|
1
|
Maher C, Underwood M and Buchbinder R:
Non-specific low back pain. Lancet. 389:736–747. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Gianola S, Castellini G, Andreano A,
Corbetta D, Frigerio P, Pecoraro V, Redaelli V, Tettamanti A,
Turolla A, Moja L and Valsecchi MG: Effectiveness of treatments for
acute and sub-acute mechanical non-specific low back pain: Protocol
for a systematic review and network meta-analysis. Syst Rev.
8(196)2019.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Tessier S and Risbud MV: Understanding
embryonic development for cell-based therapies of intervertebral
disc degeneration: Toward an effort to treat disc degeneration
subphenotypes. Dev Dyn. 250:302–317. 2021.PubMed/NCBI View
Article : Google Scholar
|
|
4
|
Lyu FJ, Cui H, Pan H, Mc Cheung K, Cao X,
Iatridis JC and Zheng Z: Painful intervertebral disc degeneration
and inflammation: From laboratory evidence to clinical
interventions. Bone Res. 9(7)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ji ML, Jiang H, Zhang XJ, Shi PL, Li C, Wu
H, Wu XT, Wang YT, Wang C and Lu J: Preclinical development of a
microRNA-based therapy for intervertebral disc degeneration. Nat
Commun. 9(5051)2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Xu G, Liu C, Jiang J, Liang T, Yu C, Qin
Z, Zhang Z, Lu Z and Zhan X: A novel mechanism of intervertebral
disc degeneration: Imbalance between autophagy and apoptosis.
Epigenomics. 12:1095–1108. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Dong W, Liu J, Lv Y, Wang F, Liu T, Sun S,
Liao B, Shu Z and Qian J: miR-640 aggravates intervertebral disc
degeneration via NF-κB and WNT signalling pathway. Cell Prolif.
52(e12664)2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Mitra A, Pfeifer K and Park KS: Circular
RNAs and competing endogenous RNA (ceRNA) networks. Transl Cancer
Res. 7 (Suppl 5):S624–S628. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kabekkodu SP, Shukla V, Varghese VK,
D'Souza J, Chakrabarty S and Satyamoorthy K: Clustered miRNAs and
their role in biological functions and diseases. Biol Rev Camb
Philos Soc. 93:1955–1986. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: LncRNA localization and function. J Cell Biol.
220(e202009045)2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zheng S, Zhang X, Odame E, Xu X, Chen Y,
Ye J, Zhou H, Dai D, Kyei B, Zhan S, et al: CircRNA-Protein
interactions in muscle development and diseases. Int J Mol Sci.
22(3262)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Liu H, Huang X, Liu X, Xiao S, Zhang Y,
Xiang T, Shen X, Wang G and Sheng B: miR-21 promotes human nucleus
pulposus cell proliferation through PTEN/AKT signaling. Int J Mol
Sci. 15:4007–4018. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Xie L, Huang W, Fang Z, Ding F, Zou F, Ma
X, Tao J, Guo J, Xia X, Wang H, et al: CircERCC2 ameliorated
intervertebral disc degeneration by regulating mitophagy and
apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis.
10(751)2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wang T, Li P, Ma X, Tian P, Han C, Zang J,
Kong J and Yan H: MicroRNA-494 inhibition protects nucleus pulposus
cells from TNF-α-induced apoptosis by targeting JunD. Biochimie.
115:1–7. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Jing W and Jiang W: MicroRNA-93 regulates
collagen loss by targeting MMP3 in human nucleus pulposus cells.
Cell Prolif. 48:284–292. 2015.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Gu SX, Li X, Hamilton JL, Chee A, Kc R,
Chen D, An HS, Kim JS, Oh CD, Ma YZ, et al: MicroRNA-146a reduces
IL-1 dependent inflammatory responses in the intervertebral disc.
