|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Burton KA, Ashack KA and Khachemoune A:
Cutaneous squamous cell carcinoma: A review of high-risk and
metastatic disease. Am J Clin Dermatol. 17:491–508. 2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Rogers HW, Weinstock MA, Feldman SR and
Coldiron BM: Incidence estimate of nonmelanoma skin cancer
(keratinocyte carcinomas) in the U.S. population, 2012. JAMA
Dermatol. 151:1081–1086. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Bachelor MA and Bowden GT: UVA-mediated
activation of signaling pathways involved in skin tumor promotion
and progression. Semin Cancer Biol. 14:131–138. 2004.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Winge MCG, Kellman LN, Guo K, Tang JY,
Swetter SM, Aasi SZ, Sarin KY, Chang ALS and Khavari PA: Advances
in cutaneous squamous cell carcinoma. Nat Rev Cancer. 23:430–449.
2023.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Forrester SJ, Kikuchi DS, Hernandes MS, Xu
Q and Griendling KK: Reactive oxygen species in metabolic and
inflammatory signaling. Circ Res. 122:877–902. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Singh A, Kukreti R, Saso L and Kukreti S:
Mechanistic insight into oxidative stress-triggered signaling
pathways and type 2 diabetes. Molecules. 27(950)2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kim YE and Kim J: ROS-scavenging
therapeutic hydrogels for modulation of the inflammatory response.
ACS Appl Mater Interfaces: Dec 28, 2021 (Epub ahead of print).
|
|
9
|
Aggarwal V, Tuli HS, Varol A, Thakral F,
Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of
reactive oxygen species in cancer progression: molecular mechanisms
and recent advancements. Biomolecules. 9(735)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kawanishi S, Ohnishi S, Ma N, Hiraku Y and
Murata M: Crosstalk between DNA damage and inflammation in the
multiple steps of carcinogenesis. Int J Mol Sci.
18(1808)2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Jomova K, Raptova R, Alomar SY, Alwasel
SH, Nepovimova E, Kuca K and Valko M: Reactive oxygen species,
toxicity, oxidative stress, and antioxidants: Chronic diseases and
aging. Arch Toxicol. 97:2499–2574. 2023.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zhao Y, Ye X, Xiong Z, Ihsan A, Ares I,
Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A, Wang X
and Martínez MA: Cancer metabolism: the role of ROS in DNA damage
and induction of apoptosis in cancer cells. Metabolites.
13(796)2023.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Jaramillo MC and Zhang DD: The emerging
role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev.
27:2179–2191. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kitamura H and Motohashi H: NRF2 addiction
in cancer cells. Cancer Sci. 109:900–911. 2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
He F, Antonucci L and Karin M: NRF2 as a
regulator of cell metabolism and inflammation in cancer.
Carcinogenesis. 41:405–416. 2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ichimura Y, Waguri S, Sou YS, Kageyama S,
Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, et
al: Phosphorylation of p62 activates the Keap1-Nrf2 pathway during
selective autophagy. Mol Cell. 51:618–631. 2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Singh V and Ubaid S: Role of silent
information regulator 1 (SIRT1) in regulating oxidative stress and
inflammation. Inflammation. 43:1589–1598. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Jiang SB, Lu YS, Liu T, Li LM, Wang HX, Wu
Y, Gao XH and Chen HD: UVA influenced the
SIRT1-miR-27a-5p-SMAD2-MMP1/COL1/BCL2 axis in human skin primary
fibroblasts. J Cell Mol Med. 24:10027–10041. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Wu P, Zhang B, Han X, Sun Y, Sun Z, Li L,
Zhou X, Jin Q, Fu P, Xu W and Qian H: HucMSC exosome-delivered
14-3-3ζ alleviates ultraviolet radiation-induced photodamage via
SIRT1 pathway modulation. Aging. 13:11542–11563. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Valente S, Mellini P, Spallotta F, Carafa
V, Nebbioso A, Polletta L, Carnevale I, Saladini S, Trisciuoglio D,
Gabellini C, et al: 1,4-Dihydropyridines active on the SIRT1/AMPK
pathway ameliorate skin repair and mitochondrial function and
exhibit inhibition of proliferation in cancer cells. J Med Chem.
