|
1
|
Global burden of 369 diseases and injuries
in 204 countries and territories, 1990-2019: A systematic analysis
for the global burden of disease study 2019. GBD 2019 diseases and
injuries collaborators. Lancet. 396:120–122. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Pelaia G, Vatrella A, Busceti MT, Gallelli
L, Calabrese C, Terracciano R and Maselli R: Cellular mechanisms
underlying eosinophilic and neutrophilic airway inflammation in
asthma. Mediators Inflamm. 2015(879783)2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Annunziato F, Romagnani C and Romagnani S:
The 3 major types of innate and adaptive cell-mediated effector
immunity. J Allergy Clin Immunol. 135:626–635. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
De Groot JC, Ten Brinke A and Bel EHD:
Management of the patient with eosinophilic asthma: A new era
begins. ERJ Open Res. 23(00024-2015)2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ozdemir C, Kucuksezer UC, Akdis M and
Akdis CA: The concepts of asthma endotypes and phenotypes to guide
current and novel treatment strategies. Expert Rev Respir Med.
12:733–743. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Lambrecht BN and Hammad H: The immunology
of asthma. Nat Immunol. 16:45–56. 2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Svenningsen S and Nair P: Asthma endotypes
and an overview of targeted therapy for asthma. Front Med.
26(158)2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kuruvilla ME, Lee FEH and Lee GB:
Understanding asthma phenotypes, endotypes and mechanisms of
disease. Clin Rev Allerg Immunol. 56:219–133. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Chiu CJ and Huang MT: Asthma in the
precision medicine era: Biologics and probiotics. Int J Mol Sci.
22(4528)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Lötvall J, Akdis CA, Bacharier LB, Bjermer
L, Casale TB, Custovic A, Robert F, Lemanske Jr, Wardlaw AJ, Wenzel
SE and Greenberger PA: Asthma endotypes: A new approach to
classification of disease entities within the asthma syndrome. J
Allergy Clin Immunol. 127:355–360. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Jia CE, Zhang HP, Lv Y, Liang R, Jiang YQ,
Powell H, Fu JJ, Wang L, Gibson PG and Wang G: The asthma control
test and asthma control questionnaire for assessing asthma control:
Systematic review and meta-analysis. J Allergy Clin Immunol.
131:695–703. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Reddel HK, FitzGerald JM, Bateman ED,
Bacharier LB, Becker A, Brusselle G, Buhl R, Cruz AA, Fleming L,
Inoue H, et al: GINA 2019: A fundamental change in asthma
management: Treatment of asthma with short-acting bronchodilators
alone is no longer recommended for adults and adolescents. Eur Resp
J. 53(1901046)2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Genuneit J, Cantelmo JL, Weinmayr G, Wong
GWK, Cooper PJ, Riikjärv MA, Gotua M, Kabesch M, Mutius von E,
Forastiere F, et al: A multi-centre study of candidate genes for
wheeze and allergy: The international study of asthma and allergies
in childhood phase 2: A multi-centre study of candidate genes for
wheeze and allergy. Clin Exp Allergy. 39:1875–1888. 2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Anderson GP: Endotyping asthma: New
insights into key pathogenic mechanisms in a complex, heterogeneous
disease. Lancet. 372:1107–1119. 2008.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wenzel SE: Asthma: Defining of the
persistent adult phenotypes. Lancet. 368:804–813. 2006.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Heldin CH and Moustakas A: Signaling
receptors for TGF-β family members. Cold Spring Harb Perspect Biol.
8(a022053)2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Lichtman MK, Otero-Vinas M and Falanga V:
Transforming growth factor beta (TGF-β) isoforms in wound healing
and fibrosis. Wound Repair Regen. 24:215–2122. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Travis MA and Sheppard D: TGF-β activation
and function in immunity. Annu Rev Immunol. 32:51–82.
2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Munger JS and Sheppard D: Cross talk among
TGF-Signaling pathways, integrins, and the extracellular matrix.
Cold Spring Harbor Perspectives in Biology. 3:a005017.
