Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2022 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2022 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Properties of flavonoids in the treatment of bladder cancer (Review)

  • Authors:
    • Yue Lv
    • Zhonghao Liu
    • Haixing Jia
    • Youcheng Xiu
    • Zan Liu
    • Leihong Deng
  • View Affiliations / Copyright

    Affiliations: Department of Urology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China, Department of Ultrasound Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Lv et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 676
    |
    Published online on: September 19, 2022
       https://doi.org/10.3892/etm.2022.11612
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Given its high recurrence and rapid progress, bladder cancer (BLCA) treatment has become a major problem for clinicians. BLCA is difficult to control even with surgical resection and extensive use of chemotherapeutic drugs. The non‑toxicity and ease of accessibility of natural compounds have attracted much attention in recent years. Flavonoids serve an essential role given their antioxidant, antibacterial, anticancer and cardiovascular properties. They are mainly divided into several subclasses; flavones, flavanones, flavonols, flavanols, anthocyanins isoflavones and chalcones. Over the years, the role of flavonoids in BLCA has been extensively studied. The present review provided a comprehensive overview of the classification of flavonoids and substantiate the role of epithelial‑mesenchymal transition, cancer stem cells, angiogenesis, epigenetic regulation and programmed cell death in BLCA. The present review emphasized that flavonoids for BLCA treatment are worthy of further study and anti‑BLCA drugs have huge prospects for clinical use.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar

2 

Dobruch J, Daneshmand S, Fisch M, Lotan Y, Noon AP, Resnick MJ, Shariat SF, Zlotta AR and Boorjian SA: Gender and bladder cancer: A collaborative review of etiology, biology, and outcomes. Eur Urol. 69:300–310. 2016.PubMed/NCBI View Article : Google Scholar

3 

Richters A, Aben KKH and Kiemeney LALM: The global burden of urinary bladder cancer: An update. World J Urol. 38:1895–1904. 2020.PubMed/NCBI View Article : Google Scholar

4 

Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW and Jung YD: Natural phytochemicals in bladder cancer prevention and therapy. Front Oncol. 11(652033)2021.PubMed/NCBI View Article : Google Scholar

5 

Han J, Gu X, Li Y and Wu Q: Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother. 129(110393)2020.PubMed/NCBI View Article : Google Scholar

6 

Kimura T, Ishikawa H, Kojima T, Kandori S, Kawahara T, Sekino Y, Sakurai H and Nishiyama H: Bladder preservation therapy for muscle invasive bladder cancer: The past, present and future. Jpn J Clin Oncol. 50:1097–1107. 2020.PubMed/NCBI View Article : Google Scholar

7 

Tran L, Xiao JF, Agarwal N, Duex JE and Theodorescu D: Advances in bladder cancer biology and therapy. Nat Rev Cancer. 21:104–121. 2021.PubMed/NCBI View Article : Google Scholar

8 

Bednova O and Leyton JV: Targeted molecular therapeutics for bladder cancer-A new option beyond the mixed fortunes of immune checkpoint inhibitors? Int J Mol Sci. 21(7268)2020.PubMed/NCBI View Article : Google Scholar

9 

Rutz J, Janicova A, Woidacki K, Chun FK, Blaheta RA and Relja B: Curcumin-A viable agent for better bladder cancer treatment. Int J Mol Sci. 21(3761)2020.PubMed/NCBI View Article : Google Scholar

10 

Zanoaga O, Braicu C, Jurj A, Rusu A, Buiga R and Berindan-Neagoe I: Progress in research on the role of flavonoids in lung cancer. Int J Mol Sci. 20(4291)2019.PubMed/NCBI View Article : Google Scholar

11 

Niedzwiecki A, Roomi MW, Kalinovsky T and Rath M: Anticancer efficacy of polyphenols and their combinations. Nutrients. 8(552)2016.PubMed/NCBI View Article : Google Scholar

12 

Kumar S and Pandey AK: Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal. 2013(162750)2013.PubMed/NCBI View Article : Google Scholar

13 

Amawi H, Ashby CR Jr and Tiwari AK: Cancer chemoprevention through dietary flavonoids: What's limiting? Chin J Cancer. 36(50)2017.PubMed/NCBI View Article : Google Scholar

14 

Lama-Sherpa TD and Shevde LA: An emerging regulatory role for the tumor microenvironment in the DNA damage response to double-strand breaks. Mol Cancer Res. 18:185–193. 2020.PubMed/NCBI View Article : Google Scholar

15 

Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25(101084)2019.PubMed/NCBI View Article : Google Scholar

16 

Harashima H, Dissmeyer N and Schnittger A: Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 23:345–356. 2013.PubMed/NCBI View Article : Google Scholar

17 

Lim S and Kaldis P: Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 140:3079–3093. 2013.PubMed/NCBI View Article : Google Scholar

18 

Carusillo A and Mussolino C: DNA Damage: From threat to treatment. Cells. 9(1665)2020.PubMed/NCBI View Article : Google Scholar

19 

Solier S, Zhang YW, Ballestrero A, Pommier Y and Zoppoli G: DNA damage response pathways and cell cycle checkpoints in colorectal cancer: Current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets. 12:356–371. 2012.PubMed/NCBI View Article : Google Scholar

20 

Kastan MB and Bartek J: Cell-cycle checkpoints and cancer. Nature. 432:316–323. 2004.PubMed/NCBI View Article : Google Scholar

21 

de Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca PMM, Jorge SD, Araldi RP and Ferreira AK: The roles of ROS in cancer heterogeneity and therapy. Oxid Med Cell Longev. 2017(2467940)2017.PubMed/NCBI View Article : Google Scholar

22 

Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules. 9(735)2019.PubMed/NCBI View Article : Google Scholar

