|
1
|
Swift MR and Weinstein BM: Arterial-venous
specification during development. Circ Res. 104:576–588.
2009.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Vishwakarma S and Kaur I: Molecular
mediators and regulators of retinal angiogenesis. Semin Ophthalmol.
38:124–133. 2023.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Díaz-Coránguez M, Ramos C and Antonetti
DA: The inner blood-retinal barrier: Cellular basis and
development. Vision Res. 139:123–137. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Uemura A, Fruttiger M, D'Amore PA, De
Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN,
Rittenhouse KD and Langmann T: VEGFR1 signaling in retinal
angiogenesis and microinflammation. Prog Retin Eye Res.
84(100954)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Selvam S, Kumar T and Fruttiger M: Retinal
vasculature development in health and disease. Prog Retin Eye Res.
63:1–19. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Hu WH, Zhang XY, Leung KW, Duan R, Dong
TT, Qin QW and Tsim KW: Resveratrol, an inhibitor binding to VEGF,
restores the pathology of abnormal angiogenesis in retinopathy of
prematurity (ROP) in mice: Application by intravitreal and topical
instillation. Int J Mol Sci. 23(6455)2022.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Yan J, Deng J, Cheng F, Zhang T, Deng Y,
Cai Y and Cong W: Thioredoxin-interacting protein inhibited
vascular endothelial cell-induced HREC angiogenesis treatment of
diabetic retinopathy. Appl Biochem Biotechnol. 195:1268–1283.
2023.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Heloterä H and Kaarniranta K: A linkage
between angiogenesis and inflammation in neovascular age-related
macular degeneration. Cells. 11(3453)2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Bakri SJ, Thorne JE, Ho AC, Ehlers JP,
Schoenberger SD, Yeh S and Kim SJ: Safety and efficacy of
anti-vascular endothelial growth factor therapies for neovascular
age-related macular degeneration: A report by the american academy
of ophthalmology. Ophthalmology. 126:55–63. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Xu X, Han N, Zhao F, Fan R, Guo Q, Han X,
Liu Y and Luo G: Inefficacy of anti-VEGF therapy reflected in
VEGF-mediated photoreceptor degeneration. Mol Ther Nucleic Acids.
35(102176)2024.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Apte RS, Chen DS and Ferrara NL: VEGF in
signaling and disease: Beyond discovery and development. Cell.
176:1248–1264. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Shaw P, Dwivedi SKD, Bhattacharya R,
Mukherjee P and Rao G: VEGF signaling: Role in angiogenesis and
beyond. Biochim Biophys Acta Rev Cancer.
1879(189079)2024.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Olsson AK, Dimberg A, Kreuger J and
Claesson-Welsh L: VEGF receptor signalling - in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Peach CJ, Mignone VW, Arruda MA, Alcobia
DC, Hill SJ, Kilpatrick LE and Woolard J: Molecular pharmacology of
VEGF-A isoforms: Binding and signalling at VEGFR2. Int J Mol Sci.
19(1264)2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Mallick R and Ylä-Herttuala S: Therapeutic
potential of VEGF-B in coronary heart disease and heart failure:
Dream or vision? Cells. 11(4134)2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Wada H, Suzuki M, Matsuda M, Ajiro Y,
Shinozaki T, Sakagami S, Yonezawa K, Shimizu M, Funada J, Takenaka
T, et al: Distinct characteristics of VEGF-D and VEGF-C to predict
mortality in patients with suspected or known coronary artery
disease. J Am Heart Assoc. 9(e015761)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Sarabipour S, Ballmer-Hofer K and Hristova
K: VEGFR-2 conformational switch in response to ligand binding.
Elife. 5(e13876)2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Simons M, Gordon E and Claesson-Welsh L:
Mechanisms and regulation of endothelial VEGF receptor signalling.
Nat Rev Mol Cell Biol. 17:611–625. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Koch S and Claesson-Welsh L: Signal
transduction by vascular endothelial growth factor receptors. Cold
Spring Harb Perspect Med. 2(a006502)2012.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kendall RL, Rutledge RZ, Mao X, Tebben AJ,
Hungate RW and Thomas KA: Vascular endothelial growth factor
receptor KDR tyrosine kinase activity is increased by
autophosphorylation of two activation loop tyrosine residues. J
Biol Chem. 274:6453–6460. 1999.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Gelfand MV, Hagan N, Tata A, Oh WJ,
Lacoste B, Kang KT, Kopycinska J, Bischoff J, Wang JH and Gu C:
Neuropilin-1 functions as a VEGFR2 co-receptor to guide
developmental angiogenesis independent of ligand binding. Elife.
