Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Animal models for the study of intracranial hematomas (Review)

  • Authors:
    • Wellingson Silva Paiva
    • Emanuele Zippo
    • Carolina Miranda
    • Sérgio Brasil
    • Daniel Augustin Godoy
    • Almir Ferreira De Andrade
    • Iuri Neville
    • Gustavo Cartaxo Patriota
    • Renan Domingues
    • Manoel Jacobsen Teixeira
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil, Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil, Department of Intensive Care, Neurointensive Care Unit, Pasteur Hospital, 4700 Catamarca, Argentina, Department of Neurosurgery, Humberto Lucena Hospital, 58031090 João Pessoa, Brazil
    Copyright: © Paiva et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 20
    |
    Published online on: November 22, 2022
       https://doi.org/10.3892/etm.2022.11719
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Intracranial hematomas (ICH) are a frequent condition in neurosurgical and neurological practices, with several mechanisms of primary and secondary injury. Experimental research has been fundamental for the understanding of the pathophysiology implicated with ICH and the development of therapeutic interventions. To date, a variety of different animal approaches have been described that consider, for example, the ICH evolutive phase, molecular implications and hemodynamic changes. Therefore, choosing a test protocol should consider the scope of each particular study. The present review summarized investigational protocols in experimental research on the subject of ICH. With this subject, injection of autologous blood or bacterial collagenase, inflation of intracranial balloon and avulsion of cerebral vessels were the models identified. Rodents (mice) and swine were the most frequent species used. These different models allowed improvements on the understanding of intracranial hypertension establishment, neuroinflammation, immunology, brain hemodynamics and served to the development of therapeutic strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ and Panerai RB: Cerebral hemodynamics: Concepts of clinical importance. Arq Neuropsiquiatr. 70:352–356. 2012.PubMed/NCBI View Article : Google Scholar

2 

Andrade AF, Paiva WS, Amorim RL, Figueiredo EG, Almeida AN, Brock RS, Bor-Seng-Shu E and Teixeira MJ: Continuous ventricular cerebrospinal fluid drainage with intracranial pressure monitoring for management of posttraumatic diffuse brain swelling. Arq Neuropsiquiatr. 69:79–84. 2011.PubMed/NCBI View Article : Google Scholar

3 

Paiva WS, de Andrade AF, de Amorim RL, Muniz RK, Paganelli PM, Bernardo LS, Figueiredo EG and Teixeira MJ: The prognosis of the traumatic subarachnoid hemorrhage: A prospective report of 121 patients. Int Surg. 95:172–176. 2010.PubMed/NCBI

4 

Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H and Hanley DF: Spontaneous intracerebral hemorrhage. N Engl J Med. 344:1450–1460. 2001.PubMed/NCBI View Article : Google Scholar

5 

van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A and Klijn CJ: Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 9:167–176. 2010.PubMed/NCBI View Article : Google Scholar

6 

Broderick JP, Brott TG, Duldner JE, Tomsick T and Huster G: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 24:987–993. 1993.PubMed/NCBI View Article : Google Scholar

7 

Fogelholm R, Murros K, Rissanen A and Avikainen S: Long term survival after primary intracerebral haemorrhage: A retrospective population based study. J Neurol Neurosurg Psychiatry. 76:1534–1538. 2005.PubMed/NCBI View Article : Google Scholar

8 

Hemphill JCI III, Bonovich DC, Besmertis L, Manley GT and Johnston SC: The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke. 32:891–897. 2001.PubMed/NCBI View Article : Google Scholar

9 

Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS, Vespa P, et al: Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 Update: A guideline from the American heart association/American stroke association stroke council, high blood pressure research council, and the quality of care and outcomes in research interdisciplinary working group. Stroke. 38:2001–2023. 2007.PubMed/NCBI View Article : Google Scholar

10 

Brasil S, Paiva WS, de Carvalho Nogueira R, Macedo Salinet A and Teixeira MJ: Letter to the editor. Decompressive craniectomy in TBI: What is beyond static evaluations in terms of prognosis? J Neurosurg. 129:845–847. 2018.PubMed/NCBI View Article : Google Scholar

