|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Li M, Maso LD and Vaccarella S: Global
trends in thyroid cancer incidence and the impact of overdiagnosis.
Lancet Diabetes Endocrinol. 8:468–470. 2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Jegerlehner S, Bulliard JL, Aujesky D,
Rodondi N, Germann S, Konzelmann I and Chiolero A: NICER Working
Group. Overdiagnosis and overtreatment of thyroid cancer: A
population-based temporal trend study. PLoS One.
12(e0179387)2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Prescott JD and Zeiger MA: The RET
oncogene in papillary thyroid carcinoma. Cancer. 121:2137–2146.
2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Raman P and Koenig RJ: Pax-8-PPAR-γ fusion
protein in thyroid carcinoma. Nat Rev Endocrinol. 10:616–623.
2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Haugen BR: 2015 american thyroid
association management guidelines for adult patients with thyroid
nodules and differentiated thyroid cancer: What is new and what has
changed? Cancer. 123:372–381. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Cabanillas ME, Mcfadden DG and Durante C:
Thyroid cancer. Lancet. 388(2783)2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Cohen Y, Xing M, Mambo E, Guo Z, Wu G,
Trink B, Beller U, Westra WH, Ladenson PW and Sidransky D: BRAF
mutation in papillary thyroid carcinoma. J Natl Cancer Inst.
95:625–627. 2003.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Delellis RA, Lloyd RV and Heitz PU:
Pathology and genetics of tumours of endocrine organs. IARC Press.
2004.
|
|
12
|
Nikiforov YE: Molecular diagnostics of
thyroid tumors. Arch Pathol Lab Med. 135:569–577. 2011.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xing M: BRAF mutation in papillary thyroid
cancer: Pathogenic role, molecular bases, and clinical
implications. Endo Rev. 28:742–762. 2007.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ali KM, Awny S, Ibrahim DA, Metwally IH,
Hamdy O, Refky B, Abdallah A and Abdelwahab K: Role of P53,
E-cadherin and BRAF as predictors of regional nodal recurrence for
papillary thyroid cancer. Ann Diagno Pathol. 40:59–65.
2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ahmed AU, Sarvestani ST, Gantier MP,
Williams BR and Hannigan GE: Integrin-linked kinase modulates
lipopolysaccharide- and helicobacter pylori-induced nuclear factor
κB-activated tumor necrosis factor-α production via regulation of
p65 serine 536 phosphorylation. J Biol Chem. 289:27776–27793.
2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Yin L, Tang Y, Yu S, Wang C, Xiao M, Wang
Y, Liu SJ, Gao L, Huang K and Jin L: The role of BRAF V600E in
reducing AUS/FLUS diagnosis in thyroid fine needle aspiration.
Endocr Pathol. 30:312–317. 2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Tanda ET, Vanni I, Boutros A, Andreotti V,
Bruno W, Ghiorzo P and Spagnolo F: Current state of target
treatment in BRAF mutated melanoma. Front Mol Biosci.
7(154)2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Cheng LY, Haydu LE, Song P, Nie J,
Tetzlaff MT, Kwong LN, Gershenwald JE, Davies MA and Zhang DY: High
sensitivity sanger sequencing detection of BRAF mutations in
metastatic melanoma FFPE tissue specimens. Sci Rep.
11(9043)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Colozza-Gama GA, Callegari F, Bešič N,
Paniza ACJ and Cerutti JM: Machine learning algorithm improved
automated droplet classification of ddPCR for detection of BRAF
V600E in paraffin-embedded samples. Sci Rep.
11(12648)2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Lung J, Hung MS, Lin YC, Jiang YY, Fang
YH, Lu MS, Hsieh CC, Wang CS, Kuan FC, Lu CH, et al: A highly
sensitive and specific real-time quantitative PCR for BRAF V600E/K
mutation screening. Sci Rep. 10(16943)2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Malicherova B, Burjanivova T, Grendar M,
Minarikova E, Bobrovska M, Vanova B, Jasek K, Jezkova E, Kapinova
A, Antosova M, et al: Droplet digital PCR for detection of BRAF
V600E mutation in formalin-fixed, paraffin-embedded melanoma
tissues: A comparison with Cobas((R)) 4800, Sanger sequencing, and
allele-specific PCR. Am J Transl Res. 10:3773–3781. 2018.PubMed/NCBI
|
|
22
|
Sutton BC, Birse RT, Maggert K, Ray T,
Hobbs J, Ezenekwe A, Kazmierczak J, Mosko M, Kish J, Bullock A, et
al: Assessment of common somatic mutations of EGFR, KRAS, BRAF,
NRAS in pulmonary non-small cell carcinoma using iPLEX(R) HS, a new
highly sensitive assay for the MassARRAY(R) System. PLoS One.
