Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2024 Volume 27 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2024 Volume 27 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes

  • Authors:
    • Pao-Huan Chen
    • Ting-Wei Lee
    • Shuen-Hsin Liu
    • Tin Van Huynh
    • Cheng-Chih Chung
    • Yung-Hsin Yeh
    • Yu-Hsun Kao
    • Yi-Jen Chen
  • View Affiliations / Copyright

    Affiliations: Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C., Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C., International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C., Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C., Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, R.O.C.
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 126
    |
    Published online on: February 5, 2024
       https://doi.org/10.3892/etm.2024.12413
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acetyl‑CoA carboxylase 2 plays a crucial role in regulating mitochondrial fatty acid oxidation in cardiomyocytes. Lithium, a monovalent cation known for its cardioprotective potential, has been investigated for its influence on mitochondrial bioenergetics. The present study explored whether lithium modulated acetyl‑CoA carboxylase 2 and mitochondrial fatty acid metabolism in cardiomyocytes and the potential therapeutic applications of lithium in alleviating metabolic stress. Mitochondrial bioenergetic function, fatty acid oxidation, reactive oxygen species production, membrane potential and the expression of proteins involved in fatty acid metabolism in H9c2 cardiomyocytes treated with LiCl for 48 h was measured by using a Seahorse extracellular flux analyzer, fluorescence microscopy and western blotting. Small interfering RNA against glucose transporter type 4 was transfected into H9c2 cardiomyocytes for 48 h to induce metabolic stress mimicking insulin resistance. The results revealed that LiCl at a concentration of 0.3 mM (but not at a concentration of 0.1 or 1.0 mM) upregulated the expression of phosphorylated (p‑)glycogen synthase kinase‑3 beta and downregulated the expression of p‑acetyl‑CoA carboxylase 2 but did not affect the expression of adenosine monophosphate‑activated protein kinase or calcineurin. Cotreatment with TWS119 (8 µM) and LiCl (0.3 mM) downregulated p‑acetyl‑CoA carboxylase 2 expression to a similar extent as did treatment with TWS119 (8 µM) alone. Moreover, LiCl (0.3 mM) inhibited mitochondrial fatty acid oxidation, improved coupling efficiency and the cellular respiratory control ratio, hindered reactive oxygen species production and proton leakage and restored mitochondrial membrane potential in glucose transporter type 4 knockdown‑H9c2 cardiomyocytes. These findings suggested that low therapeutic levels of lithium can downregulate p‑acetyl‑CoA carboxylase 2, thus reducing mitochondrial fatty acid oxidation and oxidative stress in cardiomyocytes.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bertero E and Maack C: Metabolic remodelling in heart failure. Nat Rev Cardiol. 15:457–470. 2018.PubMed/NCBI View Article : Google Scholar

2 

Fillmore N, Mori J and Lopaschuk GD: Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol. 171:2080–2090. 2014.PubMed/NCBI View Article : Google Scholar

3 

Lesnefsky EJ, Chen Q and Hoppel CL: Mitochondrial metabolism in aging heart. Circ Res. 118:1593–611. 2016.PubMed/NCBI View Article : Google Scholar

4 

Lopaschuk GD, Karwi QG, Tian R, Wende AR and Abel ED: Cardiac energy metabolism in heart failure. Circ Res. 128:1487–1513. 2021.PubMed/NCBI View Article : Google Scholar

5 

Marin W, Marin D, Ao X and Liu Y: Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). Int J Mol Med. 47:485–499. 2021.PubMed/NCBI View Article : Google Scholar

6 

Fukushima A and Lopaschuk GD: Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta. 1861:1525–1534. 2016.PubMed/NCBI View Article : Google Scholar

7 

Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S and Chen YJ: Disturbed cardiac metabolism triggers atrial arrhythmogenesis in diabetes mellitus: Energy substrate alternate as a potential therapeutic intervention. Cells. 11(2915)2022.PubMed/NCBI View Article : Google Scholar

8 

Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz-Meana M, Jespersen NR, Kula-Alwar D, Prag HA, Eric Botker H, Dambrova M, et al: Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med. 24:5937–5954. 2020.PubMed/NCBI View Article : Google Scholar

9 

Tong L: Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci. 70:863–891. 2013.PubMed/NCBI View Article : Google Scholar

