|
1
|
Bor-Seng-Shu E, Kita WS, Figueiredo EG,
Paiva WS, Fonoff ET, Teixeira MJ and Panerai RB: Cerebral
hemodynamics: Concepts of clinical importance. Arq Neuropsiquiatr.
70:352–356. 2012.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Andrade AF, Paiva WS, Amorim RL,
Figueiredo EG, Almeida AN, Brock RS, Bor-Seng-Shu E and Teixeira
MJ: Continuous ventricular cerebrospinal fluid drainage with
intracranial pressure monitoring for management of posttraumatic
diffuse brain swelling. Arq Neuropsiquiatr. 69:79–84.
2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Paiva WS, de Andrade AF, de Amorim RL,
Muniz RK, Paganelli PM, Bernardo LS, Figueiredo EG and Teixeira MJ:
The prognosis of the traumatic subarachnoid hemorrhage: A
prospective report of 121 patients. Int Surg. 95:172–176.
2010.PubMed/NCBI
|
|
4
|
Qureshi AI, Tuhrim S, Broderick JP, Batjer
HH, Hondo H and Hanley DF: Spontaneous intracerebral hemorrhage. N
Engl J Med. 344:1450–1460. 2001.PubMed/NCBI View Article : Google Scholar
|
|
5
|
van Asch CJ, Luitse MJ, Rinkel GJ, van der
Tweel I, Algra A and Klijn CJ: Incidence, case fatality, and
functional outcome of intracerebral haemorrhage over time,
according to age, sex, and ethnic origin: A systematic review and
meta-analysis. Lancet Neurol. 9:167–176. 2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Broderick JP, Brott TG, Duldner JE,
Tomsick T and Huster G: Volume of intracerebral hemorrhage. A
powerful and easy-to-use predictor of 30-day mortality. Stroke.
24:987–993. 1993.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Fogelholm R, Murros K, Rissanen A and
Avikainen S: Long term survival after primary intracerebral
haemorrhage: A retrospective population based study. J Neurol
Neurosurg Psychiatry. 76:1534–1538. 2005.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Hemphill JCI III, Bonovich DC, Besmertis
L, Manley GT and Johnston SC: The ICH score: A simple, reliable
grading scale for intracerebral hemorrhage. Stroke. 32:891–897.
2001.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Broderick J, Connolly S, Feldmann E,
Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS,
Vespa P, et al: Guidelines for the management of spontaneous
intracerebral hemorrhage in adults: 2007 Update: A guideline from
the American heart association/American stroke association stroke
council, high blood pressure research council, and the quality of
care and outcomes in research interdisciplinary working group.
Stroke. 38:2001–2023. 2007.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Brasil S, Paiva WS, de Carvalho Nogueira
R, Macedo Salinet A and Teixeira MJ: Letter to the editor.
Decompressive craniectomy in TBI: What is beyond static evaluations
in terms of prognosis? J Neurosurg. 129:845–847. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zille M, Farr TD, Keep RF, Römer C, Xi G
and Boltze J: Novel targets, treatments, and advanced models for
intracerebral haemorrhage. EBioMedicine. 76(103880)2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Godoy DA, Núñez-Patiño RA, Zorrilla-Vaca
A, Ziai WC and Hemphill JC III: Intracranial hypertension after
spontaneous intracerebral hemorrhage: A systematic review and
meta-analysis of prevalence and mortality rate. Neurocrit Care.