23 

Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G and Migliaccio A: ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 52:192–203. 2020.PubMed/NCBI View Article : Google Scholar

24 

Xu X, Lai Y and Hua ZC: Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep. 39(BSR20180992)2019.PubMed/NCBI View Article : Google Scholar

25 

Hengartner MO: Apoptosis: Corralling the corpses. Cell. 104:325–328. 2001.PubMed/NCBI View Article : Google Scholar

26 

Schneider P and Tschopp J: Apoptosis induced by death receptors. Pharm Acta Helv. 74:281–286. 2000.PubMed/NCBI View Article : Google Scholar

27 

Indran IR, Tufo G, Pervaiz S and Brenner C: Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 1807:735–745. 2011.PubMed/NCBI View Article : Google Scholar

28 

Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021.PubMed/NCBI View Article : Google Scholar

29 

Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30(87)2011.PubMed/NCBI View Article : Google Scholar

30 

Szegezdi E, Fitzgerald U and Samali A: Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann N Y Acad Sci. 1010:186–194. 2003.PubMed/NCBI View Article : Google Scholar

31 

Levy JMM, Towers CG and Thorburn A: Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017.PubMed/NCBI View Article : Google Scholar

32 

Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019.PubMed/NCBI View Article : Google Scholar

33 

White E, Mehnert JM and Chan CS: Autophagy, metabolism, and cancer. Clin Cancer Res. 21:5037–5046. 2015.PubMed/NCBI View Article : Google Scholar

34 

Amaravadi R, Kimmelman AC and White E: Recent insights into the function of autophagy in cancer. Genes Dev. 30:1913–1930. 2016.PubMed/NCBI View Article : Google Scholar

35 

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12(34)2019.PubMed/NCBI View Article : Google Scholar

36 

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019.PubMed/NCBI View Article : Google Scholar

37 

Bebber CM, Müller F, Prieto Clemente L, Weber J and von Karstedt S: Ferroptosis in cancer cell biology. Cancers (Basel). 12(164)2020.PubMed/NCBI View Article : Google Scholar

38 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: past, present and future. Cell Death Dis. 11(88)2020.PubMed/NCBI View Article : Google Scholar

39 

Tiffon C: The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci. 19(3425)2018.PubMed/NCBI View Article : Google Scholar

40 

Margueron R and Reinberg D: Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet. 11:285–296. 2010.PubMed/NCBI View Article : Google Scholar

41 

Mahmoud AM and Ali MM: Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients. 11(608)2019.PubMed/NCBI View Article : Google Scholar

42 

Jasek K, Kubatka P, Samec M, Liskova A, Smejkal K, Vybohova D, Bugos O, Biskupska-Bodova K, Bielik T, Zubor P, et al: DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules. 9(289)2019.PubMed/NCBI View Article : Google Scholar

43 

Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z and Lu L: Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res. 114:1–12. 2016.PubMed/NCBI View Article : Google Scholar

44 

Qin J, Wen B, Liang Y, Yu W and Li H: Histone modifications and their role in colorectal cancer (Review). Pathol Oncol Res. 26:2023–2033. 2020.PubMed/NCBI View Article : Google Scholar

45 

Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8(a019521)2016.PubMed/NCBI View Article : Google Scholar

46 

Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009.PubMed/NCBI View Article : Google Scholar

47 

Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 21(1723)2020.PubMed/NCBI View Article : Google Scholar

48 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014.PubMed/NCBI View Article : Google Scholar

49 

Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996.PubMed/NCBI View Article : Google Scholar

50 

Koch AE and Distler O: Vasculopathy and disordered angiogenesis in selected rheumatic diseases: Rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther. 9 (Suppl 2)(S3)2007.PubMed/NCBI View Article : Google Scholar

51 

Ramjiawan RR, Griffioen AW and Duda DG: Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 20:185–204. 2017.PubMed/NCBI View Article : Google Scholar

52 

Rajabi M and Mousa SA: The role of angiogenesis in cancer treatment. Biomedicines. 5(34)2017.PubMed/NCBI View Article : Google Scholar

53 

Pan G, Liu Y, Shang L, Zhou F and Yang S: EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 41:199–217. 2021.PubMed/NCBI View Article : Google Scholar

54 

Eun K, Ham SW and Kim H: Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 50:117–125. 2017.PubMed/NCBI View Article : Google Scholar

55 

Barzegar Behrooz A, Syahir A and Ahmad S: CD133: Beyond a cancer stem cell biomarker. J Drug Target. 27:257–269. 2019.PubMed/NCBI View Article : Google Scholar

56 

Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020.PubMed/NCBI View Article : Google Scholar

57 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014.PubMed/NCBI View Article : Google Scholar

58 

Du B and Shim JS: Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 21(965)2016.PubMed/NCBI View Article : Google Scholar

59 

Lehman HL, Kidacki M and Stairs DB: Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep. 10(18829)2020.PubMed/NCBI View Article : Google Scholar

60 

Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME and De Maria R: PTEN tumor-suppressor: The dam of stemness in cancer. Cancers (Basel). 11(1076)2019.PubMed/NCBI View Article : Google Scholar

61 

Kopustinskiene DM, Jakstas V, Savickas A and Bernatoniene J: Flavonoids as anticancer agents. Nutrients. 12(457)2020.PubMed/NCBI View Article : Google Scholar

62 

Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A and Büsselberg D: Flavonoids in cancer and apoptosis. Cancers (Basel). 11(28)2018.PubMed/NCBI View Article : Google Scholar

63 

Panche AN, Diwan AD and Chandra SR: Flavonoids: An overview. J Nutr Sci. 5(e47)2016.PubMed/NCBI View Article : Google Scholar

64 

Hostetler GL, Ralston RA and Schwartz SJ: Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 8:423–435. 2017.PubMed/NCBI View Article : Google Scholar

