You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Rennard SI, Bitterman PB and Crystal RG: Response of the lower respiratory tract to injury. Mechanisms of repair of the parenchymal cells of the alveolar wall. Chest. 84:735–739. 1983.PubMed/NCBI View Article : Google Scholar | |
|
Tian Y, Li H, Qiu T, Dai J, Zhang Y, Chen J and Cai H: Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell. 18(e12858)2019.PubMed/NCBI View Article : Google Scholar | |
|
Selman M, King TE and Pardo A: Idiopathic pulmonary fibrosis: Prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 134:136–151. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Iwai K, Mori T, Yamada N, Yamaguchi M and Hosoda Y: Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure. Am J Respir Crit Care Med. 150:670–675. 1994.PubMed/NCBI View Article : Google Scholar | |
|
Lin Y and Xu Z: Fibroblast senescence in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 8(593283)2020.PubMed/NCBI View Article : Google Scholar | |
|
King TJ, Pardo A and Selman M: Idiopathic pulmonary fibrosis. Lancet. 378:1949–1961. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Rana T, Jiang C, Liu G, Miyata T, Antony V, Thannickal VJ and Liu RM: PAI-1 regulation of TGF-β1-induced alveolar type II cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am J Respir Cell Mol Biol. 62:319–330. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A and Glassberg MK: Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne). 4(118)2017.PubMed/NCBI View Article : Google Scholar | |
|
Liu RM and Liu G: Cell senescence and fibrotic lung diseases. Exp Gerontol. 132(110836)2020.PubMed/NCBI View Article : Google Scholar | |
|
Mohamad KN, Safuan S, Shamsuddin S and Foroozandeh P: Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol. 99(151108)2020.PubMed/NCBI View Article : Google Scholar | |
|
Coppé JP, Desprez PY, Krtolica A and Campisi J: The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 5:99–118. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Kumari R and Jat P: Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 9(645593)2021.PubMed/NCBI View Article : Google Scholar | |
|
Sims JT, Ganguly SS, Bennett H, Friend JW, Tepe J and Plattner R: Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One. 8(e55509)2013.PubMed/NCBI View Article : Google Scholar | |
|
Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, Chiocca S, Suske G, Rotheneder H, Wintersberger E and Seiser C: The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol. 23:2669–2679. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Parimon T, Yao C, Stripp BR, Noble PW and Chen P: Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci. 21(2269)2020.PubMed/NCBI View Article : Google Scholar | |
|
Tanjore H, Blackwell TS and Lawson WE: Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 302:L721–L729. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S, Firth AL, Minoo P, Li C, Beers MF, et al: Grp78 loss in epithelial progenitors reveals an age-linked role for endoplasmic reticulum stress in pulmonary fibrosis. Am J Respir Crit Care Med. 201:198–211. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Araya J, Kojima J, Takasaka N, Ito S, Fujii S, Hara H, Yanagisawa H, Kobayashi K, Tsurushige C, Kawaishi M, et al: Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 304:L56–L69. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Hill C, Li J, Liu D, Conforti F, Brereton CJ, Yao L, Zhou Y, Alzetani A, Chee SJ, Marshall BG, et al: Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis. 10(591)2019.PubMed/NCBI View Article : Google Scholar | |
|
Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO and Morse D: Autophagy in idiopathic pulmonary fibrosis. PLoS One. 7(e41394)2012.PubMed/NCBI View Article : Google Scholar | |
|
Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA, et al: Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 356:1317–1326. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, Vulto I, Xie M, Qi X, Tuder RM, et al: Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA. 105:13051–13056. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Armanios M: Telomeres and age-related disease: How telomere biology informs clinical paradigms. J Clin Invest. 123:996–1002. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Kurundkar A and Thannickal VJ: Redox mechanisms in age-related lung fibrosis. Redox Biol. 9:67–76. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Kim SJ, Cheresh P, Eren M, Jablonski RP, Yeldandi A, Ridge KM, Budinger GRS, Kim DH, Wolf M, Vaughan DE and Kamp DW: Klotho, an antiaging molecule, attenuates oxidant-induced alveolar epithelial cell mtDNA damage and apoptosis. Am J Physiol Lung Cell Mol Physiol. 313:L16–L26. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Disayabutr S, Kim EK, Cha SI, Green G, Naikawadi RP, Jones KD, Golden JA, Schroeder A, Matthay MA, Kukreja J, et al: miR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS One. 11(e158367)2016.PubMed/NCBI View Article : Google Scholar | |