Gene. 555:80–87. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Lan PH, Liu ZH, Pei YJ, Wu ZG, Yu Y, Yang
YF, Liu X, Che L, Ma CJ, Xie YK, et al: Landscape of RNAs in human
lumbar disc degeneration. Oncotarget. 7:63166–63176.
2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Liu X, Che L, Xie YK, Hu QJ, Ma CJ, Pei
YJ, Wu ZG, Liu ZH, Fan LY and Wang HQ: Noncoding RNAs in human
intervertebral disc degeneration: An integrated microarray study.
Genom Data. 5:80–81. 2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Xi Y, Jiang T, Wang W, Yu J, Wang Y, Wu X
and He Y: Long non-coding HCG18 promotes intervertebral disc
degeneration by sponging miR-146a-5p and regulating TRAF6
expression. Sci Rep. 7(13234)2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zhu J, Zhang X, Gao W, Hu H, Wang X and
Hao D: lncRNA/circRNA-miRNA-mRNA ceRNA network in lumbar
intervertebral disc degeneration. Mol Med Rep. 20:3160–3174.
2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Fontana G, See E and Pandit A: Current
trends in biologics delivery to restore intervertebral disc
anabolism. Adv Drug Deliv Rev. 84:146–158. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Xu D, Ma X, Sun C, Han J, Zhou C, Wong SH,
Chan MTV and Wu WKK: Circular RNAs in intervertebral disc
degeneration: An updated review. Front Mol Biosci.
8(781424)2022.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Cazzanelli P and Wuertz-Kozak K: MicroRNAs
in intervertebral disc degeneration, apoptosis, inflammation, and
mechanobiology. Int J Mol Sci. 21(3601)2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Dowdell J, Erwin M, Choma T, Vaccaro A,
Iatridis J and Cho SK: Intervertebral disk degeneration and repair.
Neurosurgery. 80 (3S):S46–S54. 2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Li G, Ma L, He S, Luo R, Wang B, Zhang W,
Song Y, Liao Z, Ke W, Xiang Q, et al: WTAP-mediated m6A
modification of lncRNA NORAD promotes intervertebral disc
degeneration. Nat Commun. 13(1469)2022.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhou Y, Deng M, Su J, Zhang W, Liu D and
Wang Z: The role of miR-31-5p in the development of intervertebral
disc degeneration and its therapeutic potential. Front Cell Dev
Biol. 9(633974)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Xie L, Chen Z, Liu M, Huang W, Zou F, Ma
X, Tao J, Guo J, Xia X, Lyu F, et al: MSC-Derived exosomes protect
vertebral endplate chondrocytes against apoptosis and calcification
via the miR-31-5p/ATF6 Axis. Mol Ther Nucleic Acids. 22:601–614.
2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Mi B, Li Q, Li T, Liu G and Sai J: High
miR-31-5p expression promotes colon adenocarcinoma progression by
targeting TNS1. Aging (Albany NY). 12:7480–7490. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Li P, Cai JX, Han F, Wang J, Zhou JJ, Shen
KW and Wang LH: Expression and significance of miR-654-5p and
miR-376b-3p in patients with colon cancer. World J Gastrointest
Oncol. 12:492–502. 2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lu M, Wang C, Chen W, Mao C and Wang J:
miR-654-5p Targets GRAP to promote proliferation, metastasis, and
chemoresistance of oral squamous cell carcinoma through Ras/MAPK
signaling. DNA Cell Biol. 37:381–388. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wang S, Guo Y, Zhang X and Wang C:
miR-654-5p inhibits autophagy by targeting ATG7 via mTOR signaling
in intervertebral disc degeneration. Mol Med Rep.