31:176–187. 2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Brasil S, Bor-Seng-Shu E, de-Lima-Oliveira
M, Taccone FS, Gattás G, Nunes DM, Gomes de Oliveira RA, Martins
Tomazini B, Tierno PF, Becker RA, et al: Computed tomography
angiography accuracy in brain death diagnosis. J Neurosurg: Sep 27,
2019 (Epub ahead of print).
|
|
14
|
Wagner KR, Hua Y, de Courten-Myers GM,
Broderick JP, Nishimura RN, Lu SY and Dwyer BE: Tin-mesoporphyrin,
a potent heme oxygenase inhibitor, for treatment of intracerebral
hemorrhage: In vivo and in vitro studies. Cell Mol Biol
(Noisy-le-grand). 46:597–608. 2000.PubMed/NCBI
|
|
15
|
Goulay R, Naveau M, Gaberel T, Vivien D
and Parcq J: Optimized tPA: A non-neurotoxic fibrinolytic agent for
the drainage of intracerebral hemorrhages. J Cereb Blood Flow
Metab. 38:1180–1189. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Sinar EJ, Mendelow AD, Graham DI and
Teasdale GM: Experimental intracerebral hemorrhage: Effects of a
temporary mass lesion. J Neurosurg. 66:568–576. 1987.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Fang Y, Tian Y, Huang Q, Wan Y, Xu L, Wang
W, Pan D, Zhu S and Xie M: Deficiency of TREK-1 potassium channel
exacerbates blood-brain barrier damage and neuroinflammation after
intracerebral hemorrhage in mice. J Neuroinflammation.
16(96)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Kane PJ, Modha P, Strachan RD, Cook S,
Chambers IR, Clayton CB and Mendelow AD: The effect of
immunosuppression on the development of cerebral oedema in an
experimental model of intracerebral haemorrhage: Whole body and
regional irradiation. J Neurol Neurosurg Psychiatry. 55:781–786.
1992.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Fei X, Dou YN, Wang L, Wu X, Huan Y, Wu S,
He X, Lv W, Wei J and Fei Z: Homer1 promotes the conversion of A1
astrocytes to A2 astrocytes and improves the recovery of transgenic
mice after intracerebral hemorrhage. J Neuroinflammation.
19(67)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Mello TG, Rosado-de-Castro PH, Vasques JF,
Pinhão C, Santos TM, de Lima RR, Foerster BU, Paiva FF,
Mendez-Otero R and Pimentel-Coelho PM: Hyperacute transplantation
of umbilical cord mesenchymal stromal cells in a model of severe
intracerebral hemorrhage. Future Sci OA. 8(FSO793)2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Wang G, Li T, Duan SN, Dong L, Sun XG and
Xue F: PPAR-γ promotes hematoma clearance through
haptoglobin-hemoglobin-CD163 in a rat model of intracerebral
hemorrhage. Behav Neurol. 2018(7646104)2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Xu J, Chen Z, Yu F, Liu H, Ma C, Xie D, Hu
X, Leak RK, Chou SHY, Stetler RA, et al: IL-4/STAT6 signaling
facilitates innate hematoma resolution and neurological recovery
after hemorrhagic stroke in mice. Proc Natl Acad Sci USA.
117:32679–32690. 2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Jing C, Bian L, Wang M, Keep RF, Xi G and
Hua Y: Enhancement of hematoma clearance with CD47 blocking
antibody in experimental intracerebral hemorrhage. Stroke.
50:1539–1547. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhao X, Ting SM, Liu CH, Sun G, Kruzel M,
Roy-O'Reilly M and Aronowski J: Neutrophil polarization by IL-27 as
a therapeutic target for intracerebral hemorrhage. Nat Commun.
8(602)2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng
Y, Cao Y, Zeng H, Li J, Yan F, et al: White matter injury after
intracerebral hemorrhage. Front Neurol. 12(562090)2021.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Xu F, Shen G, Su Z, He Z and Yuan L:
Glibenclamide ameliorates the disrupted blood-brain barrier in
experimental intracerebral hemorrhage by inhibiting the activation
of NLRP3 inflammasome. Brain Behav. 9(e01254)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tschoe C, Bushnell CD, Duncan PW,
Alexander-Miller MA and Wolfe SQ: Neuroinflammation after
intracerebral hemorrhage and potential therapeutic targets. J
Stroke. 22:29–46. 2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Yang Y, Chen X, Feng Z, Cai X, Zhu X, Cao
M, Yang L, Chen Y, Wang Y and Feng H: MEC17-induced α-tubulin
acetylation restores mitochondrial transport function and
alleviates axonal injury after intracerebral hemorrhage in mice. J
Neurochem. 160:51–63. 2022.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS and
Wang J: Correction: Mouse models of intracerebral hemorrhage in
ventricle, cortex, and hippocampus by injections of autologous
blood or collagenase. PLoS One. 16(e0261640)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liesz A, Middelhoff M, Zhou W, Karcher S,
Illanes S and Veltkamp R: Comparison of humoral neuroinflammation
and adhesion molecule expression in two models of experimental
intracerebral hemorrhage. Exp Transl Stroke Med.