|
Cui H, Ge J, Xie N, Banerjee S, Zhou Y, Liu RM, Thannickal VJ and Liu G: miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions. Am J Physiol Lung Cell Mol Physiol. 312:L415–L424. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wang L, Cheng W and Zhang Z: Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model. Mol Med Rep. 16:310–316. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Pihán P, Carreras-Sureda A and Hetz C: BCL-2 family: Integrating stress responses at the ER to control cell demise. Cell Death Differ. 24:1478–1487. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Burman A, Tanjore H and Blackwell TS: Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol. 68-69:355–365. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, et al: PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 125:521–538. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Ricci A, Cherubini E, Scozzi D, Pietrangeli V, Tabbì L, Raffa S, Leone L, Visco V, Torrisi MR, Bruno P, et al: Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts. J Cell Physiol. 228:1516–1524. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Gui YS, Wang L, Tian X, Li X, Ma A, Zhou W, Zeng N, Zhang J, Cai B, Zhang H, et al: mTOR Overactivation and compromised autophagy in the pathogenesis of pulmonary fibrosis. PLoS One. 10(e138625)2015.PubMed/NCBI View Article : Google Scholar | |
|
Kesireddy VS, Chillappagari S, Ahuja S, Knudsen L, Henneke I, Graumann J, Meiners S, Ochs M, Ruppert C, Korfei M, et al: Susceptibility of microtubule-associated protein 1 light chain 3β (MAP1LC3B/LC3B) knockout mice to lung injury and fibrosis. FASEB J. 33:12392–12408. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Ma H, Wu X, Li Y and Xia Y: Research progress in the molecular mechanisms, therapeutic targets, and drug development of idiopathic pulmonary fibrosis. Front Pharmacol. 13(963054)2022.PubMed/NCBI View Article : Google Scholar | |
|
Tsang AR, Wyatt HD, Ting NS and Beattie TL: hTERT mutations associated with idiopathic pulmonary fibrosis affect telomerase activity, telomere length, and cell growth by distinct mechanisms. Aging Cell. 11:482–490. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, Rosenblatt RL, Shay JW and Garcia CK: Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA. 104:7552–7557. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Bilgili H, Białas AJ, Górski P and Piotrowski WJ: Telomere Abnormalities in the Pathobiology of Idiopathic Pulmonary Fibrosis. J Clin Med. 8(1232)2019.PubMed/NCBI View Article : Google Scholar | |
|
Povedano JM, Martinez P, Flores JM, Mulero F and Blasco MA: Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12:286–299. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F, Tuder RM, Hogan BL, Mitzner W and Armanios M: Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci USA. 112:5099–5104. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Zhang K, Xu L and Cong YS: Telomere dysfunction in idiopathic pulmonary fibrosis. Front Med (Lausanne). 8(739810)2021.PubMed/NCBI View Article : Google Scholar | |
|
Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, et al: Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 470:359–365. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Tsubouchi K, Araya J and Kuwano K: PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm Regen. 38(18)2018.PubMed/NCBI View Article : Google Scholar | |
|
Mora AL, Bueno M and Rojas M: Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest. 127:405–414. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A and Grant R: Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 6(e19194)2011.PubMed/NCBI View Article : Google Scholar | |
|