12(e0183715)2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Zhu X, Luo Y, Bai Q, Lu Y, Lu Y, Wu L and
Zhou X: Specific immunohistochemical detection of the BRAF V600E
mutation in primary and metastatic papillary thyroid carcinoma. Exp
Mol Pathol. 100:236–241. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Estrada-Rivadeneyra D: Sanger sequencing.
FEBS J. 284(4174)2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Xu J and Zhang S: Mitogen-activated
protein kinase cascades in signaling plant growth and development.
Trends Plant Sci. 20:56–64. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Sanger F, Sanger F, Nicklen S and Coulson
AR: DNA sequencing with chain-terminating inhibitors.
Biotechnology. 24:104–108. 1992.PubMed/NCBI
|
|
27
|
Nyrén P: The history of pyrosequencing.
Methods Mol Biol. 373:1–14. 2007.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Harrington CT, Lin EI, Olson MT and
Eshleman JR: Fundamentals of pyrosequencing. Arch Pathol Lab Med.
137:1296–1303. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Spittle C, Ward MR, Nathanson KL, Gimotty
PA, Rappaport E, Brose MS, Medina A, Letrero R, Herlyn M and
Edwards RH: Application of a BRAF pyrosequencing assay for mutation
detection and copy number analysis in malignant melanoma. J Mol
Diagn. 9:464–471. 2007.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Mcevoy AC, Wood BA, Ardakani NM, Pereira
M, Pearce R, Cowell L, Robinson C, Grieu-Iacopetta F, Spicer AJ,
Amanuel B, et al: Droplet digital PCR for mutation detection in
formalin-fixed, paraffin-embedded melanoma tissues: A comparison
with sanger sequencing and pyrosequencing. J Mol Diagn. 20:240–252.
2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ronaghi M, Karamohamed S, Pettersson B,
Uhlen M and Nyren P: Real-time DNA sequencing using detection of
pyrophosphate release. Anal Biochem. 242:84–89. 1996.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Qingqing Y, Dongyu L, Junfeng S, Shuang S,
Rong Y and Qing C: Comparative study of BRAF V600E gene mutation
detection methods in paraffin specimens of thyroid papillary
carcinoma. Int J Lab Med. 41:1674–1681. 2020.
|
|
33
|
Matsuda K: PCR-based detection methods for
single-nucleotide polymorphism or mutation: Real-time PCR and its
substantial contribution toward technological refinement. Adv Clin
Chem. 80:45–72. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Tian Q, Wen-ting H, Lei G, Hai-zhen L, Yun
L, Ling S, et al: Comparison of real-time PCR method with Sanger
sequencing for detection of BRAF muta tion in papillary thyroid
carcinoma. J Clin Exp Pathol. 31:756–758. 2015.
|
|
36
|
Yu Y, Xiaohua D, Ying L, Xirun Z and
Guangjuan Z: Comparative analysis of detection methods for V600E
mutation of B-Raf gene in papillary thyroid cancer. J Clin Exp
Pathol. 33:815–816. 2017.
|
|
37
|
Aguilar-Mahecha A, Lafleur J, Brousse S,
Savichtcheva O, Holden KA, Faulkner N, McLennan G, Jensen TJ and
Basik M: Early, on-treatment levels and dynamic changes of genomic
instability in circulating tumor DNA predict response to treatment
and outcome in metastatic breast cancer patients. Cancers (Basels).
13(1331)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
van Dijk EL, Auger H, Jaszczyszyn Y and
Thermes C: Ten years of next-generation sequencing technology.