11 

Zille M, Farr TD, Keep RF, Römer C, Xi G and Boltze J: Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine. 76(103880)2022.PubMed/NCBI View Article : Google Scholar

12 

Godoy DA, Núñez-Patiño RA, Zorrilla-Vaca A, Ziai WC and Hemphill JC III: Intracranial hypertension after spontaneous intracerebral hemorrhage: A systematic review and meta-analysis of prevalence and mortality rate. Neurocrit Care. 31:176–187. 2019.PubMed/NCBI View Article : Google Scholar

13 

Brasil S, Bor-Seng-Shu E, de-Lima-Oliveira M, Taccone FS, Gattás G, Nunes DM, Gomes de Oliveira RA, Martins Tomazini B, Tierno PF, Becker RA, et al: Computed tomography angiography accuracy in brain death diagnosis. J Neurosurg: Sep 27, 2019 (Epub ahead of print).

14 

Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY and Dwyer BE: Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: In vivo and in vitro studies. Cell Mol Biol (Noisy-le-grand). 46:597–608. 2000.PubMed/NCBI

15 

Goulay R, Naveau M, Gaberel T, Vivien D and Parcq J: Optimized tPA: A non-neurotoxic fibrinolytic agent for the drainage of intracerebral hemorrhages. J Cereb Blood Flow Metab. 38:1180–1189. 2018.PubMed/NCBI View Article : Google Scholar

16 

Sinar EJ, Mendelow AD, Graham DI and Teasdale GM: Experimental intracerebral hemorrhage: Effects of a temporary mass lesion. J Neurosurg. 66:568–576. 1987.PubMed/NCBI View Article : Google Scholar

17 

Fang Y, Tian Y, Huang Q, Wan Y, Xu L, Wang W, Pan D, Zhu S and Xie M: Deficiency of TREK-1 potassium channel exacerbates blood-brain barrier damage and neuroinflammation after intracerebral hemorrhage in mice. J Neuroinflammation. 16(96)2019.PubMed/NCBI View Article : Google Scholar

18 

Kane PJ, Modha P, Strachan RD, Cook S, Chambers IR, Clayton CB and Mendelow AD: The effect of immunosuppression on the development of cerebral oedema in an experimental model of intracerebral haemorrhage: Whole body and regional irradiation. J Neurol Neurosurg Psychiatry. 55:781–786. 1992.PubMed/NCBI View Article : Google Scholar

19 

Fei X, Dou YN, Wang L, Wu X, Huan Y, Wu S, He X, Lv W, Wei J and Fei Z: Homer1 promotes the conversion of A1 astrocytes to A2 astrocytes and improves the recovery of transgenic mice after intracerebral hemorrhage. J Neuroinflammation. 19(67)2022.PubMed/NCBI View Article : Google Scholar

20 

Mello TG, Rosado-de-Castro PH, Vasques JF, Pinhão C, Santos TM, de Lima RR, Foerster BU, Paiva FF, Mendez-Otero R and Pimentel-Coelho PM: Hyperacute transplantation of umbilical cord mesenchymal stromal cells in a model of severe intracerebral hemorrhage. Future Sci OA. 8(FSO793)2022.PubMed/NCBI View Article : Google Scholar

21 

Wang G, Li T, Duan SN, Dong L, Sun XG and Xue F: PPAR-γ promotes hematoma clearance through haptoglobin-hemoglobin-CD163 in a rat model of intracerebral hemorrhage. Behav Neurol. 2018(7646104)2018.PubMed/NCBI View Article : Google Scholar

22 

Xu J, Chen Z, Yu F, Liu H, Ma C, Xie D, Hu X, Leak RK, Chou SHY, Stetler RA, et al: IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci USA. 117:32679–32690. 2020.PubMed/NCBI View Article : Google Scholar