10 

Brownsey RW, Boone AN, Elliott JE, Kulpa JE and Lee WM: Regulation of acetyl-CoA carboxylase. Biochem Soc Trans. 34(Pt 2):223–227. 2006.PubMed/NCBI View Article : Google Scholar

11 

Malhi GS, Gessler D and Outhred T: The use of lithium for the treatment of bipolar disorder: Recommendations from clinical practice guidelines. J Affect Disord. 217:266–280. 2017.PubMed/NCBI View Article : Google Scholar

12 

Machado-Vieira R: Lithium, stress and resilience in bipolar disorder: Deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord. 233:92–99. 2018.PubMed/NCBI View Article : Google Scholar

13 

Ochoa ELM: Lithium as a neuroprotective agent for bipolar disorder: An overview. Cell Mol Neurobiol. 42:85–97. 2022.PubMed/NCBI View Article : Google Scholar

14 

Singulani MP, De Paula VJR and Forlenza OV: Mitochondrial dysfunction in Alzheimer's disease: Therapeutic implications of lithium. Neurosci Lett. 760(136078)2021.PubMed/NCBI View Article : Google Scholar

15 

Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, et al: Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep. 15:638–650. 2016.PubMed/NCBI View Article : Google Scholar

16 

Zarse K, Terao T, Tian J, Iwata N, Ishii N and Ristow M: Low-dose lithium uptake promotes longevity in humans and metazoans. Eur J Nutr. 50:387–389. 2011.PubMed/NCBI View Article : Google Scholar

17 

Chen PH, Hsiao CY, Chiang SJ, Shen RS, Lin YK, Chung KH and Tsai SY: Cardioprotective potential of lithium and role of fractalkine in euthymic patients with bipolar disorder. Aust N Z J Psychiatry. 57:104–114. 2023.PubMed/NCBI View Article : Google Scholar

18 

Chen PH, Hsiao CY, Chiang SJ and Tsai SY: Association of lithium treatment with reduced left ventricular concentricity in patients with bipolar disorder. Psychiatry Clin Neurosci. 77:59–61. 2023.PubMed/NCBI View Article : Google Scholar

19 

Snitow ME, Bhansali RS and Klein PS: Lithium and therapeutic targeting of GSK-3. Cells. 10(255)2011.PubMed/NCBI View Article : Google Scholar

20 

Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M and Minamoto T: Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci. 170:1363–1372. 2016.PubMed/NCBI View Article : Google Scholar

21 

Terrand J, Bruban V, Zhou L, Gong W, El Asmar Z, May P, Zurhove K, Haffner P, Philippe C, Woldt E, et al: LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem. 284:381–388. 2009.PubMed/NCBI View Article : Google Scholar

22 

Lkhagva B, Kao YH, Lee TI, Lee TW, Cheng WL and Chen YJ: Activation of Class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics. 13:376–385. 2018.PubMed/NCBI View Article : Google Scholar

23 

Brand MD and Nicholls DG: Assessing mitochondrial dysfunction in cells. Biochem J. 435:297–312. 2011.PubMed/NCBI View Article : Google Scholar

24 

Nisr RB and Affourtit C: Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation. Biochim Biophys Acta. 1837:270–276. 2014.PubMed/NCBI View Article : Google Scholar

25 

Chen PH, Chung CC, Lin YF, Kao YH and Chen YJ: Lithium reduces migration and collagen synthesis activity in human cardiac fibroblasts by inhibiting store-operated Ca2+ entry. Int J Mol Sci. 22(842)2021.PubMed/NCBI View Article : Google Scholar

26 

Eaton S: Control of mitochondrial beta-oxidation flux. Prog Lipid Res. 41:197–239. 2022.PubMed/NCBI View Article : Google Scholar

27 

Schlaepfer IR and Joshi M: CPT1A-mediated fat oxidation, mechanisms and therapeutic potential. Endocrinology. 161(bqz046)2020.PubMed/NCBI View Article : Google Scholar

28 

McCarthy CP, Mullins KV and Kerins DM: The role of trimetazidine in cardiovascular disease: Beyond an anti-anginal agent. Eur Heart J Cardiovasc Pharmacother. 2:266–272. 2016.PubMed/NCBI View Article : Google Scholar