3(11)2011.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Hijioka M, Anan J, Matsushita H, Ishibashi
H, Kurauchi Y, Hisatsune A, Seki T and Katsuki H: Axonal
dysfunction in internal capsule is closely associated with early
motor deficits after intracerebral hemorrhage in mice. Neurosci
Res. 106:38–46. 2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Bahader GA, Nash KM, Almarghalani DA,
Alhadidi Q, McInerney MF and Shah ZA: Type-I diabetes aggravates
post-hemorrhagic stroke cognitive impairment by augmenting
oxidative stress and neuroinflammation in mice. Neurochem Int.
149(105151)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zheng J, Shi L, Liang F, Xu W, Li T, Gao
L, Sun Z, Yu J and Zhang J: Sirt3 ameliorates oxidative stress and
mitochondrial dysfunction after intracerebral hemorrhage in
diabetic rats. Front Neurosci. 12(414)2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Jeng BCP, de Andrade AF, Brasil S,
Bor-Seng-Shu E, Belon AR, Robertis M, de-Lima-Oliveira M, Rubiano
AM, Godoy DA, Teixeira MJ and Paiva WS: Estimation of intracranial
pressure by ultrasound of the optic nerve sheath in an animal model
of intracranial hypertension. J Clin Neurosci. 86:174–179.
2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Soares MS, Andrade AF, Brasil S,
DE-Lima-Oliveira M, Belon AR, Bor-Seng-Shu E, Nogueira RC, Godoy DA
and Paiva WS: Evaluation of cerebral hemodynamics by transcranial
Doppler ultrasonography and its correlation with intracranial
pressure in an animal model of intracranial hypertension. Arq
Neuropsiquiatr. 80:344–352. 2022.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Liu R, Cao S, Hua Y, Keep RF, Huang Y and
Xi G: CD163 expression in neurons after experimental intracerebral
hemorrhage. Stroke. 48:1369–1375. 2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Cao S, Zheng M, Hua Y, Chen G, Keep RF and
Xi G: Hematoma changes during clot resolution after experimental
intracerebral hemorrhage. Stroke. 47:1626–1631. 2016.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Mun-Bryce S, Wilkerson AC, Papuashvili N
and Okada YC: Recurring episodes of spreading depression are
spontaneously elicited by an intracerebral hemorrhage in the swine.
Brain Res. 888:248–255. 2001.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Rohde V, Rohde I, Thiex R, Ince A, Jung A,
Dückers G, Gröschel K, Röttger C, Küker W, Müller HD and Gilsbach
JM: Fibrinolysis therapy achieved with tissue plasminogen activator
and aspiration of the liquefied clot after experimental
intracerebral hemorrhage: Rapid reduction in hematoma volume but
intensification of delayed edema formation. J Neurosurg.
97:954–962. 2002.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Xie Q, Gu Y, Hua Y, Liu W, Keep RF and Xi
G: Deferoxamine attenuates white matter injury in a piglet
intracerebral hemorrhage model. Stroke. 45:290–292. 2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sussman BJ, Barber JB and Goald H:
Experimental intracerebral hematoma. Reduction of oxygen tension in
brain and cerebrospinal fluid. J Neurosurg. 41:177–186.
1974.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Takasugi S, Ueda S and Matsumoto K:
Chronological changes in spontaneous intracerebral hematoma-an
experimental and clinical study. Stroke. 16:651–658.
