Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Ferroptosis and renal fibrosis: A new target for the future (Review)

  • Authors:
    • Han Yin Zhang
    • Meng Cheng
    • Lei Zhang
    • Yi Ping Wang
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 13
    |
    Published online on: November 17, 2022
       https://doi.org/10.3892/etm.2022.11712
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis is a type of non‑apoptotic controlled cell death triggered by oxidative stress and iron‑dependent lipid peroxidation. Ferroptosis is regulated by signalling pathways that are associated with metabolism, including glutathione peroxidase 4 dysfunction, the cystine/glutamate antiporter system, lipid peroxidation and inadequate iron metabolism. Ferroptosis is associated with renal fibrosis; however, further research is required to understand the specific molecular mechanisms involved. The present review aimed to discuss the known molecular mechanisms of ferroptosis and outline the biological reactions that occur during renal fibrosis that may be associated with ferroptosis. Further investigation into the association between ferroptosis and renal fibrosis may lead to the development of novel treatment methods.
View Figures

Figure 1

View References

1 

Zhang X and Li X: Abnormal iron and lipid metabolism mediated ferroptosis in kidney diseases and its therapeutic potential. Metabolites. 12(58)2022.PubMed/NCBI View Article : Google Scholar

2 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar

3 

Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014.PubMed/NCBI View Article : Google Scholar

4 

Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017.PubMed/NCBI View Article : Google Scholar

5 

Lu X, Rudemiller NP, Ren J, Wen Y, Yang B, Griffiths R, Privratsky JR, Madan B, Virshup DM and Crowley SD: Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-induced kidney fibrosis. Kidney Int. 96:1308–1319. 2019.PubMed/NCBI View Article : Google Scholar

6 

Humphreys BD: Mechanisms of renal fibrosis. Annu Rev Physiol. 80:309–326. 2018.PubMed/NCBI View Article : Google Scholar

7 

Dolma S, Lessnick SL, Hahn WC and Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3:285–296. 2003.PubMed/NCBI View Article : Google Scholar

8 

Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019.PubMed/NCBI View Article : Google Scholar

9 

Lee YS, Lee DH, Choudry HA, Bartlett DL and Lee YJ: Ferroptosis-induced endoplasmic reticulum stress: Cross-talk between ferroptosis and apoptosis. Mol Cancer Res. 16:1073–1076. 2018.PubMed/NCBI View Article : Google Scholar

10 

Hirayama T, Miki A and Nagasawa H: Organelle-specific analysis of labile Fe(ii) during ferroptosis by using a cocktail of various colour organelle-targeted fluorescent probes. Metallomics. 11:111–117. 2019.PubMed/NCBI View Article : Google Scholar

11 

Lin X, Ping J, Wen Y and Wu Y: The mechanism of ferroptosis and applications in tumor treatment. Front Pharmacol. 11(1061)2020.PubMed/NCBI View Article : Google Scholar

12 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017.PubMed/NCBI View Article : Google Scholar

13 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11(88)2020.PubMed/NCBI View Article : Google Scholar

14 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019.PubMed/NCBI View Article : Google Scholar

15 

Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020.PubMed/NCBI View Article : Google Scholar

16 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017.PubMed/NCBI View Article : Google Scholar

17 

Wen J, Chen H, Ren Z, Zhang P, Chen J and Jiang S: Ultrasmall iron oxide nanoparticles induced ferroptosis via beclin1/ATG5-dependent autophagy pathway. Nano Converg. 8(10)2021.PubMed/NCBI View Article : Google Scholar

18 

Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866(118535)2019.PubMed/NCBI View Article : Google Scholar

19 

Wang S, Luo J, Zhang Z, Dong D, Shen Y, Fang Y, Hu L, Liu M, Dai C, Peng S, et al: Iron and magnetic: New research direction of the ferroptosis-based cancer therapy. Am J Cancer Res. 8:1933–1946. 2018.PubMed/NCBI

20 

Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015.PubMed/NCBI View Article : Google Scholar

21 

Dai C, Chen X, Li J, Comish P, Kang R and Tang D: Transcription factors in ferroptotic cell death. Cancer Gene Ther. 27:645–656. 2020.PubMed/NCBI View Article : Google Scholar

22 

Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013.PubMed/NCBI View Article : Google Scholar

23 

Bannai S: Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 261:2256–2263. 1986.PubMed/NCBI

24 

Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015.PubMed/NCBI View Article : Google Scholar