23 

Jing C, Bian L, Wang M, Keep RF, Xi G and Hua Y: Enhancement of hematoma clearance with CD47 blocking antibody in experimental intracerebral hemorrhage. Stroke. 50:1539–1547. 2019.PubMed/NCBI View Article : Google Scholar

24 

Zhao X, Ting SM, Liu CH, Sun G, Kruzel M, Roy-O'Reilly M and Aronowski J: Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nat Commun. 8(602)2017.PubMed/NCBI View Article : Google Scholar

25 

Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng Y, Cao Y, Zeng H, Li J, Yan F, et al: White matter injury after intracerebral hemorrhage. Front Neurol. 12(562090)2021.PubMed/NCBI View Article : Google Scholar

26 

Xu F, Shen G, Su Z, He Z and Yuan L: Glibenclamide ameliorates the disrupted blood-brain barrier in experimental intracerebral hemorrhage by inhibiting the activation of NLRP3 inflammasome. Brain Behav. 9(e01254)2019.PubMed/NCBI View Article : Google Scholar

27 

Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA and Wolfe SQ: Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J Stroke. 22:29–46. 2020.PubMed/NCBI View Article : Google Scholar

28 

Yang Y, Chen X, Feng Z, Cai X, Zhu X, Cao M, Yang L, Chen Y, Wang Y and Feng H: MEC17-induced α-tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. J Neurochem. 160:51–63. 2022.PubMed/NCBI View Article : Google Scholar

29 

Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS and Wang J: Correction: Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase. PLoS One. 16(e0261640)2021.PubMed/NCBI View Article : Google Scholar

30 

Liesz A, Middelhoff M, Zhou W, Karcher S, Illanes S and Veltkamp R: Comparison of humoral neuroinflammation and adhesion molecule expression in two models of experimental intracerebral hemorrhage. Exp Transl Stroke Med. 3(11)2011.PubMed/NCBI View Article : Google Scholar

31 

Hijioka M, Anan J, Matsushita H, Ishibashi H, Kurauchi Y, Hisatsune A, Seki T and Katsuki H: Axonal dysfunction in internal capsule is closely associated with early motor deficits after intracerebral hemorrhage in mice. Neurosci Res. 106:38–46. 2016.PubMed/NCBI View Article : Google Scholar

32 

Bahader GA, Nash KM, Almarghalani DA, Alhadidi Q, McInerney MF and Shah ZA: Type-I diabetes aggravates post-hemorrhagic stroke cognitive impairment by augmenting oxidative stress and neuroinflammation in mice. Neurochem Int. 149(105151)2021.PubMed/NCBI View Article : Google Scholar

33 

Zheng J, Shi L, Liang F, Xu W, Li T, Gao L, Sun Z, Yu J and Zhang J: Sirt3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats. Front Neurosci. 12(414)2018.PubMed/NCBI View Article : Google Scholar

34 

Jeng BCP, de Andrade AF, Brasil S, Bor-Seng-Shu E, Belon AR, Robertis M, de-Lima-Oliveira M, Rubiano AM, Godoy DA, Teixeira MJ and Paiva WS: Estimation of intracranial pressure by ultrasound of the optic nerve sheath in an animal model of intracranial hypertension. J Clin Neurosci. 86:174–179. 2021.PubMed/NCBI View Article : Google Scholar

35 

Soares MS, Andrade AF, Brasil S, DE-Lima-Oliveira M, Belon AR, Bor-Seng-Shu E, Nogueira RC, Godoy DA and Paiva WS: Evaluation of cerebral hemodynamics by transcranial Doppler ultrasonography and its correlation with intracranial pressure in an animal model of intracranial hypertension. Arq Neuropsiquiatr. 80:344–352. 2022.PubMed/NCBI View Article : Google Scholar

36 

Liu R, Cao S, Hua Y, Keep RF, Huang Y and Xi G: CD163 expression in neurons after experimental intracerebral hemorrhage. Stroke. 48:1369–1375. 2017.PubMed/NCBI View Article : Google Scholar

37 

Cao S, Zheng M, Hua Y, Chen G, Keep RF and Xi G: Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 47:1626–1631. 2016.PubMed/NCBI View Article : Google Scholar