Kwon Y, Kim J, Lee CY and Kim H: Expression of SIRT1 and SIRT3 varies according to age in mice. Anat Cell Biol. 48:54–61. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Sosulski ML, Gongora R, Feghali-Bostwick C, Lasky JA and Sanchez CG: Sirtuin 3 deregulation promotes pulmonary fibrosis. J Gerontol A Biol Sci Med Sci. 72:595–602. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Amara N, Goven D, Prost F, Muloway R, Crestani B and Boczkowski J: NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax. 65:733–738. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Veith C, Boots AW, Idris M, van Schooten FJ and van der Vliet A: Redox imbalance in idiopathic pulmonary fibrosis: A role for oxidant Cross-talk between NADPH oxidase enzymes and mitochondria. Antioxid Redox Signal. 31:1092–1115. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Li T, Pan M, Wang W, Huang W, Yuan Y, Xie Z, Chen Y, Peng J, Li X and Meng Y: SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. J Transl Med. 20(222)2022.PubMed/NCBI View Article : Google Scholar | |
|
Birch J, Barnes PJ and Passos JF: Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. Pharmacol Ther. 183:34–49. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S and Shetty S: p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis. Am J Pathol. 187:1016–1034. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP and Thannickal VJ: Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 65:56–69. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Moss BJ, Ryter SW and Rosas IO: Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol. 17:515–546. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Poddar S, Kesharwani D and Datta M: Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 232:2938–2945. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Neveu WA, Mills ST, Staitieh BS and Sueblinvong V: TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol. 309:C616–C626. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Rabinovich EI, Kapetanaki MG, Steinfeld I, Gibson KF, Pandit KV, Yu G, Yakhini Z and Kaminski N: Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One. 7(e33770)2012.PubMed/NCBI View Article : Google Scholar | |
|
Huang SK, Scruggs AM, McEachin RC, White ES and Peters-Golden M: Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung. PLoS One. 9(e107055)2014.PubMed/NCBI View Article : Google Scholar | |
|
Bartczak K, Białas AJ, Kotecki MJ, Górski P and Piotrowski WJ: More than a genetic code: Epigenetics of lung fibrosis. Mol Diagn Ther. 24:665–681. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Roth SY, Denu JM and Allis CD: Histone acetyltransferases. Annu Rev Biochem. 70:81–120. 2001.PubMed/NCBI View Article : Google Scholar | |
|
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 370:737–749. 2003.PubMed/NCBI View Article : Google Scholar | |
|
Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, White ES and Peters-Golden M: Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 4(e621)2013.PubMed/NCBI View Article : Google Scholar | |
|
Coward WR, Watts K, Feghali-Bostwick CA, Knox A and Pang L: Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol Cell Biol. 29:4325–4339. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N and Abraham E: miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 207:1589–1597. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Bahudhanapati H, Tan J, Dutta JA, Strock SB, Sembrat J, Àlvarez D, Rojas M, Jäger B, Prasse A, Zhang Y and Kass DJ: MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Biol Chem. 294:5008–5022. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, Kobayashi K and Nakayama K: Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig. 54:397–406. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Itakura E, Kishi C, Inoue K and Mizushima N: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 19:5360–5372. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Ryter SW, Bhatia D and Choi ME: Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal. 30:138–159. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ and Le Saux CJ: Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol. 47:28–36. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Lawrence J and Nho R: The role of the mammalian target of Rapamycin (mTOR) in pulmonary fibrosis. Int J Mol Sci. 19(778)2018.PubMed/NCBI View Article : Google Scholar | |
|