Trends Genet. 30:418–426. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Leprieur EG, Helias-Rodzewicz Z, Kamga PT,
Costantini A, Julie C, Corjon A, Dumenil C, Dumoulin J, Giraud V,
Labrune S, et al: Sequential ctDNA whole-exome sequencing in
advanced lung adenocarcinoma with initial durable tumor response on
immune checkpoint inhibitor and late progression. J Immunother
Cancer. 8(e000527)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Beaubier N, Tell R, Lau D, Parsons JR,
Bush S, Perera J, Sorrells S, Baker T, Chang A, Michuda J, et al:
Clinical validation of the tempus xT next-generation targeted
oncology sequencing assay. Oncotarget. 10:2384–2396.
2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Glenn TC: Field guide to next-generation
DNA sequencers. Mol Ecol Resour. 11:759–769. 2011.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Smallridge RC, Ana-Maria C, Asmann YW,
Casler JD, Serie DJ, Reddi HV, Cradic KW, Rivera M, Grebe SK,
Necela BM, et al: RNA sequencing identifies multiple fusion
transcripts, differentially expressed genes, and reduced expression
of immune function genes in BRAF (V600E) mutant vs BRAF wild-type
papillary thyroid carcinoma. J Clin Endocrinol Metab. 99:E338–E347.
2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ihle M, Fassunke J, König K, Grünewald I,
Schlaak M, Kreuzberg N, Tietze L, Schildhaus HU, Büttner R and
Merkelbach-Bruse S: Comparison of high resolution melting analysis,
pyrosequencing, next generation sequencing and immunohistochemistry
to conventional Sanger sequencing for the detection of p.V600E and
non-p.V600E BRAF mutations. BMC Cancer. 14(13)2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Tetzlaff M, Pattanaprichakul P, Wargo J,
Fox P, Patel K, Estrella J, Broaddus RR, Williams MD, Davies MA,
Routbort MJ, et al: Utility of BRAF V600E immunohistochemistry
expression pattern as a surrogate of BRAF mutation status in 154
patients with advanced melanoma. Hum Pathol. 46:1101–1110.
2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Forthun R, Hovland R, Schuster C,
Puntervoll H, Brodal H, Namløs H, Aasheim LB, Meza-Zepeda LA,
Gjertsen BT, Knappskog S and Straume O: ctDNA detected by ddPCR
reveals changes in tumour load in metastatic malignant melanoma
treated with bevacizumab. Sci Rep. 9(17471)2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Pellecchia S, Sepe R, Federico A, Cuomo M,
Credendino S, Pisapia P, Bellevicine C, Nicolau-Neto P, Ramundo MS,
Crescenzi E, et al: The Metallophosphoesterase-domain-containing
protein 2 (MPPED2) gene acts as tumor suppressor in breast
cancer. Cancers (Basel). 11(797)2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Yanping X, Yanping J, Jiayi F and Shirong
Z: Detection of BRAF gene mutation in papillary thyroid carcinoma
by probe amplification block mutation and digital PCR. J Clin Exp
Pathol. 37:227–229. 2021.
|
|
48
|
Capper D, Berghoff AS, Magerle M, Ilhan A,
Wohrer A, Hackl M, Pichler J, Pusch S, Meyer J, Habel A, et al:
Immunohistochemical testing of BRAF V600E status in 1,120 tumor
tissue samples of patients with brain metastases. Acta Neuropathol.
123:223–233. 2011.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Koperek O, Kornauth C, Capper D, Berghoff
AS, Asari R, Niederle B, von Deimling A, Birner P and Preusser M:
Immunohistochemical detection of the BRAF V600E-mutated protein in
papillary thyroid carcinoma. Am J Surg Pathol. 36:844–850.
2012.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Fu G, Chazen RS, MacMillan C and Witterick
IJ: Development of a molecular assay for detection and
quantification of the BRAF variation in residual tissue from
thyroid nodule fine-needle aspiration biopsy specimens. JAMA Netw
Open. 4(e2127243)2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rashid FA, Tabassum S, Khan MS, Ansari HR,
Asif M, Sheikh AK and Aga SS: VE1 immunohistochemistry is an
adjunct tool for detection of BRAF(V600E) mutation: Validation in
thyroid cancer patients. J Clin Lab Anal. 35(e23628)2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Bullock M, O'Neill C, Chou A, Clarkson A,
Dodds T, Toon C, Sywak M, Sidhu SB, Delbridge LW, Robinson BG, et
al: Utilization of a MAB for BRAF (V600E) detection in papillary
thyroid carcinoma. Endocrin Related Cancer. 19:779–784.