2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Hinz B: The extracellular matrix and
transforming growth factor-β1: Tale of a strained relationship.
Matrix Biol. 47:54–65. 2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Peng D, Fu M, Wang M, Wei Y and Wei X:
Targeting TGF-β signal transduction for fibrosis and cancer
therapy. Mol Cancer. 21(104)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Hata A and Chen YG: TGF-β signaling from
receptors to smads. Cold Spring Harb Perspect Biol.
8(a022061)2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Vander Ark A, Cao J and Li X: TGF-β
receptors: In and beyond TGF-β signaling. Cell Signal. 52:112–120.
2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Drabsch Y and Ten Dijke P: TGF-β signaling
and its role in cancer progression and metastasis. Cancer
Metastasis Rev. 31:553–568. 2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Huang T, David L, Mendoza V, MVillarreal
YYM, De K, Sun LZ, Fang X, López-Casillas F, Wrana JL and Hinck AP:
TGF-β signaling is mediated by two autonomously functioning
TβRI:TβRII pairs: TGF-β signals through autonomous TβRI:TβRII
pairs. The EMBO J. 30:1263–1276. 2011.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Tzavlaki K and Moustakas A: TGF-β
signaling. Biomolecules. 10(487)2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Xu P, Liu J and Derynck R:
Post-translational regulation of TGF-β receptor and Smad signaling.
FEBS Lett. 586:1871–1884. 2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Massagué J: TGFβ signaling in context. Nat
Rev Mol Cell Biol. 13:616–630. 2012.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Aashaq S, Batool A, Mir SA, Beigh MA,
Andrabi KI and Shah ZA: TGF-β signaling: A recap of
SMAD-independent and SMAD-dependent pathways. J Cell Physiol.
237:59–85. 2022.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Derynck R and Zhang YE: Smad-dependent and
Smad-independent pathways in TGF- beta family signaling. Nature.
425:577–584. 2003.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhang YE: Non-Smad signaling pathways of
the TGF-β family. Cold Spring Harb Perspect Biol.
9(a022129)2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zi Z, Chapnick DA and Liu X: Dynamics of
TGF-β/Smad signaling. FEBS Letters. 586:1921–1928. 2012.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li
C and He J: TGF-β signaling in health, disease, and therapeutics.
Sig Transduct Target Ther. 9:1–40. 2024.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Tang J, Liu F, Cooper ME and Chai Z: Renal
fibrosis as a hallmark of diabetic kidney disease: Potential role
of targeting transforming growth factor-beta (TGF-β) and related
molecules. Expert Opinion on Therapeutic Targets. 26:721–738.
2022.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Frangogiannis NG: Transforming growth
factor-β in myocardial disease. Nat Rev Cardiol. 19:435–455.
2022.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chakravarthy A, Khan L, Bensler NP, Bose P
and De Carvalho DD: TGF-β-associated extracellular matrix genes
link cancer-associated fibroblasts to immune evasion and
immunotherapy failure. Nat Commun. 9(4692)2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Mahmood MQ, Reid D, Ward C, Muller HK,
Knight DA, Sohal SS and Walters EH: Transforming growth factor
(TGF) β1 and Smad signaling pathways: A likely key to
EMT-associated COPD pathogenesis. Respirology. 22:133–140.
2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Halwani R, Al-Muhsen S, Al-Jahdali H and
Hamid Q: Role of transforming growth factor-β in airway remodeling
in asthma. Am J Respir Cell Mol Biol. 44:127–133. 2011.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Meng XM, Tang PMK, Li J and Lan HY:
TGF-β/Smad signaling in renal fibrosis. Front Physiol.
29(6)2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Modi SJ and Kulkarni VM: Discovery of
VEGFR-2 inhibitors exerting significant anticanceractivity against
CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β
induced epithelial-mesenchymal transition (EMT) in hepatocellular
carcinoma. Eur J Med Chem. 207(112851)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Muraoka RS, Dumont N, Ritter CA, Dugger
TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals
, et al: Blockade of TGF-beta inhibits mammary tumor cell
viability, migration, and metastases. J Clin Invest. 109:1551–159.