65 

Shi MD, Shiao CK, Lee YC and Shih YW: Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int. 15(33)2015.PubMed/NCBI View Article : Google Scholar

66 

Zhu Y, Mao Y, Chen H, Lin Y, Hu Z, Wu J, Xu X, Xu X, Qin J and Xie L: Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell Int. 13(54)2013.PubMed/NCBI View Article : Google Scholar

67 

Xia Y, Yuan M, Li S, Thuan UT, Nguyen TT, Kang TW, Liao W, Lian S and Jung YD: Apigenin Suppresses the IL-1β-induced expression of the urokinase-type plasminogen activator receptor by inhibiting MAPK-Mediated AP-1 and NF-κB signaling in human bladder cancer T24 cells. J Agric Food Chem. 66:7663–7673. 2018.PubMed/NCBI View Article : Google Scholar

68 

Lin Y, Shi R, Wang X and Shen HM: Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 8:634–646. 2008.PubMed/NCBI View Article : Google Scholar

69 

Kilani-Jaziri S, Frachet V, Bhouri W, Ghedira K, Chekir-Ghedira L and Ronot X: Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis. Drug Chem Toxicol. 35:1–10. 2012.PubMed/NCBI View Article : Google Scholar

70 

Iida K, Naiki T, Naiki-Ito A, Suzuki S, Kato H, Nozaki S, Nagai T, Etani T, Nagayasu Y, Ando R, et al: Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 111:1165–1179. 2020.PubMed/NCBI View Article : Google Scholar

71 

Yang G, Wang Z, Wang W, Zhou X, Hu X and Yang J: Anticancer activity of Luteolin and its synergism effect with BCG on human bladder cancer cell line BIU-87. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 39:371–378. 2014.PubMed/NCBI View Article : Google Scholar : (In Chinese).

72 

Lin JJ, Huang CC, Su YL, Luo HL, Lee NL, Sung MT and Wu YJ: Proteomics analysis of tangeretin-induced apoptosis through mitochondrial dysfunction in bladder cancer cells. Int J Mol Sci. 20(1017)2019.PubMed/NCBI View Article : Google Scholar

73 

Mani R and Natesan V: Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 145:187–196. 2018.PubMed/NCBI View Article : Google Scholar

74 

Xu Y, Tong Y, Ying J, Lei Z, Wan L, Zhu X, Ye F, Mao P, Wu X, Pan R, et al: Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett. 15:9117–9125. 2018.PubMed/NCBI View Article : Google Scholar

75 

Lima APB, Almeida TC, Barros TMB, Rocha LCM, Garcia CCM and da Silva GN: Toxicogenetic and antiproliferative effects of chrysin in urinary bladder cancer cells. Mutagenesis: Aug 13, 2020 (Epub ahead of print).

76 

Yang Y, Liu K, Yang L and Zhang G: Bladder cancer cell viability inhibition and apoptosis induction by baicalein through targeting the expression of anti-apoptotic genes. Saudi J Biol Sci. 25:1478–1482. 2018.PubMed/NCBI View Article : Google Scholar

77 

Choi EO, Park C, Hwang HJ, Hong SH, Kim GY, Cho EJ, Kim WJ and Choi YH: Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells. Int J Oncol. 49:1009–1018. 2016.PubMed/NCBI View Article : Google Scholar

78 

Li HL, Zhang S, Wang Y, Liang RR, Li J, An P, Wang ZM, Yang J and Li ZF: Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells. Mol Med Rep. 7:266–270. 2013.PubMed/NCBI View Article : Google Scholar

79 

Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, et al: Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 11:4045–4054. 2021.PubMed/NCBI View Article : Google Scholar

80 

Wu JY, Tsai KW, Li YZ, Chang YS, Lai YC, Laio YH, Wu JD and Liu YW: Anti-bladder-tumor effect of baicalein from scutellaria baicalensis georgi and its application in vivo. Evid Based Complement Alternat Med. 2013(579751)2013.PubMed/NCBI View Article : Google Scholar

81 

Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP and Wang CM: Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 11(978)2020.PubMed/NCBI View Article : Google Scholar

82 

Lv WL, Liu Q, An JH and Song XY: Scutellarin inhibits hypoxia-induced epithelial-mesenchymal transition in bladder cancer cells. J Cell Physiol. 234:23169–23175. 2019.PubMed/NCBI View Article : Google Scholar

83 

Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M and Garg M: Nobiletin in cancer therapy: How this plant derived-natural compound targets various oncogene and onco-suppressor pathways. Biomedicines. 8(110)2020.PubMed/NCBI View Article : Google Scholar

84 

Goan YG, Wu WT, Liu CI, Neoh CA and Wu YJ: Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells. Molecules. 24(2881)2019.PubMed/NCBI View Article : Google Scholar

85 

Tian F, Tong M, Li Z, Huang W, Jin Y, Cao Q, Zhou X and Tong G: The effects of orientin on proliferation and apoptosis of T24 human bladder carcinoma cells occurs through the inhibition of nuclear factor-kappaB and the hedgehog signaling pathway. Med Sci Monit. 25:9547–9554. 2019.PubMed/NCBI View Article : Google Scholar

86 

Stavric B: Quercetin in our diet: From potent mutagen to probable anticarcinogen. Clin Biochem. 27:245–248. 1994.PubMed/NCBI View Article : Google Scholar

87 

Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z and Mubarak MS: Anticancer potential of quercetin: A comprehensive review. Phytother Res. 32:2109–2130. 2018.PubMed/NCBI View Article : Google Scholar

88 

Adami BS, Diz FM, Oliveira Gonçalves GP, Reghelin CK, Scherer M, Dutra AP, Papaléo RM, de Oliveira JR, Morrone FB, Wieck A and Xavier LL: Morphological and mechanical changes induced by quercetin in human T24 bladder cancer cells. Micron. 151(103152)2021.PubMed/NCBI View Article : Google Scholar