1985.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Whisnant JP, Sayre GP and Millikan CH:
Experimental Intracerebral Hematoma. Arch Neurol. 9:586–592.
1963.
|
|
44
|
Symon L, Pasztor E, Branston NM and Dorsch
NW: Effect of supratentorial space-occupying lesions on regional
intracranial pressure and local cerebral blood flow: An
experimental study in baboons. J Neurol Neurosurg Psychiatry.
37:617–626. 1974.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Boltze J, Ferrara F, Hainsworth AH,
Bridges LR, Zille M, Lobsien D, Barthel H, McLeod DD, Gräßer F,
Pietsch S, et al: Lesional and perilesional tissue characterization
by automated image processing in a novel gyrencephalic animal model
of peracute intracerebral hemorrhage. J Cereb Blood Flow Metab.
39:2521–2535. 2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Lin X, Tang Y, Sun B, Hou Z, Meng H, Li Z,
Liu Q and Liu S: Cerebral glucose metabolism: Influence on
perihematomal edema formation after intracerebral hemorrhage in cat
models. Acta Radiol. 51:549–554. 2010.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Kaufman HH, Pruessner JL, Bernstein DP,
Borit A, Ostrow PT and Cahall DL: A rabbit model of intracerebral
hematoma. Acta Neuropathol. 65:318–321. 1985.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhang C, Qian X, Zheng J, Ai P, Cao X, Pan
X, Chen T and Wang Y: Controlled decompression alleviates brain
injury via attenuating oxidative damage and neuroinflammation in
acute intracranial hypertension. Biomed Res Int.
2022(1936691)2022.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Wagner KR, Xi G, Hua Y, Kleinholz M, de
Courten-Myers GM, Myers RE, Broderick JP and Brott TG: Lobar
intracerebral hemorrhage model in pigs: Rapid edema development in
perihematomal white matter. Stroke. 27:490–497. 1996.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Wagner KR, Xi G, Hua Y, Kleinholz M, de
Courten-Myers GM and Myers RE: Early metabolic alterations in
edematous perihematomal brain regions following experimental
intracerebral hemorrhage. J Neurosurg. 88:1058–1065.
1998.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Chen J, Koduri S, Dai S, Toyota Y, Hua Y,
Chaudhary N, Pandey AS, Keep RF and Xi G: Intra-hematomal white
matter tracts act as a scaffold for macrophage infiltration after
intracerebral hemorrhage. Transl Stroke Res. 12:858–865.
2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
MacLellan CL, Silasi G, Auriat AM and
Colbourne F: Rodent models of intracerebral hemorrhage. Stroke. 41
(Suppl 10):S95–S98. 2010.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yang GY, Betz AL, Chenevert TL, Brunberg
JA and Hoff JT: Experimental intracerebral hemorrhage: Relationship
between brain edema, blood flow, and blood-brain barrier
permeability in rats. J Neurosurg. 81:93–102. 1994.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Xi G, Keep RF and Hoff JT: Erythrocytes
and delayed brain edema formation following intracerebral
hemorrhage in rats. J Neurosurg. 89:991–996. 1998.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Xi G, Wagner KR, Keep RF, Hua Y, de
Courten-Myers GM, Broderick JP, Brott TG and Hoff JT: Role of blood
clot formation on early edema development after experimental
intracerebral hemorrhage. Stroke. 29:2580–2586. 1998.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Hua Y, Xi G, Keep RF and Hoff JT:
Complement activation in the brain after experimental intracerebral
hemorrhage. J Neurosurg. 92:1016–1022. 2000.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Xi G, Hua Y, Bhasin RR, Ennis SR, Keep RF
and Hoff JT: Mechanisms of edema formation after intracerebral
hemorrhage: Effects of extravasated red blood cells on blood flow
and blood-brain barrier integrity. Stroke. 32:2932–2938.