3(e03720)2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Gavard J and Gutkind JS: VEGF controls
endothelial-cell permeability by promoting the
beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol.
8:1223–1234. 2008.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Smith RO, Ninchoji T, Gordon E, André H,
Dejana E, Vestweber D, Kvanta A and Claesson-Welsh L: Vascular
permeability in retinopathy is regulated by VEGFR2 Y949 signaling
to VE-cadherin. Elife. 9(e54056)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Shibuya M: VEGF-VEGFR signals in health
and disease. Biomol Ther (Seoul). 22:1–9. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mabeta P and Steenkamp V: The VEGF/VEGFR
axis revisited: Implications for cancer therapy. Int J Mol Sci.
23(15585)2022.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Melincovici CS, Boşca AB, Şuşman S,
Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM:
Vascular endothelial growth factor (VEGF)-key factor in normal and
pathological angiogenesis. Rom J Morphol Embryol. 59:455–467.
2018.PubMed/NCBI
|
|
27
|
Shibuya M: VEGF-VEGFR system as a target
for suppressing inflammation and other diseases. Endocr Metab
Immune Disord Drug Targets. 15:135–144. 2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Patel SA, Nilsson MB, Le X, Cascone T,
Jain RK and Heymach JV: Molecular mechanisms and future
implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res.
29:30–39. 2023.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Shibuya M and Claesson-Welsh L: Signal
transduction by VEGF receptors in regulation of angiogenesis and
lymphangiogenesis. Exp Cell Res. 312:549–560. 2006.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Jin KL, Mao XO and Greenberg DA: Vascular
endothelial growth factor: Direct neuroprotective effect in in
vitro ischemia. Proc Natl Acad Sci USA. 97:10242–10247.
2000.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Okabe K, Kobayashi S, Yamada T, Kurihara
T, Tai-Nagara I, Miyamoto T, Mukouyama YS, Sato TN, Suda T, Ema M
and Kubota Y: Neurons limit angiogenesis by titrating VEGF in
retina. Cell. 159:584–596. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Campochiaro PA: Molecular pathogenesis of
retinal and choroidal vascular diseases. Prog Retin Eye Res.
49:67–81. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Abu Serhan H, Taha MJJ, Abuawwad MT,
Abdelaal A, Irshaidat S, Abu Serhan L, Abu Salim QF, Awamleh N,
Abdelazeem B and Elnahry AG: Safety and efficacy of brolucizumab in
the treatment of diabetic macular edema and diabetic retinopathy: A
systematic review and meta-analysis. Semin Ophthalmol. 39:251–260.
2024.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang Z, Zhang N, Lin P, Xing Y and Yang N:
Recent advances in the treatment and delivery system of diabetic
retinopathy. Front Endocrinol (Lausanne).
15(1347864)2024.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Kaur A, Kumar R and Sharma A: Diabetic
retinopathy leading to blindness-a review. Curr Diabetes Rev.
20(e240124225997)2024.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhou YM, Cao YH, Guo J and Cen LS:
Potential prospects of Chinese medicine application in diabetic
retinopathy. World J Diabetes. 15:2010–2014. 2024.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Baseline and early natural history report.
The central vein occlusion study. Arch Ophthalmol. 111:1087–1095.
1993.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Vitiello L, Lixi F, Coppola A, Abbinante
G, Gagliardi V, Salerno G, De Pascale I, Pellegrino A and
Giannaccare G: Intravitreal dexamethasone implant switch after
anti-VEGF treatment in patients affected by retinal vein occlusion:
A review of the literature. J Clin Med. 13(5006)2024.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Minaker SA, Mason RH, Bamakrid M, Lee Y
and Muni RH: Changes in aqueous and vitreous inflammatory cytokine
levels in retinal vein occlusion: A systematic review and
meta-analysis. J Vitreoretin Dis. 4:36–64. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Wang B, Zhang X, Chen H, Koh A, Zhao C and
Chen Y: A review of intraocular biomolecules in retinal vein
occlusion: Toward potential biomarkers for companion diagnostics.