89 

Oršolić N, Karač I, Sirovina D, Kukolj M, Kunštić M, Gajski G, Garaj-Vrhovac V and Štajcar D: Chemotherapeutic potential of quercetin on human bladder cancer cells. J Environ Sci Health A Tox Hazard Subst Environ Eng. 51:776–781. 2016.PubMed/NCBI View Article : Google Scholar

90 

Su Q, Peng M, Zhang Y, Xu W, Darko KO, Tao T, Huang Y, Tao X and Yang X: Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway. Am J Cancer Res. 6:498–508. 2016.PubMed/NCBI

91 

Wei L, Liu JJ, Cao J, Du NC, Ji LN and Yang XL: Role of autophagy in quercetin-induced apoptosis in human bladder carcinoma BIU-87 cells. Zhonghua Zhong Liu Za Zhi. 34:414–418. 2012.PubMed/NCBI(In Chinese).

92 

Tan DQ and Liu XH: Mechanism in growth inhibition of quercetin on human bladder cancer cell line. Zhongguo Zhong Yao Za Zhi. 42:1742–1746. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).

93 

Rockenbach L, Bavaresco L, Fernandes Farias P, Cappellari AR, Barrios CH, Bueno Morrone F and Oliveira Battastini AM: Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol Oncol. 31:1204–1211. 2013.PubMed/NCBI View Article : Google Scholar

94 

Berger SI and Iyengar R: Network analyses in systems pharmacology. Bioinformatics. 25:2466–2472. 2009.PubMed/NCBI View Article : Google Scholar

95 

Dong Y, Hao L, Fang K, Han XX, Yu H, Zhang JJ, Cai LJ, Fan T, Zhang WD, Pang K, et al: A network pharmacology perspective for deciphering potential mechanisms of action of Solanum nigrum L. in bladder cancer. BMC Complement Med Ther. 21(45)2021.PubMed/NCBI View Article : Google Scholar

96 

Cho CJ, Yu CP, Wu CL, Ho JY, Yang CW and Yu DS: Decreased drug resistance of bladder cancer using phytochemicals treatment. Kaohsiung J Med Sci. 37:128–135. 2021.PubMed/NCBI View Article : Google Scholar

97 

Oršolić N, Odeh D, Jembrek MJ, Knežević J and Kučan D: Interactions between cisplatin and quercetin at physiological and hyperthermic conditions on cancer cells in vitro and in vivo. Molecules. 25(3271)2020.PubMed/NCBI View Article : Google Scholar

98 

Lee YH and Tuyet PT: Synthesis and biological evaluation of quercetin-zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells. In Vitro Cell Dev Biol Anim. 55:395–404. 2019.PubMed/NCBI View Article : Google Scholar

99 

Tao T, He C, Deng J, Huang Y, Su Q, Peng M, Yi M, Darko KO, Zou H and Yang X: A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3',4'-O-pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway. Oncotarget. 8:71657–71671. 2017.PubMed/NCBI View Article : Google Scholar

100 

Alban L, Monteiro WF, Diz FM, Miranda GM, Scheid CM, Zotti ER, Morrone FB and Ligabue R: New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. Mater Sci Eng C Mater Biol Appl. 110(110662)2020.PubMed/NCBI View Article : Google Scholar

101 

Shui L, Wang W, Xie M, Ye B, Li X, Liu Y and Zheng M: Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging (Albany NY). 12:24318–24332. 2020.PubMed/NCBI View Article : Google Scholar

102 

Chen F, Chen X, Yang D, Che X, Wang J, Li X, Zhang Z, Wang Q, Zheng W, Wang L, et al: Isoquercitrin inhibits bladder cancer progression in vivo and in vitro by regulating the PI3K/Akt and PKC signaling pathways. Oncol Rep. 36:165–172. 2016.PubMed/NCBI View Article : Google Scholar

103 

Wu P, Liu S, Su J, Chen J, Li L, Zhang R and Chen T: Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway. Food Funct. 8:3707–3722. 2017.PubMed/NCBI View Article : Google Scholar

104 

Ran J, Wang Y, Zhang W, Ma M and Zhang H: Research on the bioactivity of isoquercetin extracted from marestail on bladder cancer EJ cell and the mechanism of its occurrence. Artif Cells Nanomed Biotechnol. 44:859–864. 2016.PubMed/NCBI View Article : Google Scholar

105 

Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, et al: Kaempferol: A key emphasis to its anticancer potential. Molecules. 24(2277)2019.PubMed/NCBI View Article : Google Scholar

106 

Qiu W, Lin J, Zhu Y, Zhang J, Zeng L, Su M and Tian Y: Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell Physiol Biochem. 41:1325–1335. 2017.PubMed/NCBI View Article : Google Scholar

107 

Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, Zhang X and Su J: Kaempferol attenuates ROS-Induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules. 23(2592)2018.PubMed/NCBI View Article : Google Scholar

108 

Dang Q, Song W, Xu D, Ma Y, Li F, Zeng J, Zhu G, Wang X, Chang LS, He D and Li L: Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol Carcinog. 54:831–840. 2015.PubMed/NCBI View Article : Google Scholar

109 

Xie F, Su M, Qiu W, Zhang M, Guo Z, Su B, Liu J, Li X and Zhou L: Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int J Mol Sci. 14:21215–21226. 2013.PubMed/NCBI View Article : Google Scholar

110 

DE Oliveira DT, Savio AL, Marcondes JP, Barros TM, Barbosa LC, Salvadori DM and DA Silva GN: Cytotoxic and toxicogenomic effects of silibinin in bladder cancer cells with different TP53 status. J Biosci. 42:91–101. 2017.PubMed/NCBI View Article : Google Scholar