23(444)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Du K, He X and Deng J: MicroRNA-16
inhibits the lipopolysaccharide-induced inflammatory response in
nucleus pulposus cells of the intervertebral disc by targeting
TAB3. Arch Med Sci. 17:500–513. 2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
He J, Xue R, Li S, Lv J, Zhang Y, Fan L,
Teng Y and Wei H: Identification of the potential molecular targets
for human intervertebral disc degeneration based on bioinformatic
methods. Int J Mol Med. 36:1593–1600. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Li N, Gao Q, Zhou W, Lv X, Yang X and Liu
X: MicroRNA-129-5p affects immune privilege and apoptosis of
nucleus pulposus cells via regulating FADD in intervertebral disc
degeneration. Cell Cycle. 19:933–948. 2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Yang W and Sun P: Downregulation of
microRNA-129-5p increases the risk of intervertebral disc
degeneration by promoting the apoptosis of nucleus pulposus cells
via targeting BMP2. J Cell Biochem. 120:19684–19690.
2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhou M, He SJ, Liu W, Yang MJ, Hou ZY,
Meng Q and Qian ZL: EZH2 upregulates the expression of MAPK1 to
promote intervertebral disc degeneration via suppression of
miR-129-5p. J Gene Med. 24(e3395)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Cui S and Zhang L: microRNA-129-5p
shuttled by mesenchymal stem cell-derived extracellular vesicles
alleviates intervertebral disc degeneration via blockade of
LRG1-mediated p38 MAPK activation. J Tissue Eng.
12(20417314211021679)2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Tan L, Xie Y, Yuan Y and Hu K: LncRNA GAS5
as miR-26a-5p sponge regulates the PTEN/PI3K/Akt axis and affects
extracellular matrix synthesis in degenerative nucleus pulposus
cells in vitro. Front Neurol. 12(653341)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Jing W and Liu W: HOXC13-AS induced
extracellular matrix loss via targeting miR-497-5p/ADAMTS5 in
intervertebral disc. Front Mol Biosci. 8(643997)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Bao X, Ren T, Huang Y, Sun K, Wang S, Liu
K, Zheng B and Guo W: Knockdown of long non-coding RNA HOTAIR
increases miR-454-3p by targeting Stat3 and Atg12 to inhibit
chondrosarcoma growth. Cell Death Dis. 8(e2605)2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Li E, Zhao Z, Ma B and Zhang J: Long
noncoding RNA HOTAIR promotes the proliferation and metastasis of
osteosarcoma cells through the AKT/mTOR signaling pathway. Exp Ther
Med. 14:5321–5328. 2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev Genet.
10:155–159. 2009.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhan S, Wang K, Xiang Q, Song Y, Li S,
Liang H, Luo R, Wang B, Liao Z, Zhang Y and Yang C: lncRNA HOTAIR
upregulates autophagy to promote apoptosis and senescence of
nucleus pulposus cells. J Cell Physiol. 235:2195–2208.
2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhan S, Wang K, Song Y, Li S, Yin H, Luo
R, Liao Z, Wu X, Zhang Y and Yang C: Long non-coding RNA HOTAIR
modulates intervertebral disc degenerative changes via
Wnt/β-catenin pathway. Arthritis Res Ther. 21(201)2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y,
Zhang C, Qi Y and Zhao S: Long noncoding RNA PART1 promotes
progression of non-small cell lung cancer cells via JAK-STAT
signaling pathway. Cancer Med. 8:6064–6081. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhou T, Wu L, Ma N, Tang F, Zong Z and
Chen S: LncRNA PART1 regulates colorectal cancer via targeting
miR-150-5p/miR-520h/CTNNB1 and activating Wnt/β-catenin pathway.
Int J Biochem Cell Biol. 118(105637)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhao B, Lu M, Wang D, Li H and He X:
Genome-Wide identification of long noncoding RNAs in human
intervertebral disc degeneration by RNA sequencing. Biomed Res Int.
2016(3684875)2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhang Z, Huo Y, Zhou Z, Zhang P and Hu J:
Role of lncRNA PART1 in intervertebral disc degeneration and
associated underlying mechanism. Exp Ther Med.