59:1471–1491. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Puppala ER, Yalamarthi SS, Aochenlar SL,
Prasad N, Syamprasad NP, Singh M, Nanjappan SK, Ravichandiran V,
Tripathi DM, Gangasani JK and Naidu VGM: Mesua assamica
(King&Prain) kosterm. Bark ethanolic extract attenuates chronic
restraint stress aggravated DSS-induced ulcerative colitis in mice
via inhibition of NF-κB/STAT3 and activation of HO-1/Nrf2/SIRT1
signaling pathways. J Ethnopharmacol. 301(115765)2023.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhang X, Wu JZ, Lin ZX, Yuan QJ, Li YC,
Liang JL, Zhan JY, Xie YL, Su ZR and Liu YH: Ameliorative effect of
supercritical fluid extract of Chrysanthemum indicum Linnén
against D-galactose induced brain and liver injury in senescent
mice via suppression of oxidative stress, inflammation and
apoptosis. J Ethnopharmacol. 234:44–56. 2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shao Y, Sun Y, Li D and Chen Y:
Chrysanthemum indicum L.: A comprehensive review of its
botany, phytochemistry and pharmacology. Am J Chin Med. 48:871–897.
2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kim WJ, Yu HS, Bae WY, Ko KY, Chang KH,
Lee NK and Paik HD: Chrysanthemum indicum suppresses
adipogenesis by inhibiting mitotic clonal expansion in 3T3-L1
preadipocytes. J Food Biochem. 45(e13896)2021.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Yang X, Liu Y, Zhong C, Hu J, Xu S, Zhang
P and He L: Total flavonoids of Chrysanthemum indicum L
inhibit acute pancreatitis through suppressing apoptosis and
inflammation. BMC Complement Med Ther. 23(23)2023.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wu XL, Li CW, Chen HM, Su ZQ, Zhao XN,
Chen JN, Lai XP, Zhang XJ and Su ZR: Anti-inflammatory effect of
supercritical-carbon dioxide fluid extract from flowers and buds of
Chrysanthemum indicum Linnen. Evid Based Complement Alternat
Med. 2013(413237)2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yang HM, Sun CY, Liang JL, Xu LQ, Zhang
ZB, Luo DD, Chen HB, Huang YZ, Wang Q, Lee DY, et al:
Supercritical-carbon dioxide fluid extract from Chrysanthemum
indicum enhances anti-tumor effect and reduces toxicity of
bleomycin in tumor-bearing mice. Int J Mol Sci.
18(465)2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Zhang X, Xie YL, Yu XT, Su ZQ, Yuan J, Li
YC, Su ZR, Zhan JY and Lai XP: Protective effect of super-critical
carbon dioxide fluid extract from flowers and buds of
Chrysanthemum indicum Linnén against ultraviolet-induced
photo-aging in mice. Rejuvenation Res. 18:437–448. 2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
MacArthur Clark JA and Sun D: Guidelines
for the ethical review of laboratory animal welfare people's
republic of china national standard GB/T 35892-2018 [Issued 6
February 2018 Effective from 1 September 2018]. Animal Model Exp
Med. 3:103–113. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Pillon A, Gomes B, Vandenberghe I, Cartron
V, Cèbe P, Blanchet JC, Sibaud V, Guilbaud N, Audoly L, Lamant L
and Kruczynski A: Actinic keratosis modelling in mice: A
translational study. PLoS One. 12(e0179991)2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhong QY, Lin B, Chen YT, Huang YP, Feng
WP, Wu Y, Long GH, Zou YN, Liu Y, Lin BQ, et al: Gender differences
in UV-induced skin inflammation, skin carcinogenesis and systemic
damage. Environ Toxicol Pharmacol. 81(103512)2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wang Y, Zhao Z, Jiao W, Yin Z, Zhao W, Bo
H, Bi Z, Dong B, Chen B and Wang Z: PRAF2 is an oncogene acting to
promote the proliferation and invasion of breast cancer cells. Exp
Ther Med. 24(738)2022.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Que SKT, Zwald FO and Schmults CD:
Cutaneous squamous cell carcinoma: Incidence, risk factors,
diagnosis, and staging. J Am Acad Dermatol. 78:237–247.