29 

Zhao C, Jin C, He X and Xiang M: The efficacy of trimetazidine in non-ischemic heart failure patients: A meta-analysis of randomized controlled trials. Rev Cardiovasc Med. 22:1451–1459. 2021.PubMed/NCBI View Article : Google Scholar

30 

Karwi QG, Sun Q and Lopaschuk GD: The contribution of cardiac fatty acid oxidation to diabetic cardiomyopathy severity. Cells. 10(3259)2021.PubMed/NCBI View Article : Google Scholar

31 

Shu H, Peng Y, Hang W, Zhou N and Wang DW: Trimetazidine in heart failure. Front Pharmacol. 11(569132)2021.PubMed/NCBI View Article : Google Scholar

32 

Sung MM, Hamza SM and Dyck JR: Myocardial metabolism in diabetic cardiomyopathy: Potential therapeutic targets. Antioxid Redox Signal. 22:1606–1630. 2015.PubMed/NCBI View Article : Google Scholar

33 

Chen PH, Chung CC, Liu SH, Kao YH and Chen YJ: Lithium treatment improves cardiac dysfunction in rats deprived of rapid eye movement sleep. Int J Mol Sci. 23(11226)2022.PubMed/NCBI View Article : Google Scholar

34 

Jia G, DeMarco VG and Sowers JR: Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 12:144–153. 2016.PubMed/NCBI View Article : Google Scholar

35 

Riehle C and Abel ED: Insulin signaling and heart failure. Circ Res. 118:1151–1169. 2016.PubMed/NCBI View Article : Google Scholar

36 

Saotome M, Ikoma T, Hasan P and Maekawa Y: Cardiac insulin resistance in heart failure: The role of mitochondrial dynamics. Int J Mol Sci. 20(3552)2019.PubMed/NCBI View Article : Google Scholar

37 

Chen PH, Chao TF, Kao YH and Chen YJ: Lithium interacts with cardiac remodeling: The fundamental value in the pharmacotherapy of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 88:208–214. 2019.PubMed/NCBI View Article : Google Scholar

38 

Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, Tian Y, Wang H and Yang X: Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases. Adv Exp Med Biol. 982:359–370. 2017.PubMed/NCBI View Article : Google Scholar

39 

Nadtochiy SM, Tompkins AJ and Brookes PS: Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: Implications for pathology and cardioprotection. Biochem J. 395:611–618. 2006.PubMed/NCBI View Article : Google Scholar

40 

Carrer A, Laquatra C, Tommasin L and Carraro M: Modulation and pharmacology of the mitochondrial permeability transition: A journey from F-ATP synthase to ANT. Molecules. 26(6463)2021.PubMed/NCBI View Article : Google Scholar

41 

Bonora M, Giorgi C and Pinton P: Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol. 23:266–285. 2022.PubMed/NCBI View Article : Google Scholar

42 

Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, et al: Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 113:1535–1549. 2004.PubMed/NCBI View Article : Google Scholar

43 

Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S and Sollott SJ: Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 104:1240–1252. 2009.PubMed/NCBI View Article : Google Scholar

44 

Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, Hu H, Liu Z, Xu D and Wu L: The key roles of GSK-3β in regulating mitochondrial activity. Cell Physiol Biochem. 44:1445–1459. 2017.PubMed/NCBI View Article : Google Scholar

45 

Hirotani S, Zhai P, Tomita H, Galeotti J, Marquez JP, Gao S, Hong C, Yatani A, Avila J and Sadoshima J: Inhibition of glycogen synthase kinase 3beta during heart failure is protective. Circ Res. 101:1164–1174. 2007.PubMed/NCBI View Article : Google Scholar

46 

Murphy E and Steenbergen C: Inhibition of GSK-3beta as a target for cardioprotection: The importance of timing, location, duration and degree of inhibition. Expert Opin Ther Targets. 9:447–456. 2005.PubMed/NCBI View Article : Google Scholar

47 

Sharma AK, Bhatia S, Al-Harrasi A, Nandave M and Hagar H: Crosstalk between GSK-3β-actuated molecular cascades and myocardial physiology. Heart Fail Rev. 26:1495–1504. 2021.PubMed/NCBI View Article : Google Scholar

48 

Sharma AK, Thanikachalam PV and Bhatia S: The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today. 25:633–641. 2020.PubMed/NCBI View Article : Google Scholar