2001.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Belayev L, Saul I, Curbelo K, Busto R,
Belayev A, Zhang Y, Riyamongkol P, Zhao W and Ginsberg MD:
Experimental intracerebral hemorrhage in the mouse: Histological,
behavioral, and hemodynamic characterization of a double-injection
model. Stroke. 34:2221–2227. 2003.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Nakamura T, Keep RF, Hua Y, Schallert T,
Hoff JT and Xi G: Deferoxamine-induced attenuation of brain edema
and neurological deficits in a rat model of intracerebral
hemorrhage. J Neurosurg. 100:672–678. 2004.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Liu L, Wang S, Xu R, Zheng J, Tang J, Tang
X and Zhang D: Experimental intracerebral haemorrhage: Description
of a semi-coagulated autologous blood model in rats. Neurol Res.
37:874–879. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Bullock R, Mendelow AD, Teasdale GM and
Graham DI: Intracranial haemorrhage induced at arterial pressure in
the rat. Part 1: Description of technique, ICP changes and
neuropathological findings. Neurol Res. 6:184–188. 1984.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Manaenko A, Chen H, Zhang JH and Tang J:
Comparison of different preclinical models of intracerebral
hemorrhage. Acta Neurochir Suppl. 111:9–14. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wakisaka Y, Chu Y, Miller JD, Rosenberg GA
and Heistad DD: Spontaneous intracerebral hemorrhage during acute
and chronic hypertension in mice. J Cereb Blood Flow Metab.
30:56–69. 2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW
and Xue M: Intracerebral haemorrhage: From clinical settings to
animal models. Stroke Vasc Neurol. 5:388–395. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Deinsberger W, Vogel J, Kuschinsky W, Auer
LM and Böker DK: Experimental intracerebral hemorrhage: Description
of a double injection model in rats. Neurol Res. 18:475–477.
1996.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Deinsberger W, Hartmann M, Vogel J, Jansen
O, Kuschinsky W, Sartor K and Böker DK: Local fibrinolysis and
aspiration of intracerebral hematomas in rats. An experimental
study using MR monitoring. Neurol Res. 20:349–352. 1998.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Orakcioglu B, Becker K, Sakowitz OW,
Herweh C, Köhrmann M, Huttner HB, Steiner T, Unterberg A and
Schellinger PD: MRI of the perihemorrhagic zone in a rat ICH model:
Effect of hematoma evacuation. Neurocrit Care. 8:448–455.
2008.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Orakcioglu B, Becker K, Sakowitz OW,
Unterberg A and Schellinger PD: Serial diffusion and perfusion MRI
analysis of the perihemorrhagic zone in a rat ICH model. Acta
Neurochir Suppl. 103:15–18. 2008.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Deng S, Feng S, Wang W, Zhao F and Gong Y:
Biomarker and drug target discovery using quantitative proteomics
post-intracerebral hemorrhage stroke in the rat brain. J Mol
Neurosci. 66:639–648. 2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
James ML, Warner DS and Laskowitz DT:
Preclinical models of intracerebral hemorrhage: A translational
perspective. Neurocrit Care. 9:139–152. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Rosenberg GA, Mun-Bryce S, Wesley M and
Kornfeld M: Collagenase-induced intracerebral hemorrhage in rats.
Stroke. 21:801–807. 1990.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Clark W, Gunion-Rinker L, Lessov N and
Hazel K: Citicoline treatment for experimental intracerebral
hemorrhage in mice. Stroke. 29:2136–2140. 1998.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wang J, Wang G, Yi J, Xu Y, Duan S, Li T,
Sun XG and Dong L: The effect of monascin on hematoma clearance and
edema after intracerebral hemorrhage in rats. Brain Res Bull.
134:24–29. 2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Fu P, Liu J, Bai Q, Sun X, Yao Z, Liu L,
Wu C and Wang G: Long-term outcomes of monascin-a novel dual
peroxisome proliferator-activated receptor γ/nuclear
factor-erythroid 2 related factor-2 agonist in experimental
intracerebral hemorrhage. Ther Adv Neurol Disord: May 14, 2020.
|
|
75
|
Wasserman JK, Yang H and Schlichter LC:
Glial responses, neuron death and lesion resolution after
intracerebral hemorrhage in young vs aged rats. Eur J Neurosci.
