve-based competitive polymerase chain reaction method to quantify Yersinia pestis in fleas. Am J Trop Med Hyg. 58:562–569. 1998.PubMed/NCBI View Article : Google Scholar

44 

Dai R, He J, Zha X, Wang Y, Zhang X, Gao H, Yang X, Li J, Xin Y, Wang Y, et al: A novel mechanism of streptomycin resistance in Yersinia pestis: Mutation in the rpsL gene. PLoS Negl Trop Dis. 15(e0009324)2021.PubMed/NCBI View Article : Google Scholar

45 

Steinberger-Levy I, Shifman O, Zvi A, Ariel N, Beth-Din A, Israeli O, Gur D, Aftalion M, Maoz S and Ber R: A rapid molecular test for determining Yersinia pestis susceptibility to ciprofloxacin by the quantification of differentially expressed marker genes. Front Microbiol. 7(763)2016.PubMed/NCBI View Article : Google Scholar

46 

Lindler LE, Fan W and Jahan N: Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler. J Clin Microbiol. 39:3649–3655. 2001.PubMed/NCBI View Article : Google Scholar

47 

Shifman O, Steinberger-Levy I, Aloni-Grinstein R, Gur D, Aftalion M, Ron I, Mamroud E, Ber R and Rotem S: A rapid antimicrobial susceptibility test for determining Yersinia pestis susceptibility to Doxycycline by RT-PCR quantification of RNA markers. Front Microbiol. 10(754)2019.PubMed/NCBI View Article : Google Scholar

48 

Ehlers J, Krüger A, Rakotondranary SJ, Ratovonamana RY, Poppert S, Ganzhorn JU and Tappe D: Molecular detection of Rickettsia spp., Borrelia spp., Bartonella spp. and Yersinia pestis in ectoparasites of endemic and domestic animals in southwest Madagascar. Acta Trop. 205(105339)2020.PubMed/NCBI View Article : Google Scholar

49 

Leal NC and Almeida AM: Diagnosis of plague and identification of virulence markers in Yersinia pestis by multiplex-PCR. Rev Inst Med Trop Sao Paulo. 41:339–342. 1999.PubMed/NCBI View Article : Google Scholar

50 

Griffin KA, Martin DJ, Rosen LE, Sirochman MA, Walsh DP, Wolfe LL and Miller MW: Detection of Yersinia pestis DNA in prairie dog-associated fleas by polymerase chain reaction assay of purified DNA. J Wildl Dis. 46:636–643. 2010.PubMed/NCBI View Article : Google Scholar

51 

Neubauer H, Meyer H, Prior J, Aleksic S, Hensel A and Splettstösser W: A combination of different polymerase chain reaction (PCR) assays for the presumptive identification of Yersinia pestis. J Vet Med B Infect Dis Vet Public Health. 47:573–580. 2000.PubMed/NCBI View Article : Google Scholar

52 

Mize EL and Britten HB: Detections of Yersinia pestis east of the known distribution of active plague in the United States. Vector Borne Zoonotic Dis. 16:88–95. 2016.PubMed/NCBI View Article : Google Scholar

53 

Safari Foroshani N, Karami A and Pourali F: Simultaneous and rapid detection of Salmonella typhi, Bacillus anthracis, and Yersinia pestis by using multiplex polymerase chain reaction (PCR). Iran Red Crescent Med J. 15(e9208)2013.PubMed/NCBI View Article : Google Scholar

54 

Engelthaler DM, Gage KL, Montenieri JA, Chu M and Carter LG: PCR detection of Yersinia pestis in fleas: Comparison with mouse inoculation. J Clin Microbiol. 37:1980–1984. 1999.PubMed/NCBI View Article : Google Scholar

55 

Nyirenda SS, Hang'ombe BM, Mulenga E and Kilonzo BS: Serological and PCR investigation of Yersinia pestis in potential reservoir hosts from a plague outbreak focus in Zambia. BMC Res Notes. 10(345)2017.PubMed/NCBI View Article : Google Scholar

56 

Rahalison L, Vololonirina E, Ratsitorahina M and Chanteau S: Diagnosis of bubonic plague by PCR in Madagascar under field conditions. J Clin Microbiol. 38:260–263. 2000.PubMed/NCBI View Article : Google Scholar