2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhao J, Liu P, Yu Y, Zhi J, Zheng X, Yu J
and Gao M: Comparison of diagnostic methods for the detection of a
BRAF mutation in papillary thyroid cancer. Oncol Lett.
17:4661–4666. 2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Choden S, Keelawat S, Jung CK and Bychkov
A: VE1 immunohistochemistry improves the limit of genotyping for
detecting BRAFV600E mutation in papillary thyroid cancer. Cancers
(Basel). 12(596)2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Colomba E, Helias-Rodzewicz Z, Von
Deimling A, Marin C, Terrones N, Pechaud D, Surel S, Côté JF,
Peschaud F, Capper D, et al: Detection of BRAF p.V600E mutations in
melanomas: Comparison of four methods argues for sequential use of
immunohistochemistry and pyrosequencing. J Mol Diagn. 15:94–100.
2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Rössle M, Sigg M, Rüschoff JH, Wild PJ,
Moch H, Weber A and Rechsteiner M: Ultra-deep sequencing confirms
immunohistochemistry as a highly sensitive and specific method for
detecting BRAF V600E mutations in colorectal carcinoma. Virchows
Arch. 463:623–631. 2013.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Routhier CA, Mochel MC, Lynch K,
Dias-Santagata D, Louis DN and Hoang MP: Comparison of 2 monoclonal
antibodies for immunohistochemical detection of BRAF V600E mutation
in malignant melanoma, pulmonary carcinoma, gastrointestinal
carcinoma, thyroid carcinoma, and gliomas. Hum Pathol.
44:2563–2570. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Mfisher KE, Neill SG, Ehsani L, Caltharp
SA, Siddiqui MT and Cohen C: Immunohistochemical Investigation of
BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF
antibodies. Appl Immunohistochem Mol Morphol. 22:562–567.
2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Czarniecka A, Oczko-Wojciechowska M and
Barczyński M: BRAF V600E mutation in prognostication of papillary
thyroid cancer (PTC) recurrence. Gland Surg. 5:495–505.
2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Liu LQ, Zhang HY, Xiao-Lia WU, Zhang W,
Chen XD and Wang J: Detection of KRAS and BRAF mutations in
non-small cell lung cancer by high resolution melting analysis.
Chin J Clin Laborat Sci. 2012.
|
|
61
|
Wang Z, Jing C, Cao H, Rong MA and
Jianzhong WU: Establishment and primary clinical application of
detecting EGFR mutations by high resolution melting analysis. Chin
J Surg Oncol. 2014.
|
|
62
|
Junming T, Q L, Xueca W and Guohong Q:
Establishment and primary clinical application of detecting BRAF
V600E mutations by HRM analysis. Chin J Surg Onco. 9:243–245.
2017.
|
|
63
|
Loes IM, Immervoll H, Angelsen JH, Horn A,
Geisler J, Busch C, Lønning PE and Knappskog S: Performance
comparison of three BRAF V600E detection methods in malignant
melanoma and colorectal cancer specimens. Tumour Biol.
36:1003–1013. 2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Tian HX, Zhang XC, Wang Z, Chen JG, Chen
SL, Guo WB and Wu YL: Establishment and application of a multiplex
genetic mutation-detection method of lung cancer based on MassARRAY
platform. Cancer Biol Med. 13:68–76. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Beckmann JS and Soller M: Restriction
fragment length polymorphism in genetic improvement: Methodologies,
mapping and costs. Theor Appl Genet. 67:35–43. 1983.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lin AJ, Samson P, DeWees T, Henke L,
Baranski T, Schwarz J, Pfeifer J, Grigsby P and Markovina S: A
molecular approach combined with American thyroid association
classification better stratifies recurrence risk of classic
histology papillary thyroid cancer. Cancer Med. 8:437–446.
2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Sezer H, Uren N and Yazici D: Association
between BRAF(V600E) mutation and the clinicopathological features
in incidental papillary thyroid microcarcinoma: A single-center
study in Turkish patients. North Clin Istanb. 7:321–328.
2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Orita M, Suzuki Y, Sekiya T and Hayashi K:
Rapid and sensitive detection of point mutations and DNA
polymorphisms using the polymerase chain reaction. Genomics.