111 

Barros TMB, Lima APB, Almeida TC and da Silva GN: Inhibition of urinary bladder cancer cell proliferation by silibinin. Environ Mol Mutagen. 61:445–455. 2020.PubMed/NCBI View Article : Google Scholar

112 

Li F, Sun Y, Jia J, Yang C, Tang X, Jin B, Wang K, Guo P, Ma Z, Chen Y, et al: Silibinin attenuates TGF-β1-induced migration and invasion via EMT suppression and is associated with COX-2 downregulation in bladder transitional cell carcinoma. Oncol Rep. 40:3543–3550. 2018.PubMed/NCBI View Article : Google Scholar

113 

Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, Zhang L, Chen Y, Gao Y, Wang B, et al: Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal. 25:2625–2633. 2013.PubMed/NCBI View Article : Google Scholar

114 

Imai-Sumida M, Chiyomaru T, Majid S, Saini S, Nip H, Dahiya R, Tanaka Y and Yamamura S: Silibinin suppresses bladder cancer through down-regulation of actin cytoskeleton and PI3K/Akt signaling pathways. Oncotarget. 8:92032–92042. 2017.PubMed/NCBI View Article : Google Scholar

115 

Sun Y, Guan Z, Zhao W, Jiang Y, Li Q, Cheng Y and Xu Y: Silibinin suppresses bladder cancer cell malignancy and chemoresistance in an NF-κB signal-dependent and signal-independent manner. Int J Oncol. 51:1219–1226. 2017.PubMed/NCBI View Article : Google Scholar

116 

Prack Mc Cormick B, Langle Y, Belgorosky D, Vanzulli S, Balarino N, Sandes E and Eiján AM: Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer. J Cell Biochem. 119:5402–5412. 2018.PubMed/NCBI View Article : Google Scholar

117 

Gándara L, Sandes E, Di Venosa G, Prack Mc Cormick B, Rodriguez L, Mamone L, Batlle A, Eiján AM and Casas A: The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. J Photochem Photobiol B. 133:55–64. 2014.PubMed/NCBI View Article : Google Scholar

118 

Ramchandani S, Naz I, Lee JH, Khan MR and Ahn KS: An Overview of the potential antineoplastic effects of casticin. Molecules. 25(1287)2020.PubMed/NCBI View Article : Google Scholar

119 

Xu H, Shi HL, Hao JW, Shu KP, Zhang YT and Hou TQ: Casticin inhibits the proliferation, migration and invasion of bladder cancer cells by inhibition of TM7SF4 expression. Zhonghua Zhong Liu Za Zhi. 44:334–340. 2022.PubMed/NCBI View Article : Google Scholar : (In Chinese).

120 

Huang AC, Cheng YD, Huang LH, Hsiao YT, Peng SF, Lu KW, Lien JC, Yang JL, Lin TS and Chung JG: Casticin induces DNA damage and impairs DNA repair in human bladder cancer TSGH-8301 cells. Anticancer Res. 39:1839–1847. 2019.PubMed/NCBI View Article : Google Scholar

121 

Chung YH and Kim D: RIP kinase-mediated ROS production triggers XAF1 expression through activation of TAp73 in casticin-treated bladder cancer cells. Oncol Rep. 36:1135–1142. 2016.PubMed/NCBI View Article : Google Scholar

122 

Gao X, Xu J, Jiang L, Liu W, Hong H, Qian Y, Li S, Huang W, Zhao H, Yang Z, et al: Morin alleviates aflatoxin B1-induced liver and kidney injury by inhibiting heterophil extracellular traps release, oxidative stress and inflammatory responses in chicks. Poult Sci. 100(101513)2021.PubMed/NCBI View Article : Google Scholar

123 

Shin SS, Won SY, Noh DH, Hwang B, Kim WJ and Moon SK: Morin inhibits proliferation, migration, and invasion of bladder cancer EJ cells via modulation of signaling pathways, cell cycle regulators, and transcription factor-mediated MMP-9 expression. Drug Dev Res. 78:81–90. 2017.PubMed/NCBI View Article : Google Scholar

124 

Pan XW, Li L, Huang Y, Huang H, Xu DF, Gao Y, Chen L, Ren JZ, Cao JW, Hong Y and Cui XG: Icaritin acts synergistically with epirubicin to suppress bladder cancer growth through inhibition of autophagy. Oncol Rep. 35:334–342. 2016.PubMed/NCBI View Article : Google Scholar

125 

Stevens Y, Rymenant EV, Grootaert C, Camp JV, Possemiers S, Masclee A and Jonkers D: The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients. 11(1464)2019.PubMed/NCBI View Article : Google Scholar

126 

Kim DI, Lee SJ, Lee SB, Park K, Kim WJ and Moon SK: Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis. 29:1701–1709. 2008.PubMed/NCBI View Article : Google Scholar

127 

Liao AC, Kuo CC, Huang YC, Yeh CW, Hseu YC, Liu JY and Hsu LS: Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Mol Med Rep. 10:1531–1536. 2014.PubMed/NCBI View Article : Google Scholar

128 

Juhem A, Boumendjel A, Touquet B, Guillot A, Popov A, Ronot X and Martel-Frachet V: AG11, a novel dichloroflavanone derivative with anti-mitotic activity towards human bladder cancer cells. Anticancer Res. 33:4445–4452. 2013.PubMed/NCBI

129 

Khan N, Afaq F and Mukhtar H: Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxid Redox Signal. 10:475–510. 2008.PubMed/NCBI View Article : Google Scholar

130 

Khan N and Mukhtar H: Tea polyphenols in promotion of human health. Nutrients. 11(39)2018.PubMed/NCBI View Article : Google Scholar