57 

Nyirenda SS, Hang Ombe BM, Simulundu E, Mulenga E, Moonga L, Machang U RS, Misinzo G and Kilonzo BS: Molecular epidemiological investigations of plague in Eastern Province of Zambia. BMC Microbiol. 18(2)2018.PubMed/NCBI View Article : Google Scholar

58 

Radnedge L, Gamez-Chin S, McCready PM, Worsham PL and Andersen GL: Identification of nucleotide sequences for the specific and rapid detection of Yersinia pestis. Appl Environ Microbiol. 67:3759–3762. 2001.PubMed/NCBI View Article : Google Scholar

59 

Tsukano H, Itoh K, Suzuki S and Watanabe H: Detection and identification of Yersinia pestis by polymerase chain reaction (PCR) using multiplex primers. Microbiol Immunol. 40:773–775. 1996.PubMed/NCBI View Article : Google Scholar

60 

Zhang Z, Wu L, Liang Y, Wang S, He J, Yu D and Li W: Identification of Yersinia pestis of Xilingele plateau ecotype isolated from China using insertion sequences as target. Ann Clin Lab Sci. 49:656–660. 2019.PubMed/NCBI

61 

Ziwa MH, Matee MI, Kilonzo BS and Hang'ombe BM: Evidence of Yersinia pestis DNA in rodents in plague outbreak foci in Mbulu and Karatu Districts, northern Tanzania. Tanzan J Health Res. 15:152–157. 2013.PubMed/NCBI View Article : Google Scholar

62 

Zasada AA, Formińska K and Zacharczuk K: Fast identification of Yersinia pestis, Bacillus anthracis and Francisella tularensis based on conventional PCR. Pol J Microbiol. 62:453–455. 2013.PubMed/NCBI

63 

Singh R, Pal V, Kumar M, Tripathi NK and Goel AK: Development of a PCR-lateral flow assay for rapid detection of Yersinia pestis, the causative agent of plague. Acta Trop. 220(105958)2021.PubMed/NCBI View Article : Google Scholar

64 

Arnold T, Hensel A, Hagen R, Aleksic S, Neubauer H and Scholz HC: A highly specific one-step PCR-assay for the rapid discrimination of enteropathogenic Yersinia enterocolitica from pathogenic Yersinia pseudotuberculosis and Yersinia pestis. Syst Appl Microbiol. 24:285–289. 2001.PubMed/NCBI View Article : Google Scholar

65 

Trukhachev AL, Ivanova VS, Arsen'eva TE, Lebedeva SA and Goncharenko EV: Search for primers on the basis of Yersinia pestis chromosomal DNA for effective PCR identification of typical and atypical plague pathogen strains. Klin Lab Diagn. 49–52. 2008.PubMed/NCBI(In Russian).

66 

Zhou D, Han Y, Dai E, Pei D, Song Y, Zhai J, Du Z, Wang J, Guo Z and Yang R: Identification of signature genes for rapid and specific characterization of Yersinia pestis. Microbiol Immunol. 48:263–269. 2004.PubMed/NCBI View Article : Google Scholar

67 

Fenollar F and Raoult D: Molecular genetic methods for the diagnosis of fastidious microorganisms. APMIS. 112:785–807. 2004.PubMed/NCBI View Article : Google Scholar

68 

Anderson B, Rashid MH, Carter C, Pasternack G, Rajanna C, Revazishvili T, Dean T, Senecal A and Sulakvelidze A: Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage. 1:86–93. 2011.PubMed/NCBI View Article : Google Scholar

69 

Tomaso H, Jacob D, Eickhoff M, Scholz HC, Al Dahouk S, Kattar MM, Reischl U, Plicka H, Olsen JS, Nikkari S, et al: Preliminary validation of real-time PCR assays for the identification of Yersinia pestis. Clin Chem Lab Med. 46:1239–1244. 2008.PubMed/NCBI View Article : Google Scholar

70 

Rachwal PA, Rose HL, Cox V, Lukaszewski RA, Murch AL and Weller SA: The potential of TaqMan array cards for detection of multiple biological agents by real-time PCR. PLoS One. 7(e35971)2012.PubMed/NCBI View Article : Google Scholar