2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sun S, Jiang P, Su W, Xiang Y, Li J, Zeng
L and Yang S: Wild chrysanthemum extract prevents UVB
radiation-induced acute cell death and photoaging. Cytotechnology.
68:229–240. 2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Allen NC, Martin AJ, Snaidr VA, Eggins R,
Chong AH, Fernandéz-Peñas P, Gin D, Sidhu S, Paddon VL, Banney LA,
et al: Nicotinamide for skin-cancer chemoprevention in transplant
recipients. N Engl J Med. 388:804–812. 2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Snaidr VA, Damian DL and Halliday GM:
Nicotinamide for photoprotection and skin cancer chemoprevention: A
review of efficacy and safety. Exp Dermatol. 28 (Suppl 1):S15–S22.
2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Damian DL: Nicotinamide for skin cancer
chemoprevention. Australas J Dermatol. 58:174–180. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Stratigos A, Garbe C, Lebbe C, Malvehy J,
del Marmol V, Pehamberger H, Peris K, Becker JC, Zalaudek I, Saiag
P, et al: Diagnosis and treatment of invasive squamous cell
carcinoma of the skin: European consensus-based interdisciplinary
guideline. Eur J Cancer. 51:1989–2007. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Stratigos AJ, Garbe C, Dessinioti C, Lebbe
C, Bataille V, Bastholt L, Dreno B, Fargnoli MC, Forsea AM, Frenard
C, et al: European interdisciplinary guideline on invasive squamous
cell carcinoma of the skin: Part 1. Epidemiology, diagnostics and
prevention. Eur J Cancer. 128:60–82. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Dorrell DN and Strowd LC: Skin cancer
detection technology. Dermatol Clin. 37:527–536. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Firnhaber JM: Basal cell and cutaneous
squamous cell carcinomas: Diagnosis and treatment. Am Fam
Physician. 102:339–346. 2020.PubMed/NCBI
|
|
42
|
Wang X, Liu Y, Niu Y, Wang N and Gu W: The
chemical composition and functional properties of essential oils
from four species of Schisandra growing wild in the qinling
mountains, China. Molecules. 23(1645)2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Rahaman A, Chaudhuri A, Sarkar A,
Chakraborty S, Bhattacharjee S and Mandal DP: Eucalyptol targets
PI3K/Akt/mTOR pathway to inhibit skin cancer metastasis.
Carcinogenesis. 43:571–583. 2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Rawat A, Rawat M, Prakash OM, Kumar R,
Punetha H and Rawat DS: Comparative study on eucalyptol and camphor
rich essential oils from rhizomes of Hedychium spicatum Sm. and
their pharmacological, antioxidant and antifungal activities. An
Acad Bras Cienc. 94(e20210932)2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Li Y, Wen JM, Du CJ, Hu SM, Chen JX, Zhang
SG, Zhang N, Gao F, Li SJ, Mao XW, et al: Thymol inhibits bladder
cancer cell proliferation via inducing cell cycle arrest and
apoptosis. Biochem Biophys Res Commun. 491:530–536. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Xiu Z, Zhu Y, Han J, Li Y, Yang X, Yang G,
Song G, Li S, Li Y, Cheng C, et al: Caryophyllene oxide induces
ferritinophagy by regulating the NCOA4/FTH1/LC3 pathway in
hepatocellular carcinoma. Front Pharmacol.
13(930958)2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhen ZG, Ren SH, Ji HM, Ma JH, Ding XM,
Feng FQ, Chen SL, Zou P, Ren JR and Jia L: Linarin suppresses
glioma through inhibition of NF-κB/p65 and up-regulating p53
expression in vitro and in vivo. Biomed Pharmacother. 95:363–374.
2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Wang L, Du H and Chen P: Chlorogenic acid
inhibits the proliferation of human lung cancer A549 cell lines by
targeting annexin A2 in vitro and in vivo. Biomed Pharmacother.