25 

Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685. 2019.PubMed/NCBI View Article : Google Scholar

26 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.PubMed/NCBI View Article : Google Scholar

27 

Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, et al: Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem. 280:37423–37429. 2005.PubMed/NCBI View Article : Google Scholar

28 

Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, et al: Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. 2020.PubMed/NCBI View Article : Google Scholar

29 

Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH and Chang WC: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416:124–137. 2018.PubMed/NCBI View Article : Google Scholar

30 

Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220(e202105043)2021.PubMed/NCBI View Article : Google Scholar

31 

Kuhn H, Banthiya S and van Leyen K: Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta. 1851:308–330. 2015.PubMed/NCBI View Article : Google Scholar

32 

Qureshi T, Sørensen C, Berghuis P, Jensen V, Dobszay MB, Farkas T, Dalen KT, Guo C, Hassel B, Utheim TP, et al: The glutamine transporter Slc38a1 regulates GABAergic neurotransmission and synaptic plasticity. Cereb Cortex. 29:5166–5179. 2019.PubMed/NCBI View Article : Google Scholar

33 

Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, Li Z, Pu L, Zhao X, Zhang T and Dong Z: lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 12:9085–9102. 2020.PubMed/NCBI View Article : Google Scholar

34 

Chen X, Yu C, Kang R and Tang D: Iron metabolism in ferroptosis. Front Cell Dev Biol. 8(590226)2020.PubMed/NCBI View Article : Google Scholar

35 

Doll S and Conrad M: Iron and ferroptosis: A still ill-defined liaison. IUBMB Life. 69:423–434. 2017.PubMed/NCBI View Article : Google Scholar

36 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021.PubMed/NCBI View Article : Google Scholar

37 

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017.PubMed/NCBI View Article : Google Scholar

38 

Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019.PubMed/NCBI View Article : Google Scholar

39 

Chen PH, Wu J, Ding CC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi JT: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 27:1008–1022. 2020.PubMed/NCBI View Article : Google Scholar

40 

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015.PubMed/NCBI View Article : Google Scholar

41 

Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017.PubMed/NCBI View Article : Google Scholar

42 

Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:864–868. 2007.PubMed/NCBI View Article : Google Scholar

43 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019.PubMed/NCBI View Article : Google Scholar

44 

McBean GJ: The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids. 42:199–205. 2012.PubMed/NCBI View Article : Google Scholar

45 

Sedeek M, Nasrallah R, Touyz RM and Hébert RL: NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. J Am Soc Nephrol. 24:1512–1518. 2013.PubMed/NCBI View Article : Google Scholar

46 

Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C, Martín-Sanchez D, Farré-Alins V, Egea J, Cannata P, et al: Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J. 33:8961–8975. 2019.PubMed/NCBI View Article : Google Scholar

47 

Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S and Dong Z: Regulated cell death in AKI. J Am Soc Nephrol. 25:2689–2701. 2014.PubMed/NCBI View Article : Google Scholar

48 

Su H, Wan C, Song A, Qiu Y, Xiong W and Zhang C: Oxidative stress and renal fibrosis: Mechanisms and therapies. Adv Exp Med Biol. 1165:585–604. 2019.PubMed/NCBI View Article : Google Scholar

49 

Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan PZ and Zhai XY: Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3 β/Nrf2 pathway. Oxid Med Cell Longev. 2020(6286984)2020.PubMed/NCBI View Article : Google Scholar

50 

Ide S, Kobayashi Y, Ide K, Strausser SA, Abe K, Herbek S, O'Brien LL, Crowley SD, Barisoni L, Tata A, et al: Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife. 10(e68603)2021.PubMed/NCBI View Article : Google Scholar

51 

Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M and Gao X: Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice. Front Endocrinol (Lausanne). 12(626390)2021.PubMed/NCBI View Article : Google Scholar

52 

Liu B, Deng Q, Zhang L and Zhu W: Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep. 22:4655–4662. 2020.PubMed/NCBI View Article : Google Scholar

53 

Lo YH, Yang SF, Cheng CC, Hsu KC, Chen YS, Chen YY, Wang CW, Guan SS and Wu CT: Nobiletin alleviates ferroptosis-associated renal injury, inflammation, and fibrosis in a unilateral ureteral obstruction mouse model. Biomedicines. 10(595)2022.PubMed/NCBI View Article : Google Scholar