71 

Gaddy CE, Cuevas PF, Hartman LJ, Howe GB, Worsham PL and Minogue TD: Development of real-time PCR assays for specific detection of hmsH, hmsF, hmsR, and irp2 located within the 102-kb pgm locus of Yersinia pestis. Mol Cell Probes. 28:288–295. 2014.PubMed/NCBI View Article : Google Scholar

72 

Riehm JM, Rahalison L, Scholz HC, Thoma B, Pfeffer M, Razanakoto LM, Al Dahouk S, Neubauer H and Tomaso H: Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague. Mol Cell Probes. 25:8–12. 2011.PubMed/NCBI View Article : Google Scholar

73 

Yang S, Rothman RE, Hardick J, Kuroki M, Hardick A, Doshi V, Ramachandran P and Gaydos CA: Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents. Acad Emerg Med. 15:388–392. 2008.PubMed/NCBI View Article : Google Scholar

74 

Amoako KK, Goji N, Macmillan T, Said KB, Druhan S, Tanaka E and Thomas EG: Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef. J Food Prot. 73:18–25. 2010.PubMed/NCBI View Article : Google Scholar

75 

Liu J, Ochieng C, Wiersma S, Ströher U, Towner JS, Whitmer S, Nichol ST, Moore CC, Kersh GJ, Kato C, et al: Development of a TaqMan array card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including Ebola virus. J Clin Microbiol. 54:49–58. 2016.PubMed/NCBI View Article : Google Scholar

76 

Hindson BJ, McBride MT, Makarewicz AJ, Henderer BD, Setlur US, Smith SM, Gutierrez DM, Metz TR, Nasarabadi SL, Venkateswaran KS, et al: Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation. Anal Chem. 77:284–289. 2005.PubMed/NCBI View Article : Google Scholar

77 

Woubit A, Yehualaeshet T, Habtemariam T and Samuel T: Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens. J Food Prot. 75:660–670. 2012.PubMed/NCBI View Article : Google Scholar

78 

Higgins JA, Ezzell J, Hinnebusch BJ, Shipley M, Henchal EA and Ibrahim MS: 5' nuclease PCR assay to detect Yersinia pestis. J Clin Microbiol. 36:2284–2288. 1998.PubMed/NCBI View Article : Google Scholar

79 

Tomaso H, Reisinger EC, Al Dahouk S, Frangoulidis D, Rakin A, Landt O and Neubauer H: Rapid detection of Yersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunol Med Microbiol. 38:117–126. 2003.PubMed/NCBI View Article : Google Scholar

80 

Skottman T, Piiparinen H, Hyytiäinen H, Myllys V, Skurnik M and Nikkari S: Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Eur J Clin Microbiol Infect Dis. 26:207–211. 2007.PubMed/NCBI View Article : Google Scholar

81 

Comer JE, Lorange EA and Hinnebusch BJ: Examining the vector-host-pathogen interface with quantitative molecular tools. Methods Mol Biol. 431:123–131. 2008.PubMed/NCBI View Article : Google Scholar

82 

Stewart A, Satterfield B, Cohen M, O'Neill K and Robison R: A quadruplex real-time PCR assay for the detection of Yersinia pestis and its plasmids. J Med Microbiol. 57:324–331. 2008.PubMed/NCBI View Article : Google Scholar

83 

Chase CJ, Ulrich MP, Wasieloski LP Jr, Kondig JP, Garrison J, Lindler LE and Kulesh DA: Real-time PCR assays targeting a unique chromosomal sequence of Yersinia pestis. Clin Chem. 51:1778–1785. 2005.PubMed/NCBI View Article : Google Scholar

84 

Sergueev KV, He Y, Borschel RH, Nikolich MP and Filippov AA: Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One. 5(e11337)2010.PubMed/NCBI View Article : Google Scholar

85 

Satterfield BC, Kulesh DA, Norwood DA, Wasieloski LP Jr, Caplan MR and West JA: Tentacle probes: Differentiation of difficult single-nucleotide polymorphisms and deletions by presence or absence of a signal in real-time PCR. Clin Chem. 53:2042–2050. 2007.PubMed/NCBI View Article : Google Scholar