5:874–879. 1989.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Akhtar MS, Akhter N, Najm MZ, Deo SVS,
Shukla NK, Almalki SSR, Alharbi RA, Sindi AAA, Alruwetei A, Ahmad A
and Husain SA: Association of mutation and low expression of the
CTCF gene with Breast cancer progression. Saudi Pharm J.
28:607–614. 2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Anwar M, Malhotra P, Kochhar R, Bhatia A,
Mahmood A, Singh R and Mahmood S: TCF 4 tumor suppressor: A
molecular target in the prognosis of sporadic colorectal cancer in
humans. Cell Mol Biol Lett. 25(24)2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Al-Aaraji AJ, Al-Qaysi SA and SalihBaay A:
Haplotype in ABCC4 gene by PCR-SSCP technique in Iraqi Asthmatic
patients. Journal of Physics Conference Series.
1294(062037)2019.
|
|
72
|
Gogri H, Ray S, Agrawal S, Aruna S, Ghosh
K and Gorakshakar A: Heterogeneity of O blood group in India:
Peeping through the window of molecular biology. Asian J Transfus
Sci. 12:62–68. 2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Aliarab A, Yaghmaei B, Ghaderian S,
Khoshnia M and Joshaghani HR: Effect of gilbert's syndrome
associated polymorphic alleles (rs8175347 and rs4148323) of
UDP-glucuronyl transferase on serum bilirubin level. Meta Gene.
26(100788)2020.
|
|
74
|
Al-Thuwaini T: Association between
polymorphism in BMP15 and GDF9 genes and impairing female fecundity
in diabetes type 2. Middle East Fertility Society J.
25(25)2020.
|
|
75
|
Wang X, Zhang Y, Mei H, An C, Liu C, Zhang
Y, Zhang Y and Xin C: Study on the relationship between respiratory
distress syndrome and SP-A1 (rs1059057) gene polymorphism in
mongolian very premature infants. Front Pediatr.
8(81)2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Heidari MM, Khatami M, Danafar A, Dianat
T, Farahmand G and Talebi AR: Mitochondrial genetic variation in
Iranian infertile men with varicocele. Int J Fertil Steril.
10:303–309. 2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Takano H, Shibata T, Nakamura M, Sakurai
N, Hayashi T, Ota M, Nomura-Horita T, Hayashi R, Shimasaki T,
Otsuka T, et al: Effect of DNMT3A polymorphisms on CpG island
hypermethylation in gastric mucosa. BMC Med Gene.
21(205)2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Li M, Gao L, Qu L, Sun J, Yuan G, Xia W,
Niu J, Fu G and Zhang L: Characteristics of PCR-SSCP and RAPD-HPCE
methods for identifying authentication of Penis et testis cervi in
traditional Chinese medicine based on cytochrome b gene.
Mitochondrial DNA A DNA Mapp Seq Anal. 27:2757–2762.
2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Hong B, Winkel A, Stumpp N, Abdallat M,
Saryyeva A, Runge J, Stiesch M and Krauss JK: Detection of
bacterial DNA on neurostimulation systems in patients without overt
infection. Clin Neurol Neurosurg. 184(105399)2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Matini M, Rezaie S, Mohebali M, Maghsood
AH, Rabiee S, Fallah M and Rezaeian M: Genetic identification of
trichomonas vaginalis by using the actin gene and molecular based
methods. Iran J Parasitol. 9:329–335. 2014.PubMed/NCBI
|
|
81
|
Hashim HO and Al-Shuhaib MB: Exploring the
potential and limitations of PCR-RFLP and PCR-SSCP for SNP
detection: A review. J Appl Biotechnol Rep. 6:137–144. 2019.
|
|
82
|
Kakavas KV: Sensitivity and applications
of the PCR single-strand conformation polymorphism method. Mol Biol
Rep. 48:3629–3635. 2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Barbacid M: ras genes. Ann Rev Biochem.
56:779–827. 1986.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Shunbo L, Jingjing H and Dan G: Analysis
of clinical risk factors for cervical central lymph node metastasis
in papillary thyroid carcinoma. J Jinan Univ (Natural Science &
Medicine Edition). 2018;v.39;No.194(06):67-71.
|
|
85
|
Weichao C, Fan Y and Ankui Y: Status quo
of preoperative color Doppler ultrasound evaluation of central
lymph node metastasis of papillary thyroid cancer in China. Chin J
Clin Oncol. 046:1040–1045. 2019.
|
|
86
|
Davies L and Randolph G: Evidence-based
evaluation of the thyroid nodule. Otolaryngol Clin North Am.