21(131)2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Xiang Q, Kang L, Wang J, Liao Z, Song Y,
Zhao K, Wang K, Yang C and Zhang Y: CircRNA-CIDN mitigated
compression loading-induced damage in human nucleus pulposus cells
via miR-34a-5p/SIRT1 axis. EBioMedicine. 53(102679)2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Chen Z, Zhang W, Deng M, Li Y and Zhou Y:
CircGLCE alleviates intervertebral disc degeneration by regulating
apoptosis and matrix degradation through the targeting of
miR-587/STAP1. Aging (Albany NY). 12:21971–21991. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kim KH and Lee MS: Autophagy-a key player
in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337.
2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Kritschil R, Scott M, Sowa G and Vo N:
Role of autophagy in intervertebral disc degeneration. J Cell
Physiol. 237:1266–1284. 2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Wang F, Cai F, Shi R, Wang XH and Wu XT:
Aging and age related stresses: A senescence mechanism of
intervertebral disc degeneration. Osteoarthritis Cartilage.
24:398–408. 2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Li H, Tian L, Li J, Li Y, Du L, Huo Z and
Xu B: The roles of circRNAs in intervertebral disc degeneration:
Inflammation, extracellular matrix metabolism, and apoptosis. Anal
Cell Pathol (Amst). 2022(9550499)2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wu T, Jia X, Zhu Z, Guo K, Wang Q, Gao Z,
Li X, Huang Y and Wu D: Inhibition of miR-130b-3p restores
autophagy and attenuates intervertebral disc degeneration through
mediating ATG14 and PRKAA1. Apoptosis. 27:409–425. 2022.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Yu X, Liu Q, Wang Y, Bao Y, Jiang Y, Li M,
Li Z, Wang B, Yu L, Wang S, et al: Depleted Long Noncoding RNA GAS5
relieves intervertebral disc degeneration via microRNA-17-3p/Ang-2.
Oxid Med Cell Longev. 2022(1792412)2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wen F, Yu J, He CJ, Zhang ZW and Yang AF:
β-ecdysterone protects against apoptosis by promoting autophagy in
nucleus pulposus cells and ameliorates disc degeneration. Mol Med
Rep. 19:2440–2448. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yu X, Wang ZL, Han CL, Wang MW, Jin Y, Jin
XB and Xia QH: LncRNA CASC15 functions as an oncogene by sponging
miR-130b-3p in bladder cancer. Eur Rev Med Pharmacol Sci.
24(7203)2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Liao Y, Wang C, Yang Z, Liu W, Yuan Y, Li
K, Zhang Y, Wang Y, Shi Y, Qiu Y, et al: Dysregulated
Sp1/miR-130b-3p/HOXA5 axis contributes to tumor angiogenesis and
progression of hepatocellular carcinoma. Theranostics.
10:5209–5224. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Guo Q, Zhu X, Wei R, Zhao L, Zhang Z, Yin
X, Zhang Y, Chu C, Wang B and Li X: miR-130b-3p regulates M1
macrophage polarization via targeting IRF1. J Cell Physiol.
236:2008–2022. 2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Li S, Geng J, Xu X, Huang X, Leng D, Jiang
D, Liang J, Wang C, Jiang D and Dai H: miR-130b-3p modulates
epithelial-mesenchymal crosstalk in lung fibrosis by targeting
IGF-1. PLoS One. 11(e0150418)2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367(eaau6977)2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Luo L, Jian X, Sun H, Qin J, Wang Y, Zhang
J, Shen Z, Yang D, Li C, Zhao P, et al: Cartilage endplate stem
cells inhibit intervertebral disc degeneration by releasing
exosomes to nucleus pulposus cells to activate Akt/autophagy. Stem
Cells. 39:467–481. 2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Chen D and Jiang X: Exosomes-derived
miR-125-5p from cartilage endplate stem cells regulates autophagy
and ECM metabolism in nucleus pulposus by targeting SUV38H1. Exp
Cell Res. 414(113066)2022.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Yao D, Zhou Z, Wang P, Zheng L, Huang Y,
Duan Y, Liu B and Li Y: MiR-125-5p/IL-6R axis regulates macrophage
inflammatory response and intestinal epithelial cell apoptosis in
ulcerative colitis through JAK1/STAT3 and NF-κB pathway. Cell
Cycle. 20:2547–2564. 2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sun L, Lian JX and Meng S: MiR-125a-5p
promotes osteoclastogenesis by targeting TNFRSF1B. Cell Mol Biol
Lett. 24(23)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis
D, Jia LT, Wu SX, Huang J, Chen J and Luo ZJ: Deregulated miR-155
promotes Fas-mediated apoptosis in human intervertebral disc
degeneration by targeting FADD and caspase-3. J Pathol.