86 

Sting R, Eisenberg T and Hrubenja M: Rapid and reasonable molecular identification of bacteria and fungi in microbiological diagnostics using rapid real-time PCR and sanger sequencing. J Microbiol Methods. 159:148–156. 2019.PubMed/NCBI View Article : Google Scholar

87 

Saikaly PE, Barlaz MA and de*Los*Reyes FL*III: Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Appl Environ Microbiol. 73:6557–6565. 2007.PubMed/NCBI View Article : Google Scholar

88 

Thomas MC, Janzen TW, Huscyzynsky G, Mathews A and Amoako KK: Development of a novel multiplexed qPCR and pyrosequencing method for the detection of human pathogenic yersiniae. Int J Food Microbiol. 257:247–253. 2017.PubMed/NCBI View Article : Google Scholar

89 

Mostafavi E, Ghasemi A, Rohani M, Molaeipoor L, Esmaeili S, Mohammadi Z, Mahmoudi A, Aliabadian M and Johansson A: Molecular survey of tularemia and plague in small mammals from Iran. Front Cell Infect Microbiol. 8(215)2018.PubMed/NCBI View Article : Google Scholar

90 

Hennebique A, Gas F, Batina H, De Araujo C, Bizet K and Maurin M: Evaluation of the biotoxis qPCR detection kit for Francisella tularensis detection in clinical and environmental samples. J Clin Microbiol. 59:e01434–20. 2020.PubMed/NCBI View Article : Google Scholar

91 

Christensen DR, Hartman LJ, Loveless BM, Frye MS, Shipley MA, Bridge DL, Richards MJ, Kaplan RS, Garrison J, Baldwin CD, et al: Detection of biological threat agents by real-time PCR: Comparison of assay performance on the R.A.P.I.D., the LightCycler, and the smart cycler platforms. Clin Chem. 52:141–145. 2006.PubMed/NCBI View Article : Google Scholar

92 

Matero P, Hemmilä H, Tomaso H, Piiparinen H, Rantakokko-Jalava K, Nuotio L and Nikkari S: Rapid field detection assays for Bacillus anthracis, Brucella spp., Francisella tularensis and Yersinia pestis. Clin Microbiol Infect. 17:34–43. 2011.PubMed/NCBI View Article : Google Scholar

93 

Mölsä M, Hemmilä H, Katz A, Niemimaa J, Forbes KM, Huitu O, Stuart P, Henttonen H and Nikkari S: Monitoring biothreat agents (Francisella tularensis, Bacillus anthracis and Yersinia pestis) with a portable real-time PCR instrument. J Microbiol Methods. 115:89–93. 2015.PubMed/NCBI View Article : Google Scholar

94 

Elsholz B, Nitsche A, Achenbach J, Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R and Wörl R: Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosens Bioelectron. 24:1737–1743. 2009.PubMed/NCBI View Article : Google Scholar

95 

Stenkova AM, Isaeva MP and Rasskazov VA: Development of a multiplex PCR for detection of the Yersinia genus with identification of pathogenic species (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica). Mol Gen Mikrobiol Virusol. 18–23. 2008.PubMed/NCBI(In Russian).

96 

Stevenson HL, Bai Y, Kosoy MY, Montenieri JA, Lowell JL, Chu MC and Gage KL: Detection of novel Bartonella strains and Yersinia pestis in prairie dogs and their fleas (Siphonaptera: Ceratophyllidae and Pulicidae) using multiplex polymerase chain reaction. J Med Entomol. 40:329–337. 2003.PubMed/NCBI View Article : Google Scholar

97 

Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C and Pizarro-Cerdá J: Yersinia pestis and plague: An updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun. 20:357–370. 2019.PubMed/NCBI View Article : Google Scholar

98 

Woron AM, Nazarian EJ, Egan C, McDonough KA, Cirino NM, Limberger RJ and Musser KA: Development and evaluation of a 4-target multiplex real-time polymerase chain reaction assay for the detection and characterization of Yersinia pestis. Diagn Microbiol Infect Dis. 56:261–268. 2006.PubMed/NCBI View Article : Google Scholar

