|
1
|
Cai Y, Fleming C and Yan J: New insights
of T cells in the pathogenesis of psoriasis. Cell Mol Immunol.
9:302–309. 2012.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Kim J and Krueger JG: Highly effective new
treatments for psoriasis target the IL-23/Type 17 T cell autoimmune
axis. Annu Rev Med. 68:255–269. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lowes MA, Russell CB, Martin DA, Towne JE
and Krueger JG: The IL-23/T17 pathogenic axis in psoriasis is
amplified by keratinocyte responses. Trends Immunol. 34:174–181.
2013.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Hawkes JE, Chan TC and Krueger JG:
Psoriasis pathogenesis and the development of novel targeted immune
therapies. J Allergy Clin Immunol. 140:645–653. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Zhang Q and Vignali DA: Co-stimulatory and
co-inhibitory pathways in autoimmunity. Immunity. 44:1034–1051.
2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Mahoney KM, Rennert PD and Freeman GJ:
Combination cancer immunotherapy and new immunomodulatory targets.
Nat Rev Drug Discov. 14:561–584. 2015.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Schnell A, Bod L, Madi A and Kuchroo VK:
The yin and yang of co-inhibitory receptors: Toward anti-tumor
immunity without autoimmunity. Cell Res. 30:285–299.
2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Reynolds J, Sando GS, Marsh OB, Salama AD,
Evans DJ, Cook HT and Pusey CD: Stimulation of the PD-1/PDL-1
T-cell co-inhibitory pathway is effective in treatment of
experimental autoimmune glomerulonephritis. Nephrol Dial
Transplant. 27:1343–1350. 2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Ibañez-Vega J, Vilchez C, Jimenez K,
Guevara C, Burgos PI and Naves R: Cellular and molecular regulation
of the programmed death-1/programmed death ligand system and its
role in multiple sclerosis and other autoimmune diseases. J
Autoimmun. 123(102702)2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kurita M, Yoshihara Y, Ishiuji Y, Chihara
M, Ishiji T, Asahina A and Yanaba K: Expression of T-cell
immunoglobulin and immunoreceptor tyrosine-based inhibitory motif
domain on CD4(+) T cells in patients with atopic dermatitis. J
Dermatol. 46:37–42. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Du Y, Nie L, Xu L, Wu X, Zhang S and Xue
J: Serum levels of soluble programmed death-1 (sPD-1) and soluble
programmed death ligand 1(sPD-L1) in systemic lupus erythematosus:
Association with activity and severity. Scand J Immunol.
92(e12884)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Greb JE, Goldminz AM, Elder JT, Lebwohl
MG, Gladman DD, Wu JJ, Mehta NN, Finlay AY and Gottlieb AB:
Psoriasis. Nat Rev Dis Primers. 2(16082)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lee HJ and Kim M: Challenges and future
trends in the treatment of psoriasis. Int J Mol Sci.
24(13313)2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lin X and Huang T: Co-signaling molecules
in psoriasis pathogenesis: Implications for targeted therapy. Hum
Immunol. 76:95–101. 2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Salama AK and Hodi FS: Cytotoxic
T-lymphocyte-associated antigen-4. Clin Cancer Res. 17:4622–4628.
2011.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Suárez-Fariñas M, Li K, Fuentes-Duculan J,
Hayden K, Brodmerkel C and Krueger JG: Expanding the psoriasis
disease profile: Interrogation of the skin and serum of patients
with moderate-to-severe psoriasis. J Invest Dermatol.
132:2552–2564. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Liu P, He Y, Wang H, Kuang Y, Chen W, Li
J, Chen M, Zhang J, Su J, Zhao S, et al: The expression of mCTLA-4
in skin lesion inversely correlates with the severity of psoriasis.
J Dermatol Sci. 89:233–240. 2018.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Wang K, Zhu Q, Lu Y, Lu H, Zhang F, Wang X
and Fan Y: CTLA-4 +49 G/A polymorphism confers autoimmune disease
risk: An updated meta-analysis. Genet Test Mol Biomarkers.
21:222–227. 2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Wang XB, Zhao X, Giscombe R and Lefvert
AK: A CTLA-4 gene polymorphism at position -318 in the promoter
region affects the expression of protein. Genes Immun. 3:233–234.