54 

Yang L and Xia H: TRIM proteins in inflammation: From expression to emerging regulatory mechanisms. Inflammation. 44:811–820. 2021.PubMed/NCBI View Article : Google Scholar

55 

Bilgin S, Kurtkulagi O, Atak BM, Duman TT, Kahveci G, Khalid A and Aktas G: Does C-reactive protein to serum albumin ratio correlate with diabEtic nephropathy in patients with Type 2 dIabetes MEllitus? The CARE TIME study. Prim Care Diabetes. 15:1071–1074. 2021.PubMed/NCBI View Article : Google Scholar

56 

Jung SW, Kim DJ, Kim YG, Moon JY, Jeong KH and Lee SH: Renal aging resembles a continuum between normal and diseased kidneys that potentiates inflammatory response to injury. J Gerontol A Biol Sci Med Sci. 76:385–392. 2021.PubMed/NCBI View Article : Google Scholar

57 

Kocak MZ, Aktas G, Duman TT, Atak BM, Kurtkulagi O, Tekce H, Bilgin S and Alaca B: Monocyte lymphocyte ratio as a predictor of diabetic kidney injury in type 2 diabetes mellitus; The MADKID study. J Diabetes Metab Disord. 19:997–1002. 2020.PubMed/NCBI View Article : Google Scholar

58 

Musiał K and Zwolińska D: New markers of cell migration and inflammation in children with chronic kidney disease. Biomarkers. 24:295–302. 2019.PubMed/NCBI View Article : Google Scholar

59 

Kocak MZ, Aktas G, Atak BM, Duman TT, Yis OM, Erkus E and Savli H: Is neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest. 50(e13206)2020.PubMed/NCBI View Article : Google Scholar

60 

Kin Tekce B, Tekce H, Aktas G and Sit M: Evaluation of the urinary kidney injury molecule-1 levels in patients with diabetic nephropathy. Clin Invest Med. 37:E377–E383. 2014.PubMed/NCBI View Article : Google Scholar

61 

Tekce H, Tekce BK, Aktas G, Alcelik A and Sengul E: Serum omentin-1 levels in diabetic and nondiabetic patients with chronic kidney disease. Exp Clin Endocrinol Diabetes. 122:451–456. 2014.PubMed/NCBI View Article : Google Scholar

62 

Sakai K, Nozaki Y, Murao Y, Yano T, Ri J, Niki K, Kinoshita K, Funauchi M and Matsumura I: Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury. Lab Invest. 99:671–683. 2019.PubMed/NCBI View Article : Google Scholar

63 

Black LM, Lever JM and Agarwal A: Renal inflammation and fibrosis: A double-edged sword. J Histochem Cytochem. 67:663–681. 2019.PubMed/NCBI View Article : Google Scholar

64 

Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019.PubMed/NCBI View Article : Google Scholar

65 

Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ and Lan HY: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 7(e2495)2016.PubMed/NCBI View Article : Google Scholar

66 

Wei J, Xu Z and Yan X: The role of the macrophage-to-myofibroblast transition in renal fibrosis. Front Immunol. 13(934377)2022.PubMed/NCBI View Article : Google Scholar

67 

Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, et al: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 21:37–46. 2015.PubMed/NCBI View Article : Google Scholar

68 

Liu BC, Tang TT, Lv LL and Lan HY: Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 93:568–579. 2018.PubMed/NCBI View Article : Google Scholar

69 

Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019.PubMed/NCBI View Article : Google Scholar

70 

Von Mässenhausen A, Tonnus W and Linkermann A: Cell death pathways drive necroinflammation during acute kidney injury. Nephron. 140:144–147. 2018.PubMed/NCBI View Article : Google Scholar

71 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014.PubMed/NCBI View Article : Google Scholar

72 

Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, Ruiz Ortega M, Egido J, Linkermann A, Ortiz A and Sanz AB: Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 28:218–229. 2017.PubMed/NCBI View Article : Google Scholar

73 

Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018.PubMed/NCBI View Article : Google Scholar

74 

Ha le M, Que do TN, Huyen do TT, Long PQ and Dat NT: Toxicity, analgesic and anti-inflammatory activities of tectorigenin. Immunopharmacol Immunotoxicol. 35:336–340. 2013.PubMed/NCBI View Article : Google Scholar

75 

Lee HU, Bae EA and Kim DH: Hepatoprotective effect of tectoridin and tectorigenin on tert-butyl hyperoxide-induced liver injury. J Pharmacol Sci. 97:541–544. 2005.PubMed/NCBI View Article : Google Scholar