2002.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chung KF, Wenzel SE, Brozek JL, Bush A,
Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, et
al: International ERS/ATS guidelines on definition, evaluation and
treatment of severe asthma. Eur Respir J. 43:343–373.
2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Matricardi PM, Kleine-Tebbe J, Hoffmann
HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero
R, Ballmer-Weber B, et al: EAACI molecular allergology user's
guide. Pediatric Allergy and Immunol. 7 (Suppl):1–250.
2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Panek MG, Karbownik MS, Górski KM, Koćwin
M, Kardas G, Marynowski M and Kuna P: New insights into the
regulation of TGF-β/Smad and MPK signaling pathway gene expressions
by nasal allergen and methacholine challenge test in asthma. Clin
Transl Allergy. 12(e12172)2022.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Yu HS, Angkasekwinai P, Chang SH, Chung Y
and Dong C: Protease allergens induce the expression of IL-25 via
Erk and p38 MAPK pathway. J Korean Med Sci. 25:829–834.
2010.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Goumans MJ, Lebrin F and Valdimarsdottir
G: Controlling the angiogenic switch. Trends Cardiovas Med.
13:301–307. 2003.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Fredriksson K, Fielhaber JA, Lam JK, Yao
X, Meyer KS, Keeran KJ, Zywicke GJ, Qu X, Yu ZX, Moss J, et al:
Paradoxical effects of rapamycin on experimental house dust
mite-induced asthma. PLoS One. 7(e33984)2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Cockcroft DW, Killian DN, Mellon JJA and
Hargreave FE: Bronchial reactivity to inhaled histamine: A method
and clinical survey. Clin Exp Allergy. 7:235–243. 1977.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Sumino K, Sugar EA, Irvin CG, Kaminsky DA,
Shade D, Wei CY, Holbrook JT, Wise RA and Castro M: American Lung
Association Asthma Clinical Research Centers. Methacholine
challenge test: Diagnostic characteristics in asthmatic patients
receiving controller medications. J Allergy Clin Immunol.
130:69–75. 2012.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Guidelines for methacholine and exercise
challenge testing-1999. This official statement of the American
thoracic society was adopted by the ATS Board of Directors, July
1999. Am J Respir Crit Care Med. 161:309–329. 2000.
|
|
52
|
Song WJ and Cho SH: Challenges in the
management of asthma in the elderly. Allergy Asthma Immunol Res.
7:431–439. 2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Murray AB, Ferguson AC and Morrison B:
Airway responsiveness to histamine as a test for overall severity
of asthma in children. J Allergy Clin Immunol. 68:119–124.
1981.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Davis BE and Cockcroft DW: Past, present
and future uses of methacholine testing. Expert Rev Respir Med.
6:321–329. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hewitt DJ: Interpretation of the
‘positive’ methacholine challenge. Am J Ind Med. 51:769–781.
2008.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Woodruff PG, Dolganov GM, Ferrando RE,
Donnelly S, Hays SR, Solberg OD, Carter R, Wong HH, Cadbury PS and
Fahy JV: Hyperplasia of smooth muscle in mild to moderate asthma
without changes in cell size or gene expression. Am J Respir Crit
Care Med. 169:1001–1006. 2004.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Mishra V, Banga J and Silveyra P:
Oxidative stress and cellular pathways of asthma and inflammation:
Therapeutic strategies and pharmacological targets. Pharmacol Ther.
181:169–182. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hervás D, Rodriguez R and Garde J: Role of
aeroallergen nasal challenge in asthmatic children. Allergolo
Immunopathol. 39:17–22. 2011.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Gauvreau GM, Davis BE, Scadding G, Boulet
LP, Bjermer L, Chaker L, Cockcroft DW, Dahlén B, Fokkens W,
Hellings P, et al: Allergen provocation tests in respiratory
research: Building on 50 years of experience. Eur Respir J.