225:232–242. 2011.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Zhang WL, Chen YF, Meng HZ, Du JJ, Luan
GN, Wang HQ, Yang MW and Luo ZJ: Role of miR-155 in the regulation
of MMP-16 expression in intervertebral disc degeneration. J Orthop
Res. 35:1323–1334. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Zhou X, Li J, Teng J, Liu Y, Zhang D, Liu
L and Zhang W: microRNA-155-3p attenuates intervertebral disc
degeneration via inhibition of KDM3A and HIF1α. Inflamm Res.
70:297–308. 2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Liu Z, Xu L, Zhang K, Guo B, Cui Z and Gao
N: LINC00210 plays oncogenic roles in non-small cell lung cancer by
sponging microRNA-328-5p. Exp Ther Med. 19:3325–3331.
2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Yan J, Wu LG, Zhang M, Fang T, Pan W, Zhao
JL and Zhou Q: miR-328-5p induces human intervertebral disc
degeneration by targeting WWP2. Oxid Med Cell Longev.
2022(3511967)2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Li Z, Li X, Chen C, Li S, Shen J, Tse G,
Chan MTV and Wu WKK: Long non-coding RNAs in nucleus pulposus cell
function and intervertebral disc degeneration. Cell Prolif.
51(e12483)2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Mayama T, Marr AK and Kino T: Differential
expression of glucocorticoid receptor noncoding RNA Repressor Gas5
in autoimmune and inflammatory diseases. Horm Metab Res.
48:550–557. 2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Kolenda T, Guglas K, Kopczyńska M,
Sobocińska J, Teresiak A, Bliźniak R and Lamperska K: Good or not
good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother.
25:808–819. 2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Klijn C, Durinck S, Stawiski EW, Haverty
PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J, et al: A
comprehensive transcriptional portrait of human cancer cell lines.
Nat Biotechnol. 33:306–312. 2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Xu L, Tan Y, Xu F and Zhang Y: Long
noncoding RNA ADIRF antisense RNA 1 upregulates insulin receptor
substrate 1 to decrease the aggressiveness of osteosarcoma by
sponging microRNA-761. Bioengineered. 13:2028–2043. 2022.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhong H, Zhou Z, Guo L, Liu FS, Wang X, Li
J, Lv GH and Zou MX: SERPINA1 is a hub gene associated with
intervertebral disc degeneration grade and affects the nucleus
pulposus cell phenotype through the ADIRF-AS1/miR-214-3p axis.
Transl Res. 245:99–116. 2022.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhao W, Geng D, Li S, Chen Z and Sun M:
LncRNA HOTAIR influences cell growth, migration, invasion, and
apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer
Med. 7:842–855. 2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Loewen G, Jayawickramarajah J, Zhuo Y and
Shan B: Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol.