28:1316–1328. 2008.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Liddle L, Reinders R, South S, Blacker D,
Knuckey N, Colbourne F and Meloni B: Poly-arginine-18 peptides do
not exacerbate bleeding, or improve functional outcomes following
collagenase-induced intracerebral hemorrhage in the rat. PLoS One.
14(e0224870)2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Akhter M, Qin T, Fischer P, Sadeghian H,
Kim HH, Whalen MJ, Goldstein JN and Ayata C: Rho-kinase inhibitors
do not expand hematoma volume in acute experimental intracerebral
hemorrhage. Ann Clin Transl Neurol. 5:769–776. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Lee ST, Chu K, Sinn DI, Jung KH, Kim EH,
Kim SJ, Kim JM, Ko SY, Kim M and Roh JK: Erythropoietin reduces
perihematomal inflammation and cell death with eNOS and STAT3
activations in experimental intracerebral hemorrhage. J Neurochem.
96:1728–1739. 2006.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Wu CH, Shyue SK, Hung TH, Wen S, Lin CC,
Chang CF and Chen SF: Genetic deletion or pharmacological
inhibition of soluble epoxide hydrolase reduces brain damage and
attenuates neuroinflammation after intracerebral hemorrhage. J
Neuroinflammation. 14(230)2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Kinoshita K, Ohtomo R, Takase H, Hamanaka
G, Chung KK, Lok J, Katsuki H and Arai K: Different responses after
intracerebral hemorrhage between young and early middle-aged mice.
Neurosci Lett. 735(135249)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Li W, Chopp M, Zacharek A, Yang W, Chen Z,
Landschoot-Ward J, Venkat P and Chen J: SUMO1 deficiency
exacerbates neurological and cardiac dysfunction after
intracerebral hemorrhage in aged mice. Transl Stroke Res.
12:631–642. 2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kirkman MA, Allan SM and Parry-Jones AR:
Experimental intracerebral hemorrhage: Avoiding pitfalls in
translational research. J Cereb Blood Flow Metab. 31:2135–2151.
2011.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chang CC, Huang KH, Hsu SP, Lee YG, Sue YM
and Juan SH: Simvastatin reduces the carcinogenic effect of
3-methylcholanthrene in renal epithelial cells through histone
deacetylase 1 inhibition and RhoA reactivation. Sci Rep.
9(4606)2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wang M, Hua Y, Keep RF, Wan S, Novakovic N
and Xi G: Complement inhibition attenuates early erythrolysis in
the hematoma and brain injury in aged rats. Stroke. 50:1859–1868.
2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Strbian D, Durukan A and Tatlisumak T:
Rodent models of hemorrhagic stroke. Curr Pharm Des. 14:352–358.
2008.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zhou X, Chen L, Feng C, Li B, Tang J, Liu
A, Lv F and Li T: Establishing an animal model of intracerebral
hemorrhage under the guidance of ultrasound. Ultrasound Med Biol.
39:2116–2122. 2013.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Lei B, Sheng H, Wang H, Lascola CD, Warner
DS, Laskowitz DT and James ML: Intrastriatal injection of
autologous blood or clostridial collagenase as murine models of
intracerebral hemorrhage. J Vis Exp. (51439)2014.PubMed/NCBI View Article : Google Scholar
|
|
88
|
MacLellan CL, Silasi G, Poon CC, Edmundson
CL, Buist R, Peeling J and Colbourne F: Intracerebral hemorrhage
models in rat: Comparing collagenase to blood infusion. J Cereb
Blood Flow Metab. 28:516–525. 2008.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Funnell WR, Maysinger D and Cuello AC:
Three-dimensional reconstruction and quantitative evaluation of
devascularizing cortical lesions in the rat. J Neurosci Methods.