49 

Bao H, Zhang Q, Liu X, Song Y, Li X, Wang Z, Li C, Peng A and Gong R: Lithium targeting of AMPK protects against cisplatin-induced acute kidney injury by enhancing autophagy in renal proximal tubular epithelial cells. FASEB J. 33:14370–14381. 2019.PubMed/NCBI View Article : Google Scholar

50 

Lee Y, Kim SM, Jung EH, Park J, Lee JW and Han IO: Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Biochim Biophys Acta Mol Cell Biol Lipids. 1865(158552)2020.PubMed/NCBI View Article : Google Scholar

51 

Liu P, Zhang Z, Wang Q, Guo R and Mei W: Lithium chloride facilitates autophagy following spinal cord injury via ERK-dependent pathway. Neurotox Res. 32:535–543. 2017.PubMed/NCBI View Article : Google Scholar

52 

Qu Z, Sun D and Young W: Lithium promotes neural precursor cell proliferation: Evidence for the involvement of the non-canonical GSK-3β-NF-AT signaling. Cell Biosci. 1(18)2011.PubMed/NCBI View Article : Google Scholar

53 

Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S and Pritchet L: Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J Membr Biol. 250:587–604. 2017.PubMed/NCBI View Article : Google Scholar

54 

Parris GE: A hypothesis concerning the biphasic dose-response of tumors to angiostatin and endostatin. Dose Response 13: dose-response. 14-020. Parris, 2015.

55 

Ge W and Jakobsson E: Systems biology understanding of the effects of lithium on cancer. Front Oncol. 9(296)2019.PubMed/NCBI View Article : Google Scholar

56 

Erguven M, Oktem G, Kara AN and Bilir A: Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels. Oncol Lett. 12:2948–2955. 2016.PubMed/NCBI View Article : Google Scholar

57 

Suganthi M, Sangeetha G, Gayathri G and Ravi Sankar B: Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). Biol Trace Elem Res. 150:477–486. 2012.PubMed/NCBI View Article : Google Scholar

58 

Gao XM, Fukamauchi F and Chuang DM: Long-term biphasic effects of lithium treatment on phospholipase C-coupled M3-muscarinic acetylcholine receptors in cultured cerebellar granule cells. Neurochem Int. 22:395–403. 1993.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen P, Lee T, Liu S, Huynh T, Chung C, Yeh Y, Kao Y and Chen Y: Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes. Exp Ther Med 27: 126, 2024.
APA
Chen, P., Lee, T., Liu, S., Huynh, T., Chung, C., Yeh, Y. ... Chen, Y. (2024). Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes. Experimental and Therapeutic Medicine, 27, 126. https://doi.org/10.3892/etm.2024.12413
MLA
Chen, P., Lee, T., Liu, S., Huynh, T., Chung, C., Yeh, Y., Kao, Y., Chen, Y."Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes". Experimental and Therapeutic Medicine 27.4 (2024): 126.
Chicago
Chen, P., Lee, T., Liu, S., Huynh, T., Chung, C., Yeh, Y., Kao, Y., Chen, Y."Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes". Experimental and Therapeutic Medicine 27, no. 4 (2024): 126. https://doi.org/10.3892/etm.2024.12413
Copy and paste a formatted citation
x
Spandidos Publications style
Chen P, Lee T, Liu S, Huynh T, Chung C, Yeh Y, Kao Y and Chen Y: Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes. Exp Ther Med 27: 126, 2024.
APA
Chen, P., Lee, T., Liu, S., Huynh, T., Chung, C., Yeh, Y. ... Chen, Y. (2024). Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes. Experimental and Therapeutic Medicine, 27, 126. https://doi.org/10.3892/etm.2024.12413
MLA
Chen, P., Lee, T., Liu, S., Huynh, T., Chung, C., Yeh, Y., Kao, Y., Chen, Y."Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes". Experimental and Therapeutic Medicine 27.4 (2024): 126.
Chicago
Chen, P., Lee, T., Liu, S., Huynh, T., Chung, C., Yeh, Y., Kao, Y., Chen, Y."Lithium downregulates phosphorylated acetyl‑CoA carboxylase 2 and attenuates mitochondrial fatty acid utilization and oxidative stress in cardiomyocytes". Experimental and Therapeutic Medicine 27, no. 4 (2024): 126. https://doi.org/10.3892/etm.2024.12413
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team