38 

Mun-Bryce S, Wilkerson AC, Papuashvili N and Okada YC: Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res. 888:248–255. 2001.PubMed/NCBI View Article : Google Scholar

39 

Rohde V, Rohde I, Thiex R, Ince A, Jung A, Dückers G, Gröschel K, Röttger C, Küker W, Müller HD and Gilsbach JM: Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: Rapid reduction in hematoma volume but intensification of delayed edema formation. J Neurosurg. 97:954–962. 2002.PubMed/NCBI View Article : Google Scholar

40 

Xie Q, Gu Y, Hua Y, Liu W, Keep RF and Xi G: Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke. 45:290–292. 2014.PubMed/NCBI View Article : Google Scholar

41 

Sussman BJ, Barber JB and Goald H: Experimental intracerebral hematoma. Reduction of oxygen tension in brain and cerebrospinal fluid. J Neurosurg. 41:177–186. 1974.PubMed/NCBI View Article : Google Scholar

42 

Takasugi S, Ueda S and Matsumoto K: Chronological changes in spontaneous intracerebral hematoma-an experimental and clinical study. Stroke. 16:651–658. 1985.PubMed/NCBI View Article : Google Scholar

43 

Whisnant JP, Sayre GP and Millikan CH: Experimental Intracerebral Hematoma. Arch Neurol. 9:586–592. 1963.

44 

Symon L, Pasztor E, Branston NM and Dorsch NW: Effect of supratentorial space-occupying lesions on regional intracranial pressure and local cerebral blood flow: An experimental study in baboons. J Neurol Neurosurg Psychiatry. 37:617–626. 1974.PubMed/NCBI View Article : Google Scholar

45 

Boltze J, Ferrara F, Hainsworth AH, Bridges LR, Zille M, Lobsien D, Barthel H, McLeod DD, Gräßer F, Pietsch S, et al: Lesional and perilesional tissue characterization by automated image processing in a novel gyrencephalic animal model of peracute intracerebral hemorrhage. J Cereb Blood Flow Metab. 39:2521–2535. 2019.PubMed/NCBI View Article : Google Scholar

46 

Lin X, Tang Y, Sun B, Hou Z, Meng H, Li Z, Liu Q and Liu S: Cerebral glucose metabolism: Influence on perihematomal edema formation after intracerebral hemorrhage in cat models. Acta Radiol. 51:549–554. 2010.PubMed/NCBI View Article : Google Scholar

47 

Kaufman HH, Pruessner JL, Bernstein DP, Borit A, Ostrow PT and Cahall DL: A rabbit model of intracerebral hematoma. Acta Neuropathol. 65:318–321. 1985.PubMed/NCBI View Article : Google Scholar

48 

Zhang C, Qian X, Zheng J, Ai P, Cao X, Pan X, Chen T and Wang Y: Controlled decompression alleviates brain injury via attenuating oxidative damage and neuroinflammation in acute intracranial hypertension. Biomed Res Int. 2022(1936691)2022.PubMed/NCBI View Article : Google Scholar

49 

Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP and Brott TG: Lobar intracerebral hemorrhage model in pigs: Rapid edema development in perihematomal white matter. Stroke. 27:490–497. 1996.PubMed/NCBI View Article : Google Scholar

50 

Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM and Myers RE: Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg. 88:1058–1065. 1998.PubMed/NCBI View Article : Google Scholar

51 

Chen J, Koduri S, Dai S, Toyota Y, Hua Y, Chaudhary N, Pandey AS, Keep RF and Xi G: Intra-hematomal white matter tracts act as a scaffold for macrophage infiltration after intracerebral hemorrhage. Transl Stroke Res. 12:858–865. 2021.PubMed/NCBI View Article : Google Scholar

52 

MacLellan CL, Silasi G, Auriat AM and Colbourne F: Rodent models of intracerebral hemorrhage. Stroke. 41 (Suppl 10):S95–S98. 2010.PubMed/NCBI View Article : Google Scholar