99 

He J, Kraft AJ, Fan J, Van Dyke M, Wang L, Bose ME, Khanna M, Metallo JA and Henrickson KJ: Simultaneous detection of CDC category ‘A’ DNA and RNA bioterrorism agents by use of multiplex PCR & RT-PCR enzyme hybridization assays. Viruses. 1:441–459. 2009.PubMed/NCBI View Article : Google Scholar

100 

Vanlalhmuaka Thavachelvam K, Tuteja U, Sarika K, Nagendra S and Kumar S: Reverse line blot macroarray for simultaneous detection and characterization of four biological warfare agents. Indian J Microbiol. 53:41–47. 2013.PubMed/NCBI View Article : Google Scholar

101 

Batra SA, Krupanidhi S and Tuteja U: A sensitive & specific multiplex PCR assay for simultaneous detection of Bacillus anthracis, Yersinia pestis, Burkholderia pseudomallei & Brucella species. Indian J Med Res. 138:111–116. 2013.PubMed/NCBI

102 

Regan JF, Makarewicz AJ, Hindson BJ, Metz TR, Gutierrez DM, Corzett TH, Hadley DR, Mahnke RC, Henderer BD, Breneman JW IV, et al: Environmental monitoring for biological threat agents using the autonomous pathogen detection system with multiplexed polymerase chain reaction. Anal Chem. 80:7422–7429. 2008.PubMed/NCBI View Article : Google Scholar

103 

Wilson WJ, Erler AM, Nasarabadi SL, Skowronski EW and Imbro PM: A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Mol Cell Probes. 19:137–144. 2005.PubMed/NCBI View Article : Google Scholar

104 

Tran TN, Signoli M, Fozzati L, Aboudharam G, Raoult D and Drancourt M: High throughput, multiplexed pathogen detection authenticates plague waves in medieval Venice, Italy. PLoS One. 6(e16735)2011.PubMed/NCBI View Article : Google Scholar

105 

Melo AC, Almeida AM and Leal NC: Retrospective study of a plague outbreak by multiplex-PCR. Lett Appl Microbiol. 37:361–364. 2003.PubMed/NCBI View Article : Google Scholar

106 

Deshpande A, Gans J, Graves SW, Green L, Taylor L, Kim HB, Kunde YA, Leonard PM, Li PE, Mark J, et al: A rapid multiplex assay for nucleic acid-based diagnostics. J Microbiol Methods. 80:155–163. 2010.PubMed/NCBI View Article : Google Scholar

107 

Weller SA, Cox V, Essex-Lopresti A, Hartley MG, Parsons TM, Rachwal PA, Stapleton HL and Lukaszewski RA: Evaluation of two multiplex real-time PCR screening capabilities for the detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis in blood samples generated from murine infection models. J Med Microbiol. 61:1546–1555. 2012.PubMed/NCBI View Article : Google Scholar

108 

Trebesius K, Harmsen D, Rakin A, Schmelz J and Heesemann J: Development of rRNA-targeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species. J Clin Microbiol. 36:2557–2564. 1998.PubMed/NCBI View Article : Google Scholar

109 

Souza G, Abath F, Leal N, Farias A and Almeida A: Development and evaluation of a single tube nested PCR based approach (STNPCR) for the diagnosis of plague. Adv Exp Med Biol. 603:351–359. 2007.PubMed/NCBI View Article : Google Scholar

110 

Glukhov AI, Gordeev SA, Al'tshuler ML, Zykova IE and Severin SE: Use of nested PCR in detection of the plague pathogen. Klin Lab Diagn. 48–50. 2003.PubMed/NCBI(In Russian).