7(90)2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C,
Fan Q, Wei S, Li H and Liu J: Long non-coding RNA HOTAIR promotes
exosome secretion by regulating RAB35 and SNAP23 in hepatocellular
carcinoma. Mol Cancer. 18(78)2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Wang X, Liu W, Wang P and Li S: RNA
interference of long noncoding RNA HOTAIR suppresses autophagy and
promotes apoptosis and sensitivity to cisplatin in oral squamous
cell carcinoma. J Oral Pathol Med. 47:930–937. 2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhang S, Song S, Cui W, Liu X and Sun Z:
Mechanism of long Noncoding RNA HOTAIR in nucleus pulposus cell
autophagy and apoptosis in intervertebral disc degeneration. Evid
Based Complement Alternat Med. 2022(8504601)2022.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Wang H, Zhu Y, Cao L, Guo Z, Sun K, Qiu W
and Fan H: circARL15 plays a critical role in intervertebral disc
degeneration by modulating miR-431-5p/DISC1. Front Genet.
12(669598)2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wang R, Zhou X, Luo G, Zhang J, Yang M and
Song C: CircRNA RERE Promotes the oxidative stress-induced
apoptosis and autophagy of nucleus pulposus cells through the
miR-299-5p/Galectin-3 Axis. J Healthc Eng.
2021(2771712)2021.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Liu Y, Yang Y, Lin Y, Wei B, Hu X, Xu L,
Zhang W and Lu J: N6 -methyladenosine-modified circRNA
RERE modulates osteoarthritis by regulating β-catenin
ubiquitination and degradation. Cell Prolif: Jun 22, 2022 (Epub
ahead of print).
|
|
88
|
Wang L, Wang P, Su X and Zhao B:
Circ_0001658 promotes the proliferation and metastasis of
osteosarcoma cells via regulating miR-382-5p/YB-1 axis. Cell
Biochem Funct. 38:77–86. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Meng GD and Xu BS: Circular RNA
hsa_circ_0001658 inhibits intervertebral disc degeneration
development by regulating hsa-miR-181c-5p/FAS. Comput Math Methods
Med. 2021(7853335)2021.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Duan X, Yu X and Li Z: Circular RNA
hsa_circ_0001658 regulates apoptosis and autophagy in gastric
cancer through microRNA-182/Ras-related protein Rab-10 signaling
axis. Bioengineered. 13:2387–2397. 2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Cosamalón-Gan I, Cosamalón-Gan T,
Mattos-Piaggio G, Villar-Suárez V, García-Cosamalón J and
Vega-Álvarez JA: Inflammation in the intervertebral disc
herniation. Neurocirugia (Astur: Engl Ed). 32:21–35.
2021.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Le Maitre CL, Hoyland JA and Freemont AJ:
Catabolic cytokine expression in degenerate and herniated human
intervertebral discs: IL-1beta and TNFalpha expression profile.
Arthritis Res Ther. 9(R77)2007.PubMed/NCBI View
Article : Google Scholar
|
|
93
|
Risbud MV and Shapiro IM: Role of
cytokines in intervertebral disc degeneration: Pain and disc
content. Nat Rev Rheumatol. 10:44–56. 2014.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Zhang S, Song S, Zhuang Y, Hu J, Cui W,
Wang X, Zhao Z, Liu X and Sun Z: Role of microRNA-15a-5p/Sox9/NF-κB
axis in inflammatory factors and apoptosis of murine nucleus
pulposus cells in intervertebral disc degeneration. Life Sci.
277(119408)2021.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Dong L and Dong B: miR-489-3p
overexpression inhibits lipopolysaccharide-induced nucleus pulposus
cell apoptosis, inflammation and extracellular matrix degradation
via targeting Toll-like receptor 4. Exp Ther Med.