131(110673)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Velmurugan BK, Lin JT, Mahalakshmi B,
Chuang YC, Lin CC, Lo YS, Hsieh MJ and Chen MK:
Luteolin-7-O-glucoside inhibits oral cancer cell migration and
invasion by regulating matrix metalloproteinase-2 expression and
extracellular signal-regulated kinase pathway. Biomolecules.
10(502)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Singh S, Gupta P, Meena A and Luqman S:
Acacetin, a flavone with diverse therapeutic potential in cancer,
inflammation, infections and other metabolic disorders. Food Chem
Toxicol. 145(111708)2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Weinstein IB and Joe A: Oncogene
addiction. Cancer Res. 68:3077–3080. 2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wu H, Yang TY, Li Y, Ye WL, Liu F, He XS,
Wang JR, Gan WJ, Li XM, Zhang S, et al: Tumor necrosis factor
receptor-associated factor 6 promotes hepatocarcinogenesis by
interacting with histone deacetylase 3 to enhance c-Myc gene
expression and protein stability. Hepatology. 71:148–163.
2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Pelengaris S, Littlewood T, Khan M, Elia G
and Evan G: Reversible activation of c-Myc in skin: Induction of a
complex neoplastic phenotype by a single oncogenic lesion. Mol
Cell. 3:565–577. 1999.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Menon SS, Guruvayoorappan C, Sakthivel KM
and Rasmi RR: Ki-67 protein as a tumour proliferation marker. Clin
Chim Acta. 491:39–45. 2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Viallard C and Larrivée B: Tumor
angiogenesis and vascular normalization: Alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Carmeliet P: VEGF as a key mediator of
angiogenesis in cancer. Oncology. 69 (Suppl 3):S4–S10.
2005.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Álvarez-Garcia V, Tawil Y, Wise HM and
Leslie NR: Mechanisms of PTEN loss in cancer: It's all about
diversity. Semin Cancer Biol. 59:66–79. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wang Y, Digiovanna JJ, Stern JB, Hornyak
TJ, Raffeld M, Khan SG, Oh KS, Hollander MC, Dennis PA and Kraemer
KH: Evidence of ultraviolet type mutations in xeroderma pigmentosum
melanomas. Proc Natl Acad Sci USA. 106:6279–6284. 2009.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Garg C, Sharma H and Garg M: Skin
photo-protection with phytochemicals against photo-oxidative
stress, photo-carcinogenesis, signal transduction pathways and
extracellular matrix remodeling-An overview. Ageing Res Rev.
62(101127)2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Al-Sadek T and Yusuf N: Ultraviolet
radiation biological and medical implications. Curr Issues Mol
Biol. 46:1924–1942. 2024.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Jelic MD, Mandic AD, Maricic SM and
Srdjenovic BU: Oxidative stress and its role in cancer. J Cancer
Res Ther. 17:22–28. 2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Murtas D, Piras F, Minerba L, Ugalde J,
Floris C, Maxia C, Demurtas P, Perra MT and Sirigu P: Nuclear
8-hydroxy-2'-deoxyguanosine as survival biomarker in patients with
cutaneous melanoma. Oncol Rep. 23:329–335. 2010.PubMed/NCBI
|
|
63
|
Cerutti P, Ghosh R, Oya Y and Amstad P:
The role of the cellular antioxidant defense in oxidant
carcinogenesis. Environ Health Perspect. 102 (Suppl 10):S123–S129.
1994.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sluyter R and Halliday GM: Infiltration by
inflammatory cells required for solar-simulated ultraviolet
radiation enhancement of skin tumor growth. Cancer Immunol
Immunother. 50:151–156. 2001.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mittal A, Elmets CA and Katiyar SK: CD11b+
cells are the major source of oxidative stress in UV
radiation-irradiated skin: possible role in photoaging and
photocarcinogenesis. Photochem Photobiol. 77:259–264.
2003.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Katiyar SK, Meleth S and Sharma SD:
Silymarin, a flavonoid from milk thistle (Silybum marianum L.),
inhibits UV-induced oxidative stress through targeting infiltrating
CD11b+ cells in mouse skin. Photochem Photobiol. 84:266–271.