131 

Bernatoniene J and Kopustinskiene DM: The role of catechins in cellular responses to oxidative stress. Molecules. 23(965)2018.PubMed/NCBI View Article : Google Scholar

132 

Khan N, Afaq F, Saleem M, Ahmad N and Mukhtar H: Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 66:2500–2505. 2006.PubMed/NCBI View Article : Google Scholar

133 

Yasuda T, Miyata Y, Nakamura Y, Sagara Y, Matsuo T, Ohba K and Sakai H: High Consumption of Green tea suppresses urinary tract recurrence of urothelial cancer via down-regulation of human antigen-R expression in never smokers. In Vivo. 32:721–729. 2018.PubMed/NCBI View Article : Google Scholar

134 

Matsuo T, Miyata Y, Asai A, Sagara Y, Furusato B, Fukuoka J and Sakai H: Green tea polyphenol induces changes in cancer-related factors in an animal model of bladder cancer. PLoS One. 12(e0171091)2017.PubMed/NCBI View Article : Google Scholar

135 

Chen Z, Yu T, Zhou B, Wei J, Fang Y, Lu J, Guo L, Chen W, Liu ZP and Luo J: Mg(II)-Catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials. 81:125–134. 2016.PubMed/NCBI View Article : Google Scholar

136 

Jankun J, Keck RW and Selman SH: Epigallocatechin-3-gallate prevents tumor cell implantation/growth in an experimental rat bladder tumor model. Int J Oncol. 44:147–152. 2014.PubMed/NCBI View Article : Google Scholar

137 

Lee HY, Chen YJ, Chang WA, Li WM, Ke HL, Wu WJ and Kuo PL: Effects of epigallocatechin gallate (EGCG) on urinary bladder urothelial carcinoma-next-generation sequencing and bioinformatics approaches. Medicina (Kaunas). 55(768)2019.PubMed/NCBI View Article : Google Scholar

138 

Luo KW, Wei Chen, Lung WY, Wei XY, Cheng BH, Cai ZM and Huang WR: EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J Nutr Biochem. 41:56–64. 2017.PubMed/NCBI View Article : Google Scholar

139 

Luo KW, Lung WY, Chun-Xie Luo XL and Huang WR: EGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway. Oncotarget. 9:12261–12272. 2018.PubMed/NCBI View Article : Google Scholar

140 

Qin J, Wang Y, Bai Y, Yang K, Mao Q, Lin Y, Kong D, Zheng X and Xie L: Epigallocatechin-3-gallate inhibits bladder cancer cell invasion via suppression of NF-κB-mediated matrix metalloproteinase-9 expression. Mol Med Rep. 6:1040–1044. 2012.PubMed/NCBI View Article : Google Scholar

141 

Feng C, Ho Y, Sun C, Xia G, Ding Q and Gu B: Epigallocatechin gallate inhibits the growth and promotes the apoptosis of bladder cancer cells. Exp Ther Med. 14:3513–3518. 2017.PubMed/NCBI View Article : Google Scholar

142 

Yin Z, Li J, Kang L, Liu X, Luo J, Zhang L, Li Y and Cai J: Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells. J Food Biochem. 45(e13758)2021.PubMed/NCBI View Article : Google Scholar

143 

Sun X, Song J, Li E, Geng H, Li Y, Yu D and Zhong C: (-)-Epigallocatechin-3-gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol Rep. 42:425–435. 2019.PubMed/NCBI View Article : Google Scholar

144 

Luo KW, Zhu XH, Zhao T, Zhong J, Gao HC, Luo XL and Huang WR: EGCG enhanced the anti-tumor effect of doxorubicine in bladder cancer via NF-κB/MDM2/p53 pathway. Front Cell Dev Biol. 8(606123)2020.PubMed/NCBI View Article : Google Scholar

145 

Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A and Iraji A: The promising therapeutic and preventive properties of anthocyanidins/anthocyanins on prostate cancer. Cells. 11(1070)2022.PubMed/NCBI View Article : Google Scholar

146 

Alappat B and Alappat J: Anthocyanin pigments: Beyond aesthetics. Molecules. 25(5500)2020.PubMed/NCBI View Article : Google Scholar

147 

Higgins JA, Zainol M, Brown K and Jones GD: Anthocyans as tertiary chemopreventive agents in bladder cancer: Anti-oxidant mechanisms and interaction with mitomycin C. Mutagenesis. 29:227–235. 2014.PubMed/NCBI View Article : Google Scholar

148 

Li WL, Ji GH, Zhang XZ and Yu HY: The influence and mechanisms of purple sweet potato anthocyanins on the growth of bladder cancer BIU87 cell. Zhonghua Yi Xue Za Zhi. 98:457–459. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).

149 

Li WL, Yu HY, Zhang XJ, Ke M and Hong T: Purple sweet potato anthocyanin exerts antitumor effect in bladder cancer. Oncol Rep. 40:73–82. 2018.PubMed/NCBI View Article : Google Scholar

150 

Yang N, Gao J, Hou R, Xu X, Yang N and Huang S: Grape seed proanthocyanidins inhibit migration and invasion of bladder cancer cells by reversing EMT through suppression of TGF-β signaling pathway. Oxid Med Cell Longev. 2021(5564312)2021.PubMed/NCBI View Article : Google Scholar

151 

Fishman AI, Johnson B, Alexander B, Won J, Choudhury M and Konno S: Additively enhanced antiproliferative effect of interferon combined with proanthocyanidin on bladder cancer cells. J Cancer. 3:107–112. 2012.PubMed/NCBI View Article : Google Scholar

152 

Liu J, Zhang WY, Kong ZH and Ding DG: Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells. Eur Rev Med Pharmacol Sci. 20:3282–3291. 2016.PubMed/NCBI