76 

Pan CH, Kim ES, Jung SH, Nho CW and Lee JK: Tectorigenin inhibits IFN-gamma/LPS-induced inflammatory responses in murine macrophage RAW 264.7 cells. Arch Pharm Res. 31:1447–1456. 2008.PubMed/NCBI View Article : Google Scholar

77 

Li J, Yang J, Zhu B, Fan J, Hu Q and Wang L: Tectorigenin protects against unilateral ureteral obstruction by inhibiting Smad3-mediated ferroptosis and fibrosis. Phytother Res. 36:475–487. 2022.PubMed/NCBI View Article : Google Scholar

78 

Xie J, Ye Z, Li L, Xia Y, Yuan R, Ruan Y and Zhou X: Ferrostatin-1 alleviates oxalate-induced renal tubular epithelial cell injury, fibrosis and calcium oxalate stone formation by inhibiting ferroptosis. Mol Med Rep. 26(256)2022.PubMed/NCBI View Article : Google Scholar

79 

Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, Dai G, He Y and Chen Z: Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis. 12(843)2021.PubMed/NCBI View Article : Google Scholar

80 

Luo Y, Chen H, Liu H, Jia W, Yan J, Ding W, Zhang Y, Xiao Z and Zhu Z: Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice. Int J Clin Exp Pathol. 13:2041–2049. 2020.PubMed/NCBI

81 

Yang L, Guo J, Yu N, Liu Y, Song H, Niu J and Gu Y: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci. 261(118487)2020.PubMed/NCBI View Article : Google Scholar

82 

Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F and Tong X: Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 9(696542)2021.PubMed/NCBI View Article : Google Scholar

83 

Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C, Cui X, Yang H, Gao X and Zhang D: Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol. 888(173574)2020.PubMed/NCBI View Article : Google Scholar

84 

Zhou L, Xue X, Hou Q and Dai C: Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel). 8:57–71. 2021.PubMed/NCBI View Article : Google Scholar

85 

Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014.PubMed/NCBI View Article : Google Scholar

86 

Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F and Zheng S: Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 14:2083–2103. 2018.PubMed/NCBI View Article : Google Scholar

87 

Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM and Dong Z: Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy. 12:976–998. 2016.PubMed/NCBI View Article : Google Scholar

88 

Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M, et al: Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 129:2293–2304. 2019.PubMed/NCBI View Article : Google Scholar

89 

Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI and Cater MA: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14:100–115. 2018.PubMed/NCBI View Article : Google Scholar

90 

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016.PubMed/NCBI View Article : Google Scholar

91 

Wang J, Wang Y, Liu Y, Cai X, Huang X, Fu W, Wang L, Qiu L, Li J and Sun L: Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov. 8(127)2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang HY, Cheng M, Zhang L and Wang YP: Ferroptosis and renal fibrosis: A new target for the future (Review). Exp Ther Med 25: 13, 2023.
APA
Zhang, H.Y., Cheng, M., Zhang, L., & Wang, Y.P. (2023). Ferroptosis and renal fibrosis: A new target for the future (Review). Experimental and Therapeutic Medicine, 25, 13. https://doi.org/10.3892/etm.2022.11712
MLA
Zhang, H. Y., Cheng, M., Zhang, L., Wang, Y. P."Ferroptosis and renal fibrosis: A new target for the future (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 13.
Chicago
Zhang, H. Y., Cheng, M., Zhang, L., Wang, Y. P."Ferroptosis and renal fibrosis: A new target for the future (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 13. https://doi.org/10.3892/etm.2022.11712
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang HY, Cheng M, Zhang L and Wang YP: Ferroptosis and renal fibrosis: A new target for the future (Review). Exp Ther Med 25: 13, 2023.
APA
Zhang, H.Y., Cheng, M., Zhang, L., & Wang, Y.P. (2023). Ferroptosis and renal fibrosis: A new target for the future (Review). Experimental and Therapeutic Medicine, 25, 13. https://doi.org/10.3892/etm.2022.11712
MLA
Zhang, H. Y., Cheng, M., Zhang, L., Wang, Y. P."Ferroptosis and renal fibrosis: A new target for the future (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 13.
Chicago
Zhang, H. Y., Cheng, M., Zhang, L., Wang, Y. P."Ferroptosis and renal fibrosis: A new target for the future (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 13. https://doi.org/10.3892/etm.2022.11712
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team