2008.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Su H, Yang F, Fu R, Li X, French R, Mose
E, Pu X, Trinh B, Kumar A, Liu J, et al: Cancer cells escape
autophagy inhibition via NRF2-induced macropinocytosis. Cancer
Cell. 39:678–693.e11. 2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kim YR, Oh JE, Kim MS, Kang MR, Park SW,
Han JY, Eom HS, Yoo NJ and Lee SH: Oncogenic NRF2 mutations in
squamous cell carcinomas of oesophagus and skin. J Pathol.
220:446–451. 2010.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Jiang T, Harder B, Rojo de la Vega M, Wong
PK, Chapman E and Zhang DD: p62 links autophagy and Nrf2 signaling.
Free Radic Biol Med. 88:199–204. 2015.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Lee DH, Park JS, Lee YS, Han J, Lee DK,
Kwon SW, Han DH, Lee YH and Bae SH: SQSTM1/p62 activates
NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and
protects mouse liver from lipotoxicity. Autophagy. 16:1949–1973.
2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Inoue J, Gohda J, Akiyama T and Semba K:
NF-kappaB activation in development and progression of cancer.
Cancer Sci. 98:268–274. 2007.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Bellezza I, Giambanco I, Minelli A and
Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress.
Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Li CX, Gao JG, Wan XY, Chen Y, Xu CF, Feng
ZM, Zeng H, Lin YM, Ma H, Xu P, et al: Allyl isothiocyanate
ameliorates lipid accumulation and inflammation in nonalcoholic
fatty liver disease via the Sirt1/AMPK and NF-κB signaling
pathways. World J Gastroenterol. 25:5120–5133. 2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Chen M, Chen Z, Huang D, Sun C, Xie J,
Chen T, Zhao X, Huang Y, Li D, Wu B and Wu D: Myricetin inhibits
TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB
pathway. Pulm Pharmacol Ther. 65(102000)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu
ZY and Bian JS: Polysulfide-mediated sulfhydration of SIRT1
prevents diabetic nephropathy by suppressing phosphorylation and
acetylation of p65 NF-κB and STAT3. Redox Biol.
38(101813)2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Ming M, Shea CR, Guo X, Li X, Soltani K,
Han W and He YY: Regulation of global genome nucleotide excision
repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci
USA. 107:22623–22628. 2010.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Scott NR, Swanson RV, Al-Hammadi N,
Domingo-Gonzalez R, Rangel-Moreno J, Kriel BA, Bucsan AN, Das S,
Ahmed M, Mehra S, et al: S100A8/A9 regulates CD11b expression and
neutrophil recruitment during chronic tuberculosis. J Clin Invest.
130:3098–3112. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Crinier A, Narni-Mancinelli E, Ugolini S
and Vivier E: SnapShot: Natural killer cells. Cell.
180:1280–1280.e1. 2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Subhi Y, Krogh Nielsen M, Molbech CR,
Krüger Falk M, Singh A, Hviid TVF, Nissen MH and Sørensen TL:
Association of CD11b+ monocytes and anti-vascular endothelial
growth factor injections in treatment of neovascular age-related
macular degeneration and polypoidal choroidal vasculopathy. JAMA
Ophthalmol. 137:515–522. 2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Rombouts M, Ammi R, Van Brussel I, Roth L,
De Winter BY, Vercauteren SR, Hendriks JM, Lauwers P, Van Schil PE,
De Meyer GR, et al: Linking CD11b (+) dendritic cells and natural
killer T cells to plaque inflammation in atherosclerosis. Mediators
Inflamm. 2016(6467375)2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Sluyter R and Halliday GM: Enhanced tumor
growth in UV-irradiated skin is associated with an influx of
inflammatory cells into the epidermis. Carcinogenesis.
21:1801–1807. 2000.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Scibiorek M, Mthembu N, Mangali S, Ngomti
A, Ikwegbue P, Brombacher F and Hadebe S: IL-4Rα signalling in B
cells and T cells play differential roles in acute and chronic
atopic dermatitis. Sci Rep. 13(144)2023.PubMed/NCBI View Article : Google Scholar
|