111 

Belgrader P, Benett W, Hadley D, Long G, Mariella R Jr, Milanovich F, Nasarabadi S, Nelson W, Richards J and Stratton P: Rapid pathogen detection using a microchip PCR array instrument. Clin Chem. 44:2191–2194. 1998.PubMed/NCBI

112 

Pingle MR, Granger K, Feinberg P, Shatsky R, Sterling B, Rundell M, Spitzer E, Larone D, Golightly L and Barany F: Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rRNA gene PCR-ligase detection reaction-capillary electrophoresis assay. J Clin Microbiol. 45:1927–1935. 2007.PubMed/NCBI View Article : Google Scholar

113 

Jacob D, Sauer U, Housley R, Washington C, Sannes-Lowery K, Ecker DJ, Sampath R and Grunow R: Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology. PLoS One. 7(e39928)2012.PubMed/NCBI View Article : Google Scholar

114 

Song J, Li PE, Gans J, Vuyisich M, Deshpande A, Wolinsky M and White PS: Simultaneous pathogen detection and antibiotic resistance characterization using SNP-based multiplexed oligonucleotide ligation-PCR (MOL-PCR). Adv Exp Med Biol. 680:455–464. 2010.PubMed/NCBI View Article : Google Scholar

115 

Souza RA, Frazão MR, Almeida AM and Falcão JP: Rapid and efficient differentiation of Yersinia species using high-resolution melting analysis. J Microbiol Methods. 115:6–12. 2015.PubMed/NCBI View Article : Google Scholar

116 

Jeng K, Hardick J, Rothman R, Yang S, Won H, Peterson S, Hsieh YH, Masek BJ, Carroll KC and Gaydos CA: Reverse transcription-PCR-electrospray ionization mass spectrometry for rapid detection of biothreat and common respiratory pathogens. J Clin Microbiol. 51:3300–3307. 2013.PubMed/NCBI View Article : Google Scholar

117 

Jelinkova P, Hrdy J, Markova J, Dresler J, Pajer P, Pavlis O, Branich P, Borilova G, Reichelova M, Babak V, et al: Development and inter-laboratory validation of diagnostics panel for detection of biothreat bacteria based on MOL-PCR assay. Microorganisms. 9(38)2020.PubMed/NCBI View Article : Google Scholar

118 

Woubit A, Yehualaeshet T, Roberts S, Graham M, Kim M and Samuel T: Customizable PCR-microplate array for differential identification of multiple pathogens. J Food Prot. 76:1948–1957. 2013.PubMed/NCBI View Article : Google Scholar

119 

Malou N, Tran TN, Nappez C, Signoli M, Le Forestier C, Castex D, Drancourt M and Raoult D: Immuno-PCR-a new tool for paleomicrobiology: The plague paradigm. PLoS One. 7(e31744)2012.PubMed/NCBI View Article : Google Scholar

120 

Mayboroda O, Gonzalez Benito A, Sabaté del Rio J, Svobodova M, Julich S, Tomaso H, O'Sullivan CK and Katakis I: Isothermal solid-phase amplification system for detection of Yersinia pestis. Anal Bioanal Chem. 408:671–676. 2016.PubMed/NCBI View Article : Google Scholar

121 

Kane SR, Shah SR and Alfaro TM: Development of a rapid viability polymerase chain reaction method for detection of Yersinia pestis. J Microbiol Methods. 162:21–27. 2019.PubMed/NCBI View Article : Google Scholar

122 

Iqbal SS, Chambers JP, Goode MT, Valdes JJ and Brubaker RR: Detection of Yersinia pestis by pesticin fluorogenic probe-coupled PCR. Mol Cell Probes. 14:109–114. 2000.PubMed/NCBI View Article : Google Scholar

123 

Raoult D, Aboudharam G, Crubézy E, Larrouy G, Ludes B and Drancourt M: Molecular identification by ‘suicide PCR’ of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci USA. 97:12800–12803. 2000.PubMed/NCBI View Article : Google Scholar

124 

Norkina OV, Kulichenko AN, Gintsburg AL, Tuchkov IV, Popov YuA, Aksenov MU and Drosdov IG: Development of a diagnostic test for Yersinia pestis by the polymerase chain reaction. J Appl Bacteriol. 76:240–245. 1994.PubMed/NCBI View Article : Google Scholar

125 

Loïez C, Herwegh S, Wallet F, Armand S, Guinet F and Courcol RJ: Detection of Yersinia pestis in sputum by real-time PCR. J Clin Microbiol. 41:4873–4875. 2003.PubMed/NCBI View Article : Google Scholar