53 

Yang GY, Betz AL, Chenevert TL, Brunberg JA and Hoff JT: Experimental intracerebral hemorrhage: Relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg. 81:93–102. 1994.PubMed/NCBI View Article : Google Scholar

54 

Xi G, Keep RF and Hoff JT: Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 89:991–996. 1998.PubMed/NCBI View Article : Google Scholar

55 

Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG and Hoff JT: Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 29:2580–2586. 1998.PubMed/NCBI View Article : Google Scholar

56 

Hua Y, Xi G, Keep RF and Hoff JT: Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 92:1016–1022. 2000.PubMed/NCBI View Article : Google Scholar

57 

Xi G, Hua Y, Bhasin RR, Ennis SR, Keep RF and Hoff JT: Mechanisms of edema formation after intracerebral hemorrhage: Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke. 32:2932–2938. 2001.PubMed/NCBI View Article : Google Scholar

58 

Belayev L, Saul I, Curbelo K, Busto R, Belayev A, Zhang Y, Riyamongkol P, Zhao W and Ginsberg MD: Experimental intracerebral hemorrhage in the mouse: Histological, behavioral, and hemodynamic characterization of a double-injection model. Stroke. 34:2221–2227. 2003.PubMed/NCBI View Article : Google Scholar

59 

Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT and Xi G: Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 100:672–678. 2004.PubMed/NCBI View Article : Google Scholar

60 

Liu L, Wang S, Xu R, Zheng J, Tang J, Tang X and Zhang D: Experimental intracerebral haemorrhage: Description of a semi-coagulated autologous blood model in rats. Neurol Res. 37:874–879. 2015.PubMed/NCBI View Article : Google Scholar

61 

Bullock R, Mendelow AD, Teasdale GM and Graham DI: Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: Description of technique, ICP changes and neuropathological findings. Neurol Res. 6:184–188. 1984.PubMed/NCBI View Article : Google Scholar

62 

Manaenko A, Chen H, Zhang JH and Tang J: Comparison of different preclinical models of intracerebral hemorrhage. Acta Neurochir Suppl. 111:9–14. 2011.PubMed/NCBI View Article : Google Scholar

63 

Wakisaka Y, Chu Y, Miller JD, Rosenberg GA and Heistad DD: Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 30:56–69. 2010.PubMed/NCBI View Article : Google Scholar

64 

Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW and Xue M: Intracerebral haemorrhage: From clinical settings to animal models. Stroke Vasc Neurol. 5:388–395. 2020.PubMed/NCBI View Article : Google Scholar

65 

Deinsberger W, Vogel J, Kuschinsky W, Auer LM and Böker DK: Experimental intracerebral hemorrhage: Description of a double injection model in rats. Neurol Res. 18:475–477. 1996.PubMed/NCBI View Article : Google Scholar

66 

Deinsberger W, Hartmann M, Vogel J, Jansen O, Kuschinsky W, Sartor K and Böker DK: Local fibrinolysis and aspiration of intracerebral hematomas in rats. An experimental study using MR monitoring. Neurol Res. 20:349–352. 1998.PubMed/NCBI View Article : Google Scholar

67 

Orakcioglu B, Becker K, Sakowitz OW, Herweh C, Köhrmann M, Huttner HB, Steiner T, Unterberg A and Schellinger PD: MRI of the perihemorrhagic zone in a rat ICH model: Effect of hematoma evacuation. Neurocrit Care. 8:448–455. 2008.PubMed/NCBI View Article : Google Scholar

68 

Orakcioglu B, Becker K, Sakowitz OW, Unterberg A and Schellinger PD: Serial diffusion and perfusion MRI analysis of the perihemorrhagic zone in a rat ICH model. Acta Neurochir Suppl. 103:15–18. 2008.PubMed/NCBI View Article : Google Scholar

69 

Deng S, Feng S, Wang W, Zhao F and Gong Y: Biomarker and drug target discovery using quantitative proteomics post-intracerebral hemorrhage stroke in the rat brain. J Mol Neurosci. 66:639–648. 2018.PubMed/NCBI View Article : Google Scholar