Front Pharmacol. 13(859951)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Finocchio L, Zeppieri M, Gabai A, Toneatto
G, Spadea L and Salati C: Recent developments in gene therapy for
neovascular age-related macular degeneration: A review.
Biomedicines. 11(3221)2023.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Cheng S, Zhang S, Huang M, Liu Y, Zou X,
Chen X and Zhang Z: Treatment of neovascular age-related macular
degeneration with anti-vascular endothelial growth factor drugs:
progress from mechanisms to clinical applications. Front Med
(Lausanne). 11(1411278)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Fragiotta S, Bassis L, Abdolrahimzadeh B,
Marino A, Sepe M and Abdolrahimzadeh S: Exploring current molecular
targets in the treatment of neovascular age-related macular
degeneration toward the perspective of long-term agents. Int J Mol
Sci. 25(4433)2024.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Nakao S, Zandi S, Hata Y, Kawahara S,
Arita R, Schering A, Sun D, Melhorn MI, Ito Y, Lara-Castillo N, et
al: Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: An
endogenous trapping mechanism links lymph- and angiogenesis. Blood.
117:1081–1090. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Duh EJ, Sun JK and Stitt AW: Diabetic
retinopathy: Current understanding, mechanisms, and treatment
strategies. JCI Insight. 2(e93751)2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Mrugacz M, Bryl A and Zorena K: Retinal
Vascular endothelial cell dysfunction and neuroretinal degeneration
in diabetic patients. J Clin Med. 10(458)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhang YL, Pirmardan ER, Jiang H, Barakat A
and Hafezi-Moghadam A: VEGFR-2 adhesive nanoprobes reveal early
diabetic retinopathy in vivo. Biosens Bioelectron.
237(115476)2023.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Liu X, Guo A, Tu Y, Li W, Li L, Liu W, Ju
Y, Zhou Y, Sang A and Zhu M: Fruquintinib inhibits VEGF/VEGFR2 axis
of choroidal endothelial cells and M1-type macrophages to protect
against mouse laser-induced choroidal neovascularization. Cell
Death Dis. 11(1016)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Xu J, Tu Y, Wang Y, Xu X, Sun X, Xie L,
Zhao Q, Guo Y, Gu Y, Du J, et al: Prodrug of
epigallocatechin-3-gallate alleviates choroidal neovascularization
via down-regulating HIF-1α/VEGF/VEGFR2 pathway and M1 type
macrophage/microglia polarization. Biomed Pharmacother.
121(109606)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Leitch IM, Gerometta M, Eichenbaum D,
Finger RP, Steinle NC and Baldwin ME: Vascular endothelial growth
factor C and D signaling pathways as potential targets for the
treatment of neovascular age-related macular degeneration: A
narrative review. Ophthalmol Ther. 13:1857–1875. 2024.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Cui K, Liu J, Huang L, Qin B, Yang X, Li
L, Liu Y, Gu J, Wu W, Yu Y and Sang A: Andrographolide attenuates
choroidal neovascularization by inhibiting the HIF-1α/VEGF
signaling pathway. Biochem Biophys Res Commun. 530:60–66.
2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Carmeliet P and Jain RK: Molecular
mechanisms and clinical applications of angiogenesis. Nature.
473:298–307. 2011.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wang X, Bove AM, Simone G and Ma B:
Molecular Bases of VEGFR-2-Mediated physiological function and
pathological role. Front Cell Dev Biol. 8(599281)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Gomes E and Rockwell P: p38 MAPK as a
negative regulator of VEGF/VEGFR2 signaling pathway in serum
deprived human SK-N-SH neuroblastoma cells. Neurosci Lett.
431:95–100. 2008.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hendrikse CSE, Theelen PMM, van der Ploeg
P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe
A, Lambrechts S, Bekkers RLM and Piek JMJ: The potential of
RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian
cancer: A systematic review and meta-analysis. Gynecol Oncol.