2002.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Ueda H, Howson JM, Esposito L, Heward J,
Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova
G, et al: Association of the T-cell regulatory gene CTLA4 with
susceptibility to autoimmune disease. Nature. 423:506–511.
2003.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Pérez-García A, Osca G, Bosch-Vizcaya A,
Kelleher N, Santos NY, Rodríguez R, González Y, Roncero JM, Coll R,
Serrando M, et al: Kinetics of the CTLA-4 isoforms expression after
T-lymphocyte activation and role of the promoter polymorphisms on
CTLA-4 gene transcription. Hum Immunol. 74:1219–1224.
2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Dursun HG, Yılmaz HO, Dursun R and
Kulaksızoğlu S: Association of Cytotoxic T Lymphocyte Antigen-4
gene polymorphisms with psoriasis vulgaris: A case-control study in
turkish population. J Immunol Res. 2018(1643906)2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Abrams JR, Lebwohl MG, Guzzo CA, Jegasothy
BV, Goldfarb MT, Goffe BS, Menter A, Lowe NJ, Krueger G, Brown MJ,
et al: CTLA4Ig-mediated blockade of T-cell costimulation in
patients with psoriasis vulgaris. J Clin Invest. 103:1243–1252.
1999.PubMed/NCBI View
Article : Google Scholar
|
|
24
|
Abrams JR, Kelley SL, Hayes E, Kikuchi T,
Brown MJ, Kang S, Lebwohl MG, Guzzo CA, Jegasothy BV, Linsley PS
and Krueger JG: Blockade of T lymphocyte costimulation with
cytotoxic T lymphocyte-associated antigen 4-immunoglobulin
(CTLA4Ig) reverses the cellular pathology of psoriatic plaques,
including the activation of keratinocytes, dendritic cells, and
endothelial cells. J Exp Med. 192:681–694. 2000.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Altmeyer MD, Kerisit KG and Boh EE:
Therapeutic hotline. Abatacept: Our experience of use in two
patients with refractory psoriasis and psoriatic arthritis.
Dermatol Ther. 24:287–290. 2011.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Singh JA, Guyatt G, Ogdie A, Gladman DD,
Deal C, Deodhar A, Dubreuil M, Dunham J, Husni ME, Kenny S, et al:
Special Article: 2018 American College of Rheumatology/National
psoriasis foundation guideline for the treatment of psoriatic
arthritis. Arthritis Rheumatol. 71:5–32. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Mease PJ, Gottlieb AB, van der Heijde D,
FitzGerald O, Johnsen A, Nys M, Banerjee S and Gladman DD: Efficacy
and safety of abatacept, a T-cell modulator, in a randomised,
double-blind, placebo-controlled, phase III study in psoriatic
arthritis. Ann Rheum Dis. 76:1550–1558. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Liu S, Xu J and Wu J: The role of
co-signaling molecules in psoriasis and their implications for
targeted treatment. Front Pharmacol. 12(717042)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Harris KM, Smilek DE, Byron M, Lim N,
Barry WT, McNamara J, Garcet S, Konrad RJ, Stengelin M, Bathala P,
et al: Effect of costimulatory blockade with abatacept after
ustekinumab withdrawal in patients with moderate to severe plaque
psoriasis: The PAUSE Randomized clinical trial. JAMA Dermatol.
157:1306–1315. 2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Sharpe AH and Pauken KE: The diverse
functions of the PD1 inhibitory pathway. Nat Rev Immunol.
18:153–167. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Khatery BH, Shaker OG, El-Tahlawi S,
Abd-Elrahim TA, Fawzi M, Ali EM and Mohammed MH: Are programmed
cell death protein-1 and Angiopoietins-2 effective biomarkers for
detection the severity of psoriatic patients? J Cosmet Dermatol.
21:5208–5214. 2022.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Jung CJ, Yang HJ, Bang SH, Lee WJ, Won CH,
Lee MW, Song Y and Chang SE: Clinicoprognostic and
histopathological features of guttate and plaque psoriasis based on
PD-1 expression. J Clin Med. 10(5200)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Kim DS, Je JH, Kim SH, Shin D, Kim TG, Kim
DY, Kim SM and Lee MG: Programmed death-ligand 1, 2 expressions are
decreased in the psoriatic epidermis. Arch Dermatol Res.