70 

James ML, Warner DS and Laskowitz DT: Preclinical models of intracerebral hemorrhage: A translational perspective. Neurocrit Care. 9:139–152. 2008.PubMed/NCBI View Article : Google Scholar

71 

Rosenberg GA, Mun-Bryce S, Wesley M and Kornfeld M: Collagenase-induced intracerebral hemorrhage in rats. Stroke. 21:801–807. 1990.PubMed/NCBI View Article : Google Scholar

72 

Clark W, Gunion-Rinker L, Lessov N and Hazel K: Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke. 29:2136–2140. 1998.PubMed/NCBI View Article : Google Scholar

73 

Wang J, Wang G, Yi J, Xu Y, Duan S, Li T, Sun XG and Dong L: The effect of monascin on hematoma clearance and edema after intracerebral hemorrhage in rats. Brain Res Bull. 134:24–29. 2017.PubMed/NCBI View Article : Google Scholar

74 

Fu P, Liu J, Bai Q, Sun X, Yao Z, Liu L, Wu C and Wang G: Long-term outcomes of monascin-a novel dual peroxisome proliferator-activated receptor γ/nuclear factor-erythroid 2 related factor-2 agonist in experimental intracerebral hemorrhage. Ther Adv Neurol Disord: May 14, 2020.

75 

Wasserman JK, Yang H and Schlichter LC: Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs aged rats. Eur J Neurosci. 28:1316–1328. 2008.PubMed/NCBI View Article : Google Scholar

76 

Liddle L, Reinders R, South S, Blacker D, Knuckey N, Colbourne F and Meloni B: Poly-arginine-18 peptides do not exacerbate bleeding, or improve functional outcomes following collagenase-induced intracerebral hemorrhage in the rat. PLoS One. 14(e0224870)2019.PubMed/NCBI View Article : Google Scholar

77 

Akhter M, Qin T, Fischer P, Sadeghian H, Kim HH, Whalen MJ, Goldstein JN and Ayata C: Rho-kinase inhibitors do not expand hematoma volume in acute experimental intracerebral hemorrhage. Ann Clin Transl Neurol. 5:769–776. 2018.PubMed/NCBI View Article : Google Scholar

78 

Lee ST, Chu K, Sinn DI, Jung KH, Kim EH, Kim SJ, Kim JM, Ko SY, Kim M and Roh JK: Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J Neurochem. 96:1728–1739. 2006.PubMed/NCBI View Article : Google Scholar

79 

Wu CH, Shyue SK, Hung TH, Wen S, Lin CC, Chang CF and Chen SF: Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation. 14(230)2017.PubMed/NCBI View Article : Google Scholar

80 

Kinoshita K, Ohtomo R, Takase H, Hamanaka G, Chung KK, Lok J, Katsuki H and Arai K: Different responses after intracerebral hemorrhage between young and early middle-aged mice. Neurosci Lett. 735(135249)2020.PubMed/NCBI View Article : Google Scholar

81 

Li W, Chopp M, Zacharek A, Yang W, Chen Z, Landschoot-Ward J, Venkat P and Chen J: SUMO1 deficiency exacerbates neurological and cardiac dysfunction after intracerebral hemorrhage in aged mice. Transl Stroke Res. 12:631–642. 2021.PubMed/NCBI View Article : Google Scholar

82 

Kirkman MA, Allan SM and Parry-Jones AR: Experimental intracerebral hemorrhage: Avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 31:2135–2151. 2011.PubMed/NCBI View Article : Google Scholar

83 

Chang CC, Huang KH, Hsu SP, Lee YG, Sue YM and Juan SH: Simvastatin reduces the carcinogenic effect of 3-methylcholanthrene in renal epithelial cells through histone deacetylase 1 inhibition and RhoA reactivation. Sci Rep. 9(4606)2019.PubMed/NCBI View Article : Google Scholar