60(2102782)2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Eguiluz-Gracia I, Testera-Montes A,
González M, Pérez-Sánchez N, Ariza N, Salas M, Moreno-Aguilar C,
Campo P, Torres MJ and Rondon C: Safety and reproducibility of
nasal allergen challenge. Allergy. 74:1125–1134. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Modena BD, Bleecker ER, Busse WW, Erzurum
SC, Gaston BM, Jarjour NN, Meyers DA, Milosevic J, Tedrow JR, Wu W,
et al: Gene expression correlated with severe asthma
characteristics reveals heterogeneous mechanisms of severe disease.
Am J Respir Crit Care Med. 195:1449–1463. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Fu JJ, Baines KJ, Wood LG and Gibson PG:
Systemic inflammation is associated with differential gene
expression and airway neutrophilia in asthma. J Integrative
Biology. 17:187–199. 2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Peters MC, Mekonnen ZK, Yuan S, Bhakta NR,
Woodruff PG and Fahy JV: Measures of gene expression in sputum
cells can identify TH2-high and TH2-low subtypes of asthma. J
Allergy Clin Immunol. 133:388–394. 2014.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Pelaia G, Gallelli L, D'Agostino B,
Vatrella A, Cuda G, Fratto D, Renda T, Galderisi U, Piegari E,
Crimi N, et al: Effects of TGF-β and glucocorticoids on map kinase
phosphorylation, IL-6/IL-11 secretion and cell proliferation in
primary cultures of human lung fibroblasts. J Cell Physiol.
210:489–497. 2007.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Chen G and Khalil N: TGF-beta1 increases
proliferation of airway smooth muscle cells by phosphorylation of
map kinases. Respir Res. 7(2)2006.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Gerthoffer WT and Singer CA: MAPK
regulation of gene expression in airway smooth muscle. Respir
Physiol Neurobiol. 137:237–250. 2003.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Zentella A and Massague J: Transforming
growth factor β induces myoblast differentiation in the presence of
mitogens. Proc Natl Acad Sci U S A. 89:5176–5180. 1992.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Tran DQ: TGF-β: The sword, the wand, and
the shield of FOXP3+ regulatory T cells. J Mol Cell Biol. 4:29–37.
2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Tirado-Rodriguez B, Ortega E,
Segura-Medina P and Huerta-Yepez S: TGF-β: An important mediator of
allergic disease and a molecule with dual activity in cancer
development. J Immunol Res. 2014(318481)2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G,
Vaziri ND and Zhao YY: New insights into TGF-β/Smad signaling in
tissue fibrosis. Chem Biol Interact. 292:76–83. 2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Goumans MJ, Valdimarsdottir G, Itoh S,
Rosendahl A, Sideras P and ten Dijke P: Balancing the activation
state of the endothelium via two distinct TGF-beta type I
receptors. EMBO J. 21:1743–1753. 2002.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Schwartze JT, Becker S, Sakkas E, Wujak
ŁA, Niess G, Usemann J, Reichenberger F, Herold S, Vadász I, Mayer
K, et al: Glucocorticoids recruit Tgfbr3 and Smad1 to shift
transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis
to the Acvrl1/Smad1 axis in lung fibroblasts. J Biol Chem.
289:3262–3275. 2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Song B, Estrada KD and Lyons KM: Smad
signaling in skeletal development and regeneration. Cytokin Growth
Factor Rev. 20:379–388. 2009.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Pelaia G, Cuda G, Vatrella A, Gallelli L,
Caraglia M, Marra M, Abbruzzese A, Caputi M, Maselli R, et al:
Mitogen-activated protein kinases and asthma. J Cell Physiol.
202:642–653. 2005.PubMed/NCBI View Article : Google Scholar
|
|
75
|
English J, Pearson G, Wilsbacher J,
Swantek J, Karandikar M, Xu S and Cobb MH: New insights into the
control of MAP kinase pathways. Exp Cell Res. 253:255–270.