35:147–156. 1990.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Xue M and Del Bigio MR: Comparison of
brain cell death and inflammatory reaction in three models of
intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis.
12:152–159. 2003.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Lauer A, Cianchetti FA, Van Cott EM,
Schlunk F, Schulz E, Pfeilschifter W, Steinmetz H, Schaffer CB, Lo
EH and Foerch C: Anticoagulation with the oral direct thrombin
inhibitor dabigatran does not enlarge hematoma volume in
experimental intracerebral hemorrhage. Circulation. 124:1654–1662.
2011.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Alharbi BM, Tso MK and Macdonald RL:
Animal models of spontaneous intracerebral hemorrhage. Neurol Res.
38:448–455. 2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Andrade AF, Soares MS, Patriota GC, Belon
AR, Paiva WS, Bor-Seng-Shu E, Oliveira Mde L, Nascimento CN, Noleto
GS, Alves Junior AC, et al: Experimental model of intracranial
hypertension with continuous multiparametric monitoring in swine.
Arq Neuropsiquiatr. 71:802–806. 2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Azevedo MR, de-Lima-Oliveira M, Belon AR,
Brasil S, Teixeira MJ, Paiva WS and Bor-Seng-Shu E: Assessing
ultrasonographic optic nerve sheath diameter in animal model with
anesthesia regimens. Acta Cir Bras. 37(e370308)2022.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wagner T, Fregni F, Fecteau S, Grodzinsky
A, Zahn M and Pascual-Leone A: Transcranial direct current
stimulation: A computer-based human model study. Neuroimage.
35:1113–1124. 2007.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Wagner KR: Modeling intracerebral
hemorrhage: Glutamate, nuclear factor-kappa B signaling and
cytokines. Stroke. 38 (2 Suppl):S753–S758. 2007.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Shi Y, Li Z, Zhang S, Xie M, Meng X, Xu J,
Liu N and Tang Z: Establishing a model of supratentorial hemorrhage
in the piglet. Tohoku J Exp Med. 220:33–40. 2010.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Küker W, Thiex R, Rohde I, Rohde V and
Thron A: Experimental acute intracerebral hemorrhage. Value of MR
sequences for a safe diagnosis at 1.5 and 0.5 T. Acta Radiol.
41:544–552. 2000.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Wagner KR, Packard BA, Hall CL, Smulian
AG, Linke MJ, De Courten-Myers GM, Packard LM and Hall NC: Protein
oxidation and heme oxygenase-1 induction in porcine white matter
following intracerebral infusions of whole blood or plasma. Dev
Neurosci. 24:154–160. 2002.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Wagner KR, Sharp FR, Ardizzone TD, Lu A
and Clark JF: Heme and iron metabolism: Role in cerebral
hemorrhage. J Cereb Blood Flow Metab. 23:629–652. 2003.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Zuccarello M, Andaluz N and Wagner KR:
Minimally invasive therapy for intracerebral hematomas. Neurosurg
Clin N Am. 13:349–354. 2002.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wagner KR, Xi G, Hua Y, Zuccarello M, de
Courten-Myers GM, Broderick JP and Brott TG: Ultra-early clot
aspiration after lysis with tissue plasminogen activator in a
porcine model of intracerebral hemorrhage: Edema reduction and
blood-brain barrier protection. J Neurosurg. 90:491–498.
1999.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Gu Y, Hua Y, Keep RF, Morgenstern LB and
Xi G: Deferoxamine reduces intracerebral hematoma-induced iron
accumulation and neuronal death in piglets. Stroke. 40:2241–2243.
2009.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Friess SH, Ralston J, Eucker SA, Helfaer
MA, Smith C and Margulies SS: Neurocritical care monitoring
correlates with neuropathology in a swine model of pediatric
traumatic brain injury. Neurosurgery. 69:1139–1147. 2011.PubMed/NCBI View Article : Google Scholar
|