153 

Křížová L, Dadáková K, Kašparovská J and Kašparovský T: Isoflavones. Molecules. 24(1076)2019.PubMed/NCBI View Article : Google Scholar

154 

He Y, Wu X, Cao Y, Hou Y, Chen H, Wu L, Lu L, Zhu W and Gu Y: Daidzein exerts anti-tumor activity against bladder cancer cells via inhibition of FGFR3 pathway. Neoplasma. 63:523–531. 2016.PubMed/NCBI View Article : Google Scholar

155 

Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF and Nabavi SM: Understanding genistein in cancer: The ‘good’ and the ‘bad’ effects: A review. Food Chem. 196:589–600. 2016.PubMed/NCBI View Article : Google Scholar

156 

Park C, Cha HJ, Lee H, Hwang-Bo H, Ji SY, Kim MY, Hong SH, Jeong JW, Han MH, Choi SH, et al: Induction of G2/M cell cycle arrest and apoptosis by genistein in human bladder cancer T24 cells through Inhibition of the ROS-Dependent PI3k/Akt signal transduction pathway. Antioxidants (Basel). 8(327)2019.PubMed/NCBI View Article : Google Scholar

157 

Wang Y, Wang H, Zhang W, Shao C, Xu P, Shi CH, Shi JG, Li YM, Fu Q, Xue W, et al: Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-κB/IKK pathway-induced apoptosis. PLoS One. 8(e50175)2013.PubMed/NCBI View Article : Google Scholar

158 

Köksal Karayildirim Ç, Nalbantsoy A and Karabay Yavaşoğlu NU: Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol Biol Rep. 48:7251–7259. 2021.PubMed/NCBI View Article : Google Scholar

159 

Zhou YX, Zhang H and Peng C: Puerarin: A review of pharmacological effects. Phytother Res. 28:961–975. 2014.PubMed/NCBI View Article : Google Scholar

160 

Jiang K, Chen H, Tang K, Guan W, Zhou H, Guo X, Chen Z, Ye Z and Xu H: Puerarin inhibits bladder cancer cell proliferation through the mTOR/p70S6K signaling pathway. Oncol Lett. 15:167–174. 2018.PubMed/NCBI View Article : Google Scholar

161 

Ye G, Kan S, Chen J and Lu X: Puerarin in inducing apoptosis of bladder cancer cells through inhibiting SIRT1/p53 pathway. Oncol Lett. 17:195–200. 2019.PubMed/NCBI View Article : Google Scholar

162 

Jiang QQ, Liu B and Yuan T: MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. Asian Pac J Cancer Prev. 14:4127–4130. 2013.PubMed/NCBI View Article : Google Scholar

163 

Liu X, Li S, Li Y, Cheng B, Tan B and Wang G: Puerarin inhibits proliferation and induces apoptosis by upregulation of miR-16 in bladder cancer cell line T24. Oncol Res. 26:1227–1234. 2018.PubMed/NCBI View Article : Google Scholar

164 

Du L, Zhang L and Sun F: Puerarin inhibits the progression of bladder cancer by regulating circ_0020394/miR-328-3p/NRBP1 axis. Cancer Biother Radiopharm. 37:435–450. 2020.PubMed/NCBI View Article : Google Scholar

165 

Wu Y, Zhang X, Li Z, Yan H, Qin J and Li T: Formononetin inhibits human bladder cancer cell proliferation and invasiveness via regulation of miR-21 and PTEN. Food Funct. 8:1061–1066. 2017.PubMed/NCBI View Article : Google Scholar

166 

Ouyang Y, Li J, Chen X, Fu X, Sun S and Wu Q: Chalcone derivatives: Role in anticancer therapy. Biomolecules. 11(894)2021.PubMed/NCBI View Article : Google Scholar

167 

Yuan X, Li D, Zhao H, Jiang J, Wang P, Ma X, Sun X and Zheng Q: Licochalcone A-induced human bladder cancer T24 cells apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. Biomed Res Int. 2013(474272)2013.PubMed/NCBI View Article : Google Scholar

168 

Yang X, Jiang J, Yang X, Han J and Zheng Q: Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels. Mol Med Rep. 14:911–919. 2016.PubMed/NCBI View Article : Google Scholar

169 

Jiang J, Yuan X, Zhao H, Yan X, Sun X and Zheng Q: Licochalcone A inhibiting proliferation of bladder cancer T24 cells by inducing reactive oxygen species production. Biomed Mater Eng. 24:1019–1025. 2014.PubMed/NCBI View Article : Google Scholar

170 

Hong SH, Cha HJ, Hwang-Bo H, Kim MY, Kim SY, Ji SY, Cheong J, Park C, Lee H, Kim GY, et al: Anti-proliferative and pro-apoptotic effects of licochalcone A through ROS-Mediated cell cycle arrest and apoptosis in human bladder cancer cells. Int J Mol Sci. 20(3820)2019.PubMed/NCBI View Article : Google Scholar

171 

Zhao H, Yuan X, Jiang J, Wang P, Sun X, Wang D and Zheng Q: Antimetastatic effects of licochalcone B on human bladder carcinoma T24 by inhibition of matrix metalloproteinases-9 and NF-кB activity. Basic Clin Pharmacol Toxicol. 115:527–533. 2014.PubMed/NCBI View Article : Google Scholar

172 

Yuan X, Li T, Xiao E, Zhao H, Li Y, Fu S, Gan L and Wang Z, Zheng Q and Wang Z: Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis. Food Chem Toxicol. 65:242–251. 2014.PubMed/NCBI View Article : Google Scholar

173 

Wang P, Yuan X, Wang Y, Zhao H, Sun X and Zheng Q: Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol Med Rep. 12:7623–7628. 2015.PubMed/NCBI View Article : Google Scholar