1999.PubMed/NCBI View Article : Google Scholar
|
|
76
|
McCubrey JA, May WS, Duronio V and Mufson
A: Serine/threonine phosphorylation in cytokine signal
transduction. Leukemia. 14:9–21. 2000.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Basaki Y, Ikizawa K, Kajiwara K and
Yanagihara Y: CD40-mediated tumor necrosis factor
receptor-associated factor 3 signaling upregulates IL-4-induced
germline Cepsilon transcription in a human B cell line. Arch
Biochem Biophys. 405:199–204. 2002.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kampen GT, Stafford S, Adachi T, Jinquan
T, Quan S, Grant JA, Skov PS, Poulsen LK and Alam R: Eotaxin
induces degranulation and chemotaxis of eosinophils through the
activation of ERK2 and p38 mitogen-activated protein kinases.
Blood. 95:1911–1917. 2000.PubMed/NCBI
|
|
79
|
Black JL and Johnson PRA: Factors
controlling smooth muscle proliferation and airway remodelling.
Curr Opin Allergy Clin Immunol. 2:47–51. 2002.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Atherton HC, Jones G and Danahay H:
IL-13-induced changes in the goblet cell density of human bronchial
epithelial cell cultures: MAP kinase and phosphatidylinositol
3-kinase regulation. Am J Physiol Lung Cell Mol Physiol.
285:L730–L739. 2003.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Pelaia C, Vatrella A, Crimi C, Gallelli L,
Terracciano R and Pelaia G: Clinical relevance of understanding
mitogen-activated protein kinases involved in asthma. Expert Rev
Respir Med. 14:501–510. 2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Wortzel I and Seger R: The ERK cascade:
Distinct functions within various subcellular organelles. Genes
Cancer. 2:195–209. 2011.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zou ML, Chen ZH, Teng YY, Liu SY, Jia Y,
Zhang KW, Sun ZL, Wu JJ, Yuan JJ, Feng Y, et al: The Smad dependent
TGF-β and BMP signaling pathway in bone remodeling and therapies.
Front Mol Biosci. 8(593310)2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Osman B, Doller A, Akool ES, Holdener M,
Hintermann E, Pfeilschifter J and Eberhardt W: Rapamycin induces
the TGFbeta1/Smad signaling cascade in renal mesangial cells
upstream of mTOR. Cell Signal. 21:1806–1817. 2009.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Halwani R, Sultana A, Vazquez-Tello A,
Jamhawi A, Al-Masri AA and Al-Muhsen S: Th-17 regulatory cytokines
IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17
cytokines during asthma. J Asthma. 54:893–904. 2017.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Margelidon-Cozzolino V, Tsicopoulos A,
Chenivesse C and de Nadai P: Role of Th17 cytokines in airway
remodeling in asthma and therapy perspectives. Front Allergy.
3:2022.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Aykul S, Maust J, Thamilselvan V, Floer M
and Martinez-Hackert E: Smad2/3 activation regulates Smad1/5/8
signaling via a negative feedback loop to inhibit 3T3-L1
adipogenesis. Int J Mol Sci. 22(8472)2021.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Morris JC, Tan AR, Olencki TE, Shapiro GI,
Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA and Lawrence DP: Phase I
study of GC1008 (fresolimumab): A human anti-transforming growth
factor-beta (TGFβ) monoclonal antibody in patients with advanced
malignant melanoma or renal cell carcinoma. PLoS One.
9(e90353)2014.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Reader CS, Vallath S, Steele CW, Haider S,
Brentnall A, Desai A, Moore KM, Jamieson NB, Chang D, Bailey P, et
al: The integrin αvβ6 drives pancreatic cancer through diverse
mechanisms and represents an effective target for therapy. J
Pathol. 249:332–342. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Moore KM, Thomas GJ, Duffy SW, Warwick J,
Gabe R, Chou P, Ellis IO, Green AR, Haider S, Brouilette K, et al:
Therapeutic targeting of integrin αvβ6 in breast cancer. J Natl
Cancer Inst. 106(dju169)2014.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Siljamäki E, Riihilä P, Suwal U, Nissinen
L, Rappu P, Kallajoki M, Kähäri VM and Heino J: Inhibition of TGF-β
signaling, invasion, and growth of cutaneous squamous cell
carcinoma by PLX8394. Oncogene. 42:3633–347. 2023.PubMed/NCBI View Article : Google Scholar
|