126 

Feng N, Zhou Y, Fan Y, Bi Y, Yang R, Zhou Y and Wang X: Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA. Braz J Microbiol. 49:128–137. 2018.PubMed/NCBI View Article : Google Scholar

127 

Leal NC, Abath FG, Alves LC and de*Almeida AM: A simple PCR-based procedure for plague diagnosis. Rev Inst Med Trop Sao Paulo. 38:371–373. 1996.PubMed/NCBI View Article : Google Scholar

128 

Afanas'ev EN, Briukhanov AF, Briukhanova GD, Tiumentseva IS, Chzhichzhou S, Zharinova NV, Efremenko VI and Zharnikova IV: Detection of plague microbe in the fleas by polymerase chain reaction by using magnetic immunosorbents. Med Parazitol (Mosk). 33–36. 2004.PubMed/NCBI(In Russian).

129 

Coyne SR, Craw PD, Norwood DA and Ulrich MP: Comparative analysis of the schleicher and schuell IsoCode stix DNA isolation device and the qiagen qiaamp DNA mini kit. J Clin Microbiol. 42:4859–4862. 2004.PubMed/NCBI View Article : Google Scholar

130 

Dauphin LA, Stephens KW, Eufinger SC and Bowen MD: Comparison of five commercial DNA extraction kits for the recovery of Yersinia pestis DNA from bacterial suspensions and spiked environmental samples. J Appl Microbiol. 108:163–172. 2010.PubMed/NCBI View Article : Google Scholar

131 

Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A and Prentice MB: Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology (Reading). 150:341–354. 2004.PubMed/NCBI View Article : Google Scholar

132 

Hong-Geller E, Valdez YE, Shou Y, Yoshida TM, Marrone BL and Dunbar JM: Evaluation of Bacillus anthracis and Yersinia pestis sample collection from nonporous surfaces by quantitative real-time PCR. Lett Appl Microbiol. 50:431–437. 2010.PubMed/NCBI View Article : Google Scholar

133 

Ramasindrazana B, Parany MN, Rasoamalala F, Rasoanoro M, Rahajandraibe S, Vogler AJ, Sahl JW, Andrianaivoarimanana V, Rajerison M and Wagner DM: Local-scale diversity of Yersinia pestis: A case study from Ambohitromby, Ankazobe District, Madagascar. Zoonoses Public Health. 69:61–70. 2022.PubMed/NCBI View Article : Google Scholar

134 

Essbauer S, Baumann K, Schlegel M, Faulde MK, Lewitzki J, Sauer SC, Frangoulidis D, Riehm JM, Dobler G, Teifke JP, et al: Small mammals as reservoir for zoonotic agents in Afghanistan. Mil Med. 187:e189–e196. 2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Wang Z, Wang W, Yu H and Jin M: Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review). Exp Ther Med 24: 511, 2022.
APA
Zhang, Y., Wang, Z., Wang, W., Yu, H., & Jin, M. (2022). Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review). Experimental and Therapeutic Medicine, 24, 511. https://doi.org/10.3892/etm.2022.11438
MLA
Zhang, Y., Wang, Z., Wang, W., Yu, H., Jin, M."Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review)". Experimental and Therapeutic Medicine 24.2 (2022): 511.
Chicago
Zhang, Y., Wang, Z., Wang, W., Yu, H., Jin, M."Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review)". Experimental and Therapeutic Medicine 24, no. 2 (2022): 511. https://doi.org/10.3892/etm.2022.11438
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Wang Z, Wang W, Yu H and Jin M: Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review). Exp Ther Med 24: 511, 2022.
APA
Zhang, Y., Wang, Z., Wang, W., Yu, H., & Jin, M. (2022). Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review). Experimental and Therapeutic Medicine, 24, 511. https://doi.org/10.3892/etm.2022.11438
MLA
Zhang, Y., Wang, Z., Wang, W., Yu, H., Jin, M."Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review)". Experimental and Therapeutic Medicine 24.2 (2022): 511.
Chicago
Zhang, Y., Wang, Z., Wang, W., Yu, H., Jin, M."Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review)". Experimental and Therapeutic Medicine 24, no. 2 (2022): 511. https://doi.org/10.3892/etm.2022.11438
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team