84 

Wang M, Hua Y, Keep RF, Wan S, Novakovic N and Xi G: Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke. 50:1859–1868. 2019.PubMed/NCBI View Article : Google Scholar

85 

Strbian D, Durukan A and Tatlisumak T: Rodent models of hemorrhagic stroke. Curr Pharm Des. 14:352–358. 2008.PubMed/NCBI View Article : Google Scholar

86 

Zhou X, Chen L, Feng C, Li B, Tang J, Liu A, Lv F and Li T: Establishing an animal model of intracerebral hemorrhage under the guidance of ultrasound. Ultrasound Med Biol. 39:2116–2122. 2013.PubMed/NCBI View Article : Google Scholar

87 

Lei B, Sheng H, Wang H, Lascola CD, Warner DS, Laskowitz DT and James ML: Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp. (51439)2014.PubMed/NCBI View Article : Google Scholar

88 

MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J and Colbourne F: Intracerebral hemorrhage models in rat: Comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 28:516–525. 2008.PubMed/NCBI View Article : Google Scholar

89 

Funnell WR, Maysinger D and Cuello AC: Three-dimensional reconstruction and quantitative evaluation of devascularizing cortical lesions in the rat. J Neurosci Methods. 35:147–156. 1990.PubMed/NCBI View Article : Google Scholar

90 

Xue M and Del Bigio MR: Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J Stroke Cerebrovasc Dis. 12:152–159. 2003.PubMed/NCBI View Article : Google Scholar

91 

Lauer A, Cianchetti FA, Van Cott EM, Schlunk F, Schulz E, Pfeilschifter W, Steinmetz H, Schaffer CB, Lo EH and Foerch C: Anticoagulation with the oral direct thrombin inhibitor dabigatran does not enlarge hematoma volume in experimental intracerebral hemorrhage. Circulation. 124:1654–1662. 2011.PubMed/NCBI View Article : Google Scholar

92 

Alharbi BM, Tso MK and Macdonald RL: Animal models of spontaneous intracerebral hemorrhage. Neurol Res. 38:448–455. 2016.PubMed/NCBI View Article : Google Scholar

93 

Andrade AF, Soares MS, Patriota GC, Belon AR, Paiva WS, Bor-Seng-Shu E, Oliveira Mde L, Nascimento CN, Noleto GS, Alves Junior AC, et al: Experimental model of intracranial hypertension with continuous multiparametric monitoring in swine. Arq Neuropsiquiatr. 71:802–806. 2013.PubMed/NCBI View Article : Google Scholar

94 

Azevedo MR, de-Lima-Oliveira M, Belon AR, Brasil S, Teixeira MJ, Paiva WS and Bor-Seng-Shu E: Assessing ultrasonographic optic nerve sheath diameter in animal model with anesthesia regimens. Acta Cir Bras. 37(e370308)2022.PubMed/NCBI View Article : Google Scholar

95 

Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M and Pascual-Leone A: Transcranial direct current stimulation: A computer-based human model study. Neuroimage. 35:1113–1124. 2007.PubMed/NCBI View Article : Google Scholar

96 

Wagner KR: Modeling intracerebral hemorrhage: Glutamate, nuclear factor-kappa B signaling and cytokines. Stroke. 38 (2 Suppl):S753–S758. 2007.PubMed/NCBI View Article : Google Scholar

97 

Shi Y, Li Z, Zhang S, Xie M, Meng X, Xu J, Liu N and Tang Z: Establishing a model of supratentorial hemorrhage in the piglet. Tohoku J Exp Med. 220:33–40. 2010.PubMed/NCBI View Article : Google Scholar

98 

Küker W, Thiex R, Rohde I, Rohde V and Thron A: Experimental acute intracerebral hemorrhage. Value of MR sequences for a safe diagnosis at 1.5 and 0.5 T. Acta Radiol. 41:544–552. 2000.PubMed/NCBI View Article : Google Scholar