47:461–474. 2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Beisa A, Kvietkauskas M, Beisa V, Stoškus
M, Ostanevičiūtė E, Jasiūnas E, Griškevičius L, Šeinin D, Šileikytė
A and Strupas K: Significance of BRAF V600E mutation and
cytomorphological features for the optimization of papillary
thyroid cancer diagnostics in cytologically indeterminate thyroid
nodules. Exp Clin Endocrinol Diabetes. 127:247–254. 2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Boursault L, Haddad V, Vergier B,
Cappellen D, Verdon S, Bellocq JP, Jouary T and Merlio JP: Tumor
homogeneity between primary and metastatic sites for braf status in
metastatic melanoma determined by immunohistochemical and molecular
testing. PLoS One. 8(e70826)2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Sithanandam G, Druck T, Cannizzaro LA,
Leuzzi G, Huebner K and Rapp UR: B-raf and a B-raf pseudogene are
located on 7q in man. Oncogene. 7:795–799. 1992.PubMed/NCBI
|
|
90
|
Vasko V, Ferrand M, Di Cristofaro J,
Carayon P, Henry JF and de Micco C: Specific pattern of RAS
oncogene mutations in follicular thyroid tumors. J Clin Endocrinol
Metab. 6:2745–2752. 2003.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Zhu Z, Manoj G, Nikiforova MN, Fischer AH
and Nikiforov YE: Molecular profile and clinical-pathologic
features of the follicular variant of papillary thyroid carcinoma.
An unusually high prevalence of ras mutations. Am J Clin Pathol.
1:71–77. 2003.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Cantara S, Capezzone M, Marchisotta S,
Capuano S, Busonero GP, Toti P, Di Santo A, Caruso G, Carli AF,
Brilli L, et al: Impact of proto-oncogene mutation detection in
cytological specimens from thyroid nodules improves the diagnostic
accuracy of cytology. J Clin Endocrinol Metab. 95:1365–1369.
2010.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Ce Ccherini I, Bocciardi R, Luo Y, Pasini
B, Hofstra R, Takahashi M and Romeo G: Exon structure and flanking
intronic sequences of the human RET proto-oncogene. Biochem Biophys
Res Commun. 196:1288–1295. 1993.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Airaksinen MS, Titievsky A and Saarma M:
GDNF family neurotrophic factor signaling: Four masters, one
servant? Mol Cell Neurosci. 13:313–325. 1999.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Myers SM, Eng C, Ponder BA and Mulligan
LM: Characterization of RET proto-oncogene 3' splicing variants and
polyadenylation sites: A novel C-terminus for RET. Oncogene.
11:2039–2045. 1995.PubMed/NCBI
|
|
96
|
Stapleton P, Weith A, Urbanek P, Kozmik Z
and Busslinger M: Chromosomal localization of seven PAX genes and
cloning of a novel family member, PAX-9. Nat Genet. 3:292–298.
1993.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Michalik L, Auwerx J, Berger JP,
Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T,
Lazar MA, O'Rahilly S, et al: International Union of Pharmacology.
LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev.
58:726–741. 2006.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Marques AR, Espadinha C, Catarino AL,
Moniz S, Pereira T, Sobrinho LG and Leite V: Expression of
PAX8-PPAR gamma 1 rearrangements in both follicular thyroid
carcinomas and adenomas. J Clin Endocrinol Metabol. 8:3947–3952.
2002.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Greco A, Miranda C and Pierotti MA:
Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol
Cell Endocrinol. 321:44–49. 2010.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Greco A, Miranda C, Pagliardini S, Fusetti
L, Bongarzone I and Pierotti MA: Chromosome 1 rearrangements
involving the genes TPR and NTRK1 produce structurally different
thyroid-specific TRK oncogenes. Genes Chromosomes Cancer.