307:531–538. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Keir ME, Butte MJ, Freeman GJ and Sharpe
AH: PD-1 and its ligands in tolerance and immunity. Annu Rev
Immunol. 26:677–704. 2008.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Tanaka R, Ichimura Y, Kubota N, Saito A,
Nakamura Y, Ishitsuka Y, Watanabe R, Fujisawa Y, Mizuno S,
Takahashi S, et al: Differential Involvement of Programmed Cell
Death Ligands in Skin Immune Responses. J Invest Dermatol.
142:145–154.e8. 2022.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Bonigen J, Raynaud-Donzel C, Hureaux J,
Kramkimel N, Blom A, Jeudy G, Breton AL, Hubiche T, Bedane C,
Legoupil D, et al: Anti-PD1-induced psoriasis: A study of 21
patients. J Eur Acad Dermatol Venereol. 31:e254–e257.
2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Sibaud V, Meyer N, Lamant L, Vigarios E,
Mazieres J and Delord JP: Dermatologic complications of
anti-PD-1/PD-L1 immune checkpoint antibodies. Curr Opin Oncol.
28:254–263. 2016.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Voudouri D, Nikolaou V, Laschos K,
Charpidou A, Soupos N, Triantafyllopoulou I, Panoutsopoulou I,
Aravantinos G, Syrigos K and Stratigos A: Anti-PD1/PDL1 induced
psoriasis. Curr Probl Cancer. 41:407–412. 2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Murata S, Kaneko S, Harada Y, Aoi N and
Morita E: Case of de novo psoriasis possibly triggered by
nivolumab. J Dermatol. 44:99–100. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Sanlorenzo M, Vujic I, Daud A, Algazi A,
Gubens M, Luna SA, Lin K, Quaglino P, Rappersberger K and
Ortiz-Urda S: Pembrolizumab cutaneous adverse events and their
association with disease progression. JAMA Dermatol. 151:1206–1212.
2015.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lebwohl M, Strober B, Menter A, Gordon K,
Weglowska J, Puig L, Papp K, Spelman L, Toth D, Kerdel F, et al:
Phase 3 studies comparing brodalumab with ustekinumab in psoriasis.
N Engl J Med. 373:1318–1328. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
McInnes IB, Kavanaugh A, Gottlieb AB, Puig
L, Rahman P, Ritchlin C, Brodmerkel C, Li S, Wang Y, Mendelsohn AM,
et al: Efficacy and safety of ustekinumab in patients with active
psoriatic arthritis: 1 year results of the phase 3, multicentre,
double-blind, placebo-controlled PSUMMIT 1 trial. Lancet.
382:780–789. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kim JH, Choi YJ, Lee BH, Song MY, Ban CY,
Kim J, Park J, Kim SE, Kim TG, Park SH, et al: Programmed cell
death ligand 1 alleviates psoriatic inflammation by suppressing
IL-17A production from programmed cell death 1-high T cells. J
Allergy Clin Immunol. 137:1466–1476.e3. 2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Leonardi CL, Powers JL, Matheson RT, Goffe
BS, Zitnik R, Wang A and Gottlieb AB: Etanercept Psoriasis Study
Group. Etanercept as monotherapy in patients with psoriasis. N Engl
J Med. 349:2014–2022. 2003.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Peng S, Cao M, Sun X, Zhou Y, Chen CY, Ma
T, Li H, Li B, Zhu B and Li X: Recombinant programmed cell death 1
inhibits psoriatic inflammation in imiquimod-treated mice. Int J
Mol Med. 46:869–879. 2020.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Xu F, Fei Z, Dai H, Xu J, Fan Q, Shen S,
Zhang Y, Ma Q, Chu J, Peng F, et al: Mesenchymal stem cell-derived
extracellular vesicles with high PD-L1 expression for autoimmune
diseases treatment. Adv Mater. 34(e2106265)2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Anderson AC, Joller N and Kuchroo VK:
Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized
functions in immune regulation. Immunity. 44:989–1004.
2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Hemon P, Jean-Louis F, Ramgolam K,
Brignone C, Viguier M, Bachelez H, Triebel F, Charron D, Aoudjit F,
Al-Daccak R and Michel L: MHC class II engagement by its ligand
LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J
Immunol. 186:5173–5183. 2011.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kouo T, Huang L, Pucsek AB, Cao M, Solt S,
Armstrong T and Jaffee E: Galectin-3 Shapes antitumor immune
responses by suppressing CD8+ T Cells via LAG-3 and inhibiting
expansion of plasmacytoid dendritic cells. Cancer Immunol Res.