171:83–94. 2023.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Gallo S, Vitacolonna A, Bonzano A,
Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology
of cardiac hypertrophy. Int J Mol Sci. 20(2164)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Almalki SG and Agrawal DK: ERK signaling
is required for VEGF-A/VEGFR2-induced differentiation of porcine
adipose-derived mesenchymal stem cells into endothelial cells. Stem
Cell Res Ther. 8(113)2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Guo GX, Qiu YH, Liu Y, Yu LL, Zhang X,
Tsim KW, Qin QW and Hu WH: Fucoxanthin attenuates angiogenesis by
blocking the VEGFR2-mediated signaling pathway through binding the
vascular endothelial growth factor. J Agric Food Chem.
72:21610–21623. 2024.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Zhou LB, Zhou YQ and Zhang XY: Blocking
VEGF signaling augments interleukin-8 secretion via MEK/ERK/1/2
axis in human retinal pigment epithelial cells. Int J Ophthalmol.
13:1039–1045. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Bin Y, Liu YY, Jiang SQ and Peng H:
Elevated YKL-40 serum levels may contribute to wet age-related
macular degeneration via the ERK1/2 pathway. FEBS Open Bio.
11:2933–2942. 2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Miller B and Sewell-Loftin MK:
Mechanoregulation of vascular endothelial growth factor receptor 2
in angiogenesis. Front Cardiovasc Med. 8(804934)2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Jin H, Ko YS, Yun SP, Park SW and Kim HJ:
P2Y(2)R-mediated transactivation of VEGFR2 through Src
phosphorylation is associated with ESM-1 overexpression in
radiotherapy-resistant-triple negative breast cancer cells. Int J
Oncol. 62(73)2023.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Gao X, Chen J, Yin G, Liu Y, Gu Z, Sun R,
Sun X, Jiao X, Wang L, Wang N, et al: Hyperforin ameliorates
neuroinflammation and white matter lesions by regulating microglial
VEGFR(2)/SRC pathway in vascular cognitive impairment mice. CNS
Neurosci Ther. 30(e14666)2024.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Chen TT, Dong JL, Zhou HY, Deng X, Li R,
Chen N, Luo M, Li Y, Wu J and Wang L: Glycation of fibronectin
inhibits VEGF-induced angiogenesis by uncoupling VEGF
receptor-2-c-Src crosstalk. J Cell Mol Med. 24:9154–9164.
2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Moysenovich AM, Tatarskiy VV, Yastrebova
MA, Bessonov IV, Arkhipova AY, Kolosov AS, Davydova LI,
Khamidullina AI, Bogush VG, Debabov VG, et al: Akt and Src mediate
the photocrosslinked fibroin-induced neural differentiation.
Neuroreport. 31:770–775. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Rezzola S, Di Somma M, Corsini M, Leali D,
Ravelli C, Polli VAB, Grillo E, Presta M and Mitola S: VEGFR2
activation mediates the pro-angiogenic activity of BMP4.
Angiogenesis. 22:521–533. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Sergeys J, Van Hove I, Hu TT, Temps C,
Carragher NO, Unciti-Broceta A, Feyen JHM, Moons L and Porcu M: The
retinal tyrosine kinome of diabetic Akimba mice highlights
potential for specific Src family kinase inhibition in retinal
vascular disease. Exp Eye Res. 197(108108)2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sjöberg E, Melssen M, Richards M, Ding Y,
Chanoca C, Chen D, Nwadozi E, Pal S, Love DT, Ninchoji T, et al:
Endothelial VEGFR2-PLCγ signaling regulates vascular permeability
and antitumor immunity through eNOS/Src. J Clin Invest.
133(e161366)2023.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Yang L, Guan H, He J, Zeng L, Yuan Z, Xu
M, Zhang W, Wu X and Guan J: VEGF increases the proliferative
capacity and eNOS/NO levels of endothelial progenitor cells through
the calcineurin/NFAT signalling pathway. Cell Biol Int. 36:21–27.
2012.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Huang TF, Wang SW, Lai YW, Liu SC, Chen
YJ, Hsueh TM, Lin CC, Lin CH and Chung CH: 4-Acetylantroquinonol B
suppresses prostate cancer growth and angiogenesis via a
VEGF/PI3K/ERK/mTOR-dependent signaling pathway in subcutaneous
xenograft and in vivo angiogenesis models. Int J Mol Sci.
23