Romero Y, Bueno M, Ramirez R, Álvarez D, Sembrat JC, Goncharova EA, Rojas M, Selman M, Mora AL and Pardo A: mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell. 15:1103–1112. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Nho RS and Hergert P: IPF fibroblasts are desensitized to type I collagen matrix-induced cell death by suppressing low autophagy via aberrant Akt/mTOR kinases. PLoS One. 9(e94616)2014.PubMed/NCBI View Article : Google Scholar | |
|
Zhao H, Wang Y, Qiu T, Liu W and Yao P: Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta. 502:139–147. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu T, Ullenbruch M, Young CY, Yu H, Ding L, Xaubet A, Pereda J, Feghali-Bostwick CA, Bitterman PB, Henke CA, et al: Telomerase and telomere length in pulmonary fibrosis. Am J Respir Cell Mol Biol. 49:260–268. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Nozaki Y, Liu T, Hatano K, Gharaee-Kermani M and Phan SH: Induction of telomerase activity in fibroblasts from bleomycin-injured lungs. Am J Respir Cell Mol Biol. 23:460–465. 2000.PubMed/NCBI View Article : Google Scholar | |
|
Schuliga M, Pechkovsky DV, Read J, Waters DW, Blokland KEC, Reid AT, Hogaboam CM, Khalil N, Burgess JK, Prêle CM, et al: Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J Cell Mol Med. 22:5847–5861. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE and Henderson WJ: Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 7(e33165)2012.PubMed/NCBI View Article : Google Scholar | |
|
Li DY, Li RF, Sun DX, Pu DD and Zhang YH: Mesenchymal stem cell therapy in pulmonary fibrosis: A meta-analysis of preclinical studies. Stem Cell Res Ther. 12(461)2021.PubMed/NCBI View Article : Google Scholar | |
|
Cai SX, Liu AR, Chen S, He HL, Chen QH, Xu JY, Pan C, Yang Y, Guo FM, Huang YZ, et al: Activation of Wnt/β-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice. Stem Cell Res Ther. 6(65)2015.PubMed/NCBI View Article : Google Scholar | |
|
Liu M, Ren D, Wu D, Zheng J and Tu W: Stem cell and idiopathic pulmonary fibrosis: Mechanisms and treatment. Curr Stem Cell Res Ther. 10:466–476. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW and Hogan BL: Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 123:3025–3036. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Wu H, Yu Y, Huang H, Hu Y, Fu S, Wang Z, Shi M, Zhao X, Yuan J, Li J, et al: Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell. 180:107–121.e17. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF, Ou J, Banovich NE, Kropski JA and Tata PR: Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 22:934–946. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M and Lama VN: Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 181:4389–4396. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Gao J, Dennis JE, Muzic RF, Lundberg M and Caplan AI: The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 169:12–20. 2001.PubMed/NCBI View Article : Google Scholar | |
|
Toonkel RL, Hare JM, Matthay MA and Glassberg MK: Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med. 188:133–140. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Álvarez D, Levine M and Rojas M: Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: Current position. Stem Cells Cloning. 8:61–65. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Cárdenes N, Álvarez D, Sellarés J, Peng Y, Corey C, Wecht S, Nouraie SM, Shanker S, Sembrat J, Bueno M, et al: Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Res Ther. 9(257)2018.PubMed/NCBI View Article : Google Scholar | |
|
Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, Park SK, Lee YK, Won JH, Kim YH and Park CS: Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res. 11(16)2010.PubMed/NCBI View Article : Google Scholar | |
|
Margaritopoulos GA, Giannarakis I, Siafakas NM and Antoniou KM: An update on idiopathic pulmonary fibrosis. Panminerva Med. 55:109–120. 2013.PubMed/NCBI | |
|
van Deursen JM: The role of senescent cells in ageing. Nature. 509:439–446. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Blokland K, Waters DW, Schuliga M, Read J, Pouwels SD, Grainge CL, Jaffar J, Westall G, Mutsaers SE, Prêle CM, et al: Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing. Pharmaceutics. 12(389)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang LM, Zhang J, Zhang Y, Fei C, Wang L, Yi ZW and Zhang ZQ: Interleukin-18 promotes fibroblast senescence in pulmonary fibrosis through down-regulating Klotho expression. Biomed Pharmacother. 113(108756)2019.PubMed/NCBI View Article : Google Scholar | |
|
Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, et al: Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 8(14532)2017.PubMed/NCBI View Article : Google Scholar | |
|
Muñoz-Espín D and Serrano M: Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 15:482–496. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Bascands JL and Schanstra JP: Obstructive nephropathy: Insights from genetically engineered animals. Kidney Int. 68:925–937. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Adnot S, Breau M and Houssaini A: PAI-1: A new target for controlling lung-cell senescence and fibrosis? Am J Respir Cell Mol Biol. 62:271–272. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Jiang C, Liu G, Luckhardt T, Antony V, Zhou Y, Carter AB, Thannickal VJ and Liu RM: Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell. 16:1114–1124. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ueno M, Maeno T, Nomura M, Aoyagi-Ikeda K, Matsui H, Hara K, Tanaka T, Iso T, Suga T and Kurabayashi M: Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 300:L740–L752. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Goliwas KF and Deshane JS: Extracellular vesicles: Bidirectional accelerators of cellular senescence in fibrosis? Am J Respir Cell Mol Biol. 63:547–548. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al: Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 4(27066)2015.PubMed/NCBI View Article : Google Scholar | |
|
Kuwano K, Kunitake R, Kawasaki M, Nomoto Y, Hagimoto N, Nakanishi Y and Hara N: P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 154:477–483. 1996.PubMed/NCBI View Article : Google Scholar | |
|
Chilosi M, Carloni A, Rossi A and Poletti V: Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res. 162:156–173. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Alimbetov D, Davis T, Brook AJ, Cox LS, Faragher RG, Nurgozhin T, Zhumadilov Z and Kipling D: Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology. 17:305–315. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Willis BC and Borok Z: TGF-beta-induced EMT: Mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 293:L525–L534. 2007.PubMed/NCBI View Article : Google Scholar | |
|
He W, Tan R, Dai C, Li Y, Wang D, Hao S, Kahn M and Liu Y: Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. J Biol Chem. 285:24665–24675. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Liu J, Peng D, You J, Zhou O, Qiu H, Hao C, Chen H, Fu Z and Zou L: Type 2 alveolar epithelial cells differentiated from human umbilical cord mesenchymal stem cells alleviate mouse pulmonary fibrosis through β-catenin-regulated cell apoptosis. Stem Cells Dev. 30:660–670. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Kadota T, Yoshioka Y, Fujita Y, Araya J, Minagawa S, Hara H, Miyamoto A, Suzuki S, Fujimori S, Kohno T, et al: Extracellular vesicles from fibroblasts induce epithelial-cell senescence in pulmonary fibrosis. Am J Respir Cell Mol Biol. 63:623–636. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Yin Y, Chen H, Wang Y, Zhang L and Wang X: Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles. 10(e12154)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang L, Chen R, Li G, Wang Z, Liu J, Liang Y and Liu JP: FBW7 mediates senescence and pulmonary fibrosis through telomere uncapping. Cell Metab. 32:860–877.e9. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, et al: Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 1(e90558)2016.PubMed/NCBI View Article : Google Scholar | |
|
Shenderov K, Collins SL, Powell JD and Horton MR: Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 131(e143226)2021.PubMed/NCBI View Article : Google Scholar | |
|
Ying H, Fang M, Hang QQ, Chen Y, Qian X and Chen M: Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway. J Cell Mol Med. 25:8662–8675. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A and Ryerson CJ: Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther. 222(107798)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J and Weng Q: Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Birch J and Gil J: Senescence and the SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Veret D and Brondello JM: Senotherapy: Advances and new clinical perspectives. Med Sci (Paris). 36:1135–1142. 2020.PubMed/NCBI View Article : Google Scholar : (In French). | |
|
Liao Z, Yeo HL, Wong SW and Zhao Y: Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines. 9(1769)2021.PubMed/NCBI View Article : Google Scholar | |