99 

Wagner KR, Packard BA, Hall CL, Smulian AG, Linke MJ, De Courten-Myers GM, Packard LM and Hall NC: Protein oxidation and heme oxygenase-1 induction in porcine white matter following intracerebral infusions of whole blood or plasma. Dev Neurosci. 24:154–160. 2002.PubMed/NCBI View Article : Google Scholar

100 

Wagner KR, Sharp FR, Ardizzone TD, Lu A and Clark JF: Heme and iron metabolism: Role in cerebral hemorrhage. J Cereb Blood Flow Metab. 23:629–652. 2003.PubMed/NCBI View Article : Google Scholar

101 

Zuccarello M, Andaluz N and Wagner KR: Minimally invasive therapy for intracerebral hematomas. Neurosurg Clin N Am. 13:349–354. 2002.PubMed/NCBI View Article : Google Scholar

102 

Wagner KR, Xi G, Hua Y, Zuccarello M, de Courten-Myers GM, Broderick JP and Brott TG: Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: Edema reduction and blood-brain barrier protection. J Neurosurg. 90:491–498. 1999.PubMed/NCBI View Article : Google Scholar

103 

Gu Y, Hua Y, Keep RF, Morgenstern LB and Xi G: Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 40:2241–2243. 2009.PubMed/NCBI View Article : Google Scholar

104 

Friess SH, Ralston J, Eucker SA, Helfaer MA, Smith C and Margulies SS: Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury. Neurosurgery. 69:1139–1147. 2011.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Paiva WS, Zippo E, Miranda C, Brasil S, Godoy DA, De Andrade AF, Neville I, Patriota GC, Domingues R, Teixeira MJ, Teixeira MJ, et al: Animal models for the study of intracranial hematomas (Review). Exp Ther Med 25: 20, 2023.
APA
Paiva, W.S., Zippo, E., Miranda, C., Brasil, S., Godoy, D.A., De Andrade, A.F. ... Teixeira, M.J. (2023). Animal models for the study of intracranial hematomas (Review). Experimental and Therapeutic Medicine, 25, 20. https://doi.org/10.3892/etm.2022.11719
MLA
Paiva, W. S., Zippo, E., Miranda, C., Brasil, S., Godoy, D. A., De Andrade, A. F., Neville, I., Patriota, G. C., Domingues, R., Teixeira, M. J."Animal models for the study of intracranial hematomas (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 20.
Chicago
Paiva, W. S., Zippo, E., Miranda, C., Brasil, S., Godoy, D. A., De Andrade, A. F., Neville, I., Patriota, G. C., Domingues, R., Teixeira, M. J."Animal models for the study of intracranial hematomas (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 20. https://doi.org/10.3892/etm.2022.11719
Copy and paste a formatted citation
x
Spandidos Publications style
Paiva WS, Zippo E, Miranda C, Brasil S, Godoy DA, De Andrade AF, Neville I, Patriota GC, Domingues R, Teixeira MJ, Teixeira MJ, et al: Animal models for the study of intracranial hematomas (Review). Exp Ther Med 25: 20, 2023.
APA
Paiva, W.S., Zippo, E., Miranda, C., Brasil, S., Godoy, D.A., De Andrade, A.F. ... Teixeira, M.J. (2023). Animal models for the study of intracranial hematomas (Review). Experimental and Therapeutic Medicine, 25, 20. https://doi.org/10.3892/etm.2022.11719
MLA
Paiva, W. S., Zippo, E., Miranda, C., Brasil, S., Godoy, D. A., De Andrade, A. F., Neville, I., Patriota, G. C., Domingues, R., Teixeira, M. J."Animal models for the study of intracranial hematomas (Review)". Experimental and Therapeutic Medicine 25.1 (2023): 20.
Chicago
Paiva, W. S., Zippo, E., Miranda, C., Brasil, S., Godoy, D. A., De Andrade, A. F., Neville, I., Patriota, G. C., Domingues, R., Teixeira, M. J."Animal models for the study of intracranial hematomas (Review)". Experimental and Therapeutic Medicine 25, no. 1 (2023): 20. https://doi.org/10.3892/etm.2022.11719
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team