19:112–123. 1997.PubMed/NCBI
|
|
101
|
Smallridge RC, Marlow LA and Copland JA:
Anaplastic thyroid cancer: Molecular pathogenesis and emerging
therapies. Endocr Relat Cancer. 16:17–44. 2009.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Li W, Zhou J, Xu L, Su X, Liu Q and Pang
H: Identification of genes associated with papillary thyroid
carcinoma (PTC) for diagnosis by integrated analysis. Horm Metab
Res. 48:226–231. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Sulaieva O, Chernenko O, Chereshneva Y,
Tsomartova D and Larin O: Thyroid stimulating hormone levels and
BRAFV600E mutation contribute to pathophysiology of papillary
thyroid carcinoma: Relation to outcomes? Pathophysiology.
26:129–135. 2019.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Yanting L, Haiyong Z, Feixing Z, Xulian L
and Mengjun H: Consistency of BRAF (V600E) protein expression and
gene mutation in papillary thyroid cancer and its clinical
significance. J Clin Exp Pathol. 34:42–45. 2018.
|
|
105
|
Martinez JRW, Vargas-Salas S, Gamboa SU,
Munoz E, Dominguez JM, Leon A, Droppelmann N, Solar A, Zafereo M,
Holsinger FC and González HE: The combination of RET, BRAF and
demographic data identifies subsets of patients with aggressive
papillary thyroid cancer. Horm Cancer. 10:97–106. 2019.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Xing M, Alzahrani AS, Carson KA, Viola D,
Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, et al:
Association between BRAF V600E mutation and mortality in patients
with papillary thyroid cancer. J Am Med Assoc.
310(535)2013.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Melo M, da Rocha AG, Batista R, Vinagre J,
Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V, Lobo C, et al:
TERT, BRAF and NRAS in primary thyroid cancer and metastatic
disease. J Clin Endocrinol Metab. 6:1898–1907. 2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Hong C, Zequan C and Yongli Y: Research
progress of targeted therapy in medullary thyroid carcinoma. J
Shanghai Jiaotong University (Medical Science). 31:1470–1474.
2011.
|
|
109
|
Kesby NL, Papachristos AJ, Gild M, Aniss
A, Sywak MS, Clifton-Bligh R, Sidhu SB and Glover AR: Outcomes of
advanced medullary thyroid carcinoma in the era of targeted
therapy. Ann Surg Oncol. 29:64–71. 2022.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Tianle Y, Lisha X, Yutao F, Shuting W,
Renqi T and Xin J: Research status on sorafenib combined medication
in anapastic thyroid cancer. Chin J Clin Pharmacol. 37(4)2021.
|
|
111
|
Xiaoli H, Zhengjie W and Hua P:
Construction of human medullary thyroid carcinoma phage antibody
library and preliminary identification. J Chongqing Med University.
38:1040–1043. 2013.
|
|
112
|
Jimei X, Sen Z, Qiong L, Wenbo L and Hua
P: Construction and screenning of a natural phage antibody library
of human anaplastic thyroid carcinoma. Immunol J. 31:692–696.
2015.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Chunping D, Zhilin L, Chunjun L, Changhong
W and Yun M: Gene expression and tumor microenvironment alterations
in BARF mutant papillary thyroid carcinoma. Shandong Med J.
60:25–28. 2020.
|
|
114
|
Mehnert JM, Varga A, Brose MS, Aggarwal
RR, Lin CC, Prawira A, de Braud F, Tamura K, Doi T, Piha-Paul SA,
et al: Safety and antitumor activity of the anti-PD-1 antibody
pembrolizumab in patients with advanced, PD-L1-positive papillary
or follicular thyroid cancer. BMC Cancer. 19(196)2019.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Bai Y, Guo T, Huang X, Wu Q, Niu D, Ji X,
Feng Q, Li Z and Kakudo K: In papillary thyroid carcinoma,
expression by immunohistochemistry of BRAF V600E, PD-L1, and PD-1
is closely related. Virchows Arch. 472:779–787. 2018.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Trybek T, Walczyk A, Gąsior-Perczak D,
Pałyga I, Mikina E, Kowalik A, Hińcza K, Kopczyński J, Chrapek M,
Góźdź S and Kowalska A: Impact of BRAF V600E and TERT promoter
mutations on response to therapy in papillary thyroid cancer.
Endocrinology. 160:2328–2338. 2019.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Landa I and Knauf JA: Mouse models as a
tool for understanding progression in BrafV600E-driven thyroid
cancers. Endocrinol Metab (Seoul). 34:11–22. 2019.PubMed/NCBI View Article : Google Scholar
|