|
Chitra P, Saiprasad G, Manikandan R and Sudhandiran G: Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J Mol Med (Berl). 93:1015–1031. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J and Codogno P: Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem. 281:8518–8527. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS, Lane KB, Blackwell TR, Xu C, Markin C, Ware LB, et al: Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: Association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol. 294:L1119–L1126. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, Lang G, Fink L, Bohle RM, Seeger W, et al: Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 178:838–846. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Perera UE, Organ L, Dewage S, Derseh HB, Stent A and Snibson KJ: Increased levels of ER stress and apoptosis in a sheep model for pulmonary fibrosis are alleviated by in vivo blockade of the KCa3.1 Ion Channel. Can Respir J. 2021(6683195)2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu SH, Yang CC, Chan DC, Wu CT, Chen LP, Huang JW, Hung KY and Chiang CK: Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget. 7:22116–22127. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A and Mahavadi P: PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci. 79(151)2022.PubMed/NCBI View Article : Google Scholar | |
|
Pao HP, Liao WI, Tang SE, Wu SY, Huang KL and Chu SJ: Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via Up-regulating Claudin-4 expression. Front Immunol. 12(674316)2021.PubMed/NCBI View Article : Google Scholar | |
|
Qin X, Lin X, Liu L, Li Y, Li X, Deng Z, Chen H, Chen H, Niu Z, Li Z and Hu Y: Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner. J Cell Mol Med. 25:4466–4477. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Le Saux CJ, Davy P, Brampton C, Ahuja SS, Fauce S, Shivshankar P, Nguyen H, Ramaseshan M, Tressler R, Pirot Z, et al: A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One. 8(e58423)2013.PubMed/NCBI View Article : Google Scholar | |
|
Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA and Young NS: Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood. 114:2236–2243. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Arish N, Petukhov D and Wallach-Dayan SB: The role of telomerase and telomeres in interstitial lung diseases: From molecules to clinical implications. Int J Mol Sci. 20(2996)2019.PubMed/NCBI View Article : Google Scholar | |
|
Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, Hardy N, Mihalek AD, Lingala S, Kim YJ, et al: Danazol treatment for telomere diseases. N Engl J Med. 374:1922–1931. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Chambers DC, Lutzky VP, Apte SH, Godbolt D, Feenstra J and Mackintosh J: Successful treatment of telomeropathy-related interstitial lung disease with immunosuppression and danazol. Respirol Case Rep. 8(e607)2020.PubMed/NCBI View Article : Google Scholar | |
|
Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, Mikhail A, Hitchcock CL, Wright VP, Nana-Sinkam SP, et al: Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 187:397–405. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Escargueil AE, Soares DG, Salvador M, Larsen AK and Henriques JA: What histone code for DNA repair? Mutat Res. 658:259–270. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Guo W, Shan B, Klingsberg RC, Qin X and Lasky JA: Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 297:L864–L870. 2009.PubMed/NCBI View Article : Google Scholar | |
|
Pang M and Zhuang S: Histone deacetylase: A potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther. 335:266–272. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Korfei M, Skwarna S, Henneke I, MacKenzie B, Klymenko O, Saito S, Ruppert C, von der Beck D, Mahavadi P, Klepetko W, et al: Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax. 70:1022–1032. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Sanders YY, Hagood JS, Liu H, Zhang W, Ambalavanan N and Thannickal VJ: Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J. 43:1448–1458. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Korfei M, Stelmaszek D, MacKenzie B, Skwarna S, Chillappagari S, Bach AC, Ruppert C, Saito S, Mahavadi P, Klepetko W, et al: Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One. 13(e207915)2018.PubMed/NCBI View Article : Google Scholar | |
|