174 

Wang KL, Yu TC and Hsia SM: Perspectives on the role of isoliquiritigenin in cancer. Cancers (Basel). 13(115)2021.PubMed/NCBI View Article : Google Scholar

175 

Patricia Moreno-Londoño A, Bello-Alvarez C and Pedraza-Chaverri J: Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol. 109(Pt 1):143–154. 2017.PubMed/NCBI View Article : Google Scholar

176 

Li X, Xu X, Ji T, Liu Z, Gu M, Hoang BH and Zi X: Dietary feeding of Flavokawain A, a Kava chalcone, exhibits a satisfactory safety profile and its association with enhancement of phase II enzymes in mice. Toxicol Rep. 1:2–11. 2014.PubMed/NCBI View Article : Google Scholar

177 

Liu Z, Xu X, Li X, Liu S, Simoneau AR, He F, Wu XR and Zi X: Kava chalcone, flavokawain A, inhibits urothelial tumorigenesis in the UPII-SV40T transgenic mouse model. Cancer Prev Res (Phila). 6:1365–1375. 2013.PubMed/NCBI View Article : Google Scholar

178 

Liu Z, Song L, Xie J, Simoneau AR, Uchio E and Zi X: Chemoprevention of urothelial cell carcinoma tumorigenesis by dietary flavokawain A in UPII-Mutant Ha-ras transgenic mice. Pharmaceutics. 14(496)2022.PubMed/NCBI View Article : Google Scholar

179 

Wu CM, Lin KW, Teng CH, Huang AM, Chen YC, Yen MH, Wu WB, Pu YS and Lin CN: Chalcone derivatives inhibit human platelet aggregation and inhibit growth in human bladder cancer cells. Biol Pharm Bull. 37:1191–1198. 2014.PubMed/NCBI View Article : Google Scholar

180 

Martel-Frachet V, Keramidas M, Nurisso A, DeBonis S, Rome C, Coll JL, Boumendjel A, Skoufias DA and Ronot X: IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget. 6:14669–14686. 2015.PubMed/NCBI View Article : Google Scholar

181 

Martel-Frachet V, Areguian J, Blanc M, Touquet B, Lamarca A, Ronot X and Boumendjel A: Investigation of a new 1,3-diarylpropenone as a potential antimitotic agent targeting bladder carcinoma. Anticancer Drugs. 20:469–476. 2009.PubMed/NCBI View Article : Google Scholar

182 

Desilets A, Adam JP and Soulières D: Management of cisplatin-associated toxicities in bladder cancer patients. Curr Opin Support Palliat Care. 14:286–292. 2020.PubMed/NCBI View Article : Google Scholar

183 

Cai Z, Zhang F, Chen W, Zhang J and Li H: MiRNAs: A promising target in the chemoresistance of bladder cancer. Onco Targets Ther. 12:11805–11816. 2019.PubMed/NCBI View Article : Google Scholar

184 

Dobrzynska M, Napierala M and Florek E: Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules. 10(1268)2020.PubMed/NCBI View Article : Google Scholar

185 

Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y: Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 53:12320–12364. 2014.PubMed/NCBI View Article : Google Scholar

186 

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al: PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 49(D1):D1388–D1395. 2021.PubMed/NCBI View Article : Google Scholar

187 

Patil M, Pabla N and Dong Z: Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci. 70:4009–4021. 2013.PubMed/NCBI View Article : Google Scholar

188 

Schmitt E, Paquet C, Beauchemin M and Bertrand R: DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B. 8:377–397. 2007.PubMed/NCBI View Article : Google Scholar

189 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5(8)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lv Y, Liu Z, Jia H, Xiu Y, Liu Z and Deng L: Properties of flavonoids in the treatment of bladder cancer (Review). Exp Ther Med 24: 676, 2022.
APA
Lv, Y., Liu, Z., Jia, H., Xiu, Y., Liu, Z., & Deng, L. (2022). Properties of flavonoids in the treatment of bladder cancer (Review). Experimental and Therapeutic Medicine, 24, 676. https://doi.org/10.3892/etm.2022.11612
MLA
Lv, Y., Liu, Z., Jia, H., Xiu, Y., Liu, Z., Deng, L."Properties of flavonoids in the treatment of bladder cancer (Review)". Experimental and Therapeutic Medicine 24.5 (2022): 676.
Chicago
Lv, Y., Liu, Z., Jia, H., Xiu, Y., Liu, Z., Deng, L."Properties of flavonoids in the treatment of bladder cancer (Review)". Experimental and Therapeutic Medicine 24, no. 5 (2022): 676. https://doi.org/10.3892/etm.2022.11612
Copy and paste a formatted citation
x
Spandidos Publications style
Lv Y, Liu Z, Jia H, Xiu Y, Liu Z and Deng L: Properties of flavonoids in the treatment of bladder cancer (Review). Exp Ther Med 24: 676, 2022.
APA
Lv, Y., Liu, Z., Jia, H., Xiu, Y., Liu, Z., & Deng, L. (2022). Properties of flavonoids in the treatment of bladder cancer (Review). Experimental and Therapeutic Medicine, 24, 676. https://doi.org/10.3892/etm.2022.11612
MLA
Lv, Y., Liu, Z., Jia, H., Xiu, Y., Liu, Z., Deng, L."Properties of flavonoids in the treatment of bladder cancer (Review)". Experimental and Therapeutic Medicine 24.5 (2022): 676.
Chicago
Lv, Y., Liu, Z., Jia, H., Xiu, Y., Liu, Z., Deng, L."Properties of flavonoids in the treatment of bladder cancer (Review)". Experimental and Therapeutic Medicine 24, no. 5 (2022): 676. https://doi.org/10.3892/etm.2022.11612
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team