22(1323)2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Ji Z, Guo R, Ma Z and Li H: Arctigenin
inhibits apoptosis, extracellular matrix degradation, and
inflammation in human nucleus pulposus cells by up-regulating
miR-483-3p. J Clin Lab Anal. 36(e24508)2022.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Che Z, Xueqin J and Zhang Z: LncRNA
OIP5-AS1 accelerates intervertebral disc degeneration by targeting
miR-25-3p. Bioengineered. 12:11201–11212. 2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Zhang C, Yang H, Li Y, Huo P and Ma P:
LNCRNA OIP5-AS1 regulates oxidative low-density
lipoprotein-mediated endothelial cell injury via miR-320a/LOX1
axis. Mol Cell Biochem. 467:15–25. 2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zheng D, Wang B, Zhu X, Hu J, Sun J, Xuan
J and Ge Z: LncRNA OIP5-AS1 inhibits osteoblast differentiation of
valve interstitial cells via miR-137/TWIST11 axis. Biochem Biophys
Res Commun. 511:826–832. 2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Zhi L, Zhao J, Zhao H, Qing Z, Liu H and
Ma J: Downregulation of LncRNA OIP5-AS1 Induced by IL-1β aggravates
osteoarthritis via regulating miR-29b-3p/PGRN. Cartilage. 13
(2_suppl):1345S–1355S. 2021.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Chen Y, Ni H, Zhao Y, Chen K, Li M, Li C,
Zhu X and Fu Q: Potential role of lncRNAs in contributing to
pathogenesis of intervertebral disc degeneration based on
microarray data. Med Sci Monit. 21:3449–3458. 2015.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Li T, Peng Y, Chen Y, Huang X, Li X, Zhang
Z and Du J: Long intergenic non-coding RNA-00917 regulates the
proliferation, inflammation, and pyroptosis of nucleus pulposus
cells via targeting miR-149-5p/NOD-like receptor protein 1 axis.
Bioengineered. 13:6036–6047. 2022.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Liao ZW, Fan ZW, Huang Y, Liang CY, Liu C,
Huang S and Chen CW: Long non-coding RNA MT1DP interacts with
miR-365 and induces apoptosis of nucleus pulposus cells by
repressing NRF-2-induced anti-oxidation in lumbar disc herniation.
Ann Transl Med. 9(151)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Huang JG, Tang X, Wang JJ, Liu J, Chen P
and Sun Y: A circular RNA, circUSP36, accelerates endothelial cell
dysfunction in atherosclerosis by adsorbing miR-637 to enhance WNT4
expression. Bioengineered. 12:6759–6770. 2021.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Liu Y and Zhang Y: Hsa_circ_0134111
promotes osteoarthritis progression by regulating miR-224-5p/CCL1
interaction. Aging (Albany NY). 13:20383–20394. 2021.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Yan P, Sun C, Luan L, Han J, Qu Y, Zhou C
and Xu D: Hsa_circ_0134111 promotes intervertebral disc
degeneration via sponging miR-578. Cell Death Discov.
8(55)2022.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Li Y, Wu X, Li J, Du L, Wang X, Cao J, Li
H, Huo Z, Li G, Pan D, et al: Circ_0004354 might compete with
circ_0040039 to induce NPCs death and inflammatory response by
targeting miR-345-3p-FAF1/TP73 axis in intervertebral disc
degeneration. Oxid Med Cell Longev. 2022(2776440)2022.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Xin J, Wang Y, Zheng Z, Wang S, Na S and
Zhang S: Treatment of intervertebral disc degeneration. Orthop
Surg. 14:1271–1280. 2022.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Guo HY, Guo MK, Wan ZY, Song F and Wang
HQ: Emerging evidence on noncoding-RNA regulatory machinery in
intervertebral disc degeneration: A narrative review. Arthritis Res
Ther. 22(270)2020.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Fekrazad R, Naghdi N, Nokhbatolfoghahaei H
and Bagheri H: The combination of laser therapy and metal
nanoparticles in cancer treatment originated from epithelial
tissues: A literature review. J Lasers Med Sci. 7:62–75.
2016.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Zhao K, Li D, Shi C, Ma X, Rong G, Kang H,
Wang X and Sun B: Biodegradable polymeric nanoparticles as the
delivery carrier for drug. Curr Drug Deliv. 13:494–499.
2016.PubMed/NCBI View Article : Google Scholar
|