Mora AL, Rojas M, Pardo A and Selman M: Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov. 16:755–772. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Coward WR, Feghali-Bostwick CA, Jenkins G, Knox AJ and Pang L: A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J. 28:3183–3196. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T and Tu Y: Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 10(670)2019.PubMed/NCBI View Article : Google Scholar | |
|
Liu S, Chen X, Zhang S, Wang X, Du X, Chen J and Zhou G: miR-106b-5p targeting SIX1 inhibits TGF-β1-induced pulmonary fibrosis and epithelial-mesenchymal transition in asthma through regulation of E2F1. Int J Mol Med. 47(04855)2021.PubMed/NCBI View Article : Google Scholar | |
|
Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, Saito N, Fujita Y, Kurita Y, Kobayashi K, et al: Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 17(107)2016.PubMed/NCBI View Article : Google Scholar | |
|
Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, et al: Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 24:1121–1127. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, Raparia K, Gupta MP, Kamp DW and Varga J: SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 7:69321–69336. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, et al: Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. Ebiomedicine. 40:554–563. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, et al: Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 50(1602367)2017.PubMed/NCBI View Article : Google Scholar | |
|
Hohmann MS, Habiel DM, Coelho AL, Verri WJ and Hogaboam CM: Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am J Respir Cell Mol Biol. 60:28–40. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Feng F, Wang Z, Li R, Wu Q, Gu C, Xu Y, Peng W, Han D, Zhou X, Wu J and He H: Citrus alkaline extracts prevent fibroblast senescence to ameliorate pulmonary fibrosis via activation of COX-2. Biomed Pharmacother. 112(108669)2019.PubMed/NCBI View Article : Google Scholar | |
|
Shentu TP, Huang TS, Cernelc-Kohan M, Chan J, Wong SS, Espinoza CR, Tan C, Gramaglia I, van der Heyde H, Chien S and Hagood JS: Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep. 7(18052)2017.PubMed/NCBI View Article : Google Scholar | |
|
Kadota T, Fujita Y, Araya J, Watanabe N, Fujimoto S, Kawamoto H, Minagawa S, Hara H, Ohtsuka T, Yamamoto Y, et al: Human bronchial epithelial cell-derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF-β-WNT crosstalk. J Extracell Vesicles. 10(e12124)2021.PubMed/NCBI View Article : Google Scholar | |
|
Yang S, Liu P, Jiang Y, Wang Z, Dai H and Wang C: Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 9(639657)2021.PubMed/NCBI View Article : Google Scholar | |
|
Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, Yerkovich ST, Khalil D, Atkinson KM and Hopkins PM: A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 19:1013–1018. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Zhao Y, Yan Z, Liu Y, Zhang Y, Shi J, Li J and Ji F: Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: A systematic review and implication for clinical application. Stem Cell Res Ther. 12(470)2021.PubMed/NCBI View Article : Google Scholar | |
|
Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, Zissimopoulos A, Boussios N, Dardzinski B, Gritzalis D, et al: A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med. 11(171)2013.PubMed/NCBI View Article : Google Scholar | |
|
Serrano-Mollar A, Gay-Jordi G, Guillamat-Prats R, Closa D, Hernandez-Gonzalez F, Marin P, Burgos F, Martorell J, Sánchez M, Arguis P, et al: Safety and tolerability of alveolar type ii cell transplantation in idiopathic pulmonary fibrosis. Chest. 150:533–543. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Glassberg MK, Minkiewicz J, Toonkel RL, Simonet ES, Rubio GA, DiFede D, Shafazand S, Khan A, Pujol MV, LaRussa VF, et al: Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): A phase I safety clinical trial. Chest. 151:971–981. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Serrano-Mollar A, Nacher M, Gay-Jordi G, Closa D, Xaubet A and Bulbena O: Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 176:1261–1268. 2007.PubMed/NCBI View Article : Google Scholar | |
|
Poggio HA, Antunes MA, Rocha NN, Kitoko JZ, Morales MM, Olsen PC, Lopes-Pacheco M, Cruz FF and Rocco PRM: Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Res Ther. 9(296)2018.PubMed/NCBI View Article : Google Scholar |