3:412–423. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z,
Du X, Tang L and He F: LSECtin expressed on melanoma cells promotes
tumor progression by inhibiting antitumor T-cell responses. Cancer
Res. 74:3418–3428. 2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Mao X, Ou MT, Karuppagounder SS, Kam TI,
Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, et al:
Pathological α-synuclein transmission initiated by binding
lymphocyte-activation gene 3. Science. 353(aah3374)2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wang J, Sanmamed MF, Datar I, Su TT, Ji L,
Sun J, Chen L, Chen Y, Zhu G, Yin W, et al: Fibrinogen-like Protein
1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell.
176:334–347.e12. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kim J, Lee J, Gonzalez J, Fuentes-Duculan
J, Garcet S and Krueger JG: Proportion of CD4(+)CD49b(+)LAG-3(+)
type 1 regulatory T cells in the blood of psoriasis patients
inversely correlates with psoriasis area and severity index. J
Invest Dermatol. 138:2669–2672. 2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Gertel S, Polachek A, Furer V, Levartovsky
D and Elkayam O: CD4(+) LAG-3(+) T cells are decreased in active
psoriatic arthritis patients and their restoration in vitro is
mediated by TNF inhibitors. Clin Exp Immunol. 206:173–183.
2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Castelli C, Triebel F, Rivoltini L and
Camisaschi C: Lymphocyte activation gene-3 (LAG-3, CD223) in
plasmacytoid dendritic cells (pDCs): A molecular target for the
restoration of active antitumor immunity. Oncoimmunology.
3(e967146)2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ellis J, J B Marks D, Srinivasan N,
Barrett C, Hopkins TG, Richards A, Fuhr R, Albayaty M, Coenen M,
Liefaard L, et al: Depletion of LAG-3(+) T cells translated to
pharmacology and improvement in psoriasis disease activity: A phase
I randomized study of mAb GSK2831781. Clin Pharmacol Ther.
109:1293–1303. 2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wolf Y, Anderson AC and Kuchroo VK: TIM3
comes of age as an inhibitory receptor. Nat Rev Immunol.
20:173–185. 2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kanai Y, Satoh T, Igawa K and Yokozeki H:
Impaired expression of Tim-3 on Th17 and Th1 cells in psoriasis.
Acta Derm Venereol. 92:367–371. 2012.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Igawa K, Satoh T, Hirashima M and Yokozeki
H: Regulatory mechanisms of galectin-9 and eotaxin-3 synthesis in
epidermal keratinocytes: Possible involvement of galectin-9 in
dermal eosinophilia of Th1-polarized skin inflammation. Allergy.
61:1385–1391. 2006.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Nishi N, Itoh A, Fujiyama A, Yoshida N,
Araya S, Hirashima M, Shoji H and Nakamura T: Development of highly
stable galectins: Truncation of the linker peptide confers
protease-resistance on tandem-repeat type galectins. FEBS Lett.
579:2058–2064. 2005.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Niwa H, Satoh T, Matsushima Y, Hosoya K,
Saeki K, Niki T, Hirashima M and Yokozeki H: Stable form of
galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and
psoriatic reactions: A potent therapeutic tool for Th1- and/or
Th17-mediated skin inflammation. Clin Immunol. 132:184–194.
2009.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Mease P, Genovese MC, Gladstein G, Kivitz
AJ, Ritchlin C, Tak PP, Wollenhaupt J, Bahary O, Becker JC, Kelly
S, et al: Abatacept in the treatment of patients with psoriatic
arthritis: Results of a six-month, multicenter, randomized,
double-blind, placebo-controlled, phase II trial. Arthritis Rheum.
63:939–948. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Strand V, Alemao E, Lehman T, Johnsen A,
Banerjee S, Ahmad HA and Mease PJ: Improved patient-reported
outcomes in patients with psoriatic arthritis treated with
abatacept: Results from a phase 3 trial. Arthritis Res Ther.
20(269)2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Imai Y, Ayithan N, Wu X, Yuan Y, Wang L
and Hwang ST: Cutting Edge: PD-1 regulates imiquimod-induced
psoriasiform dermatitis through inhibition of IL-17A expression by
innate γδ-Low T Cells. J Immunol. 195:421–425. 2015.PubMed/NCBI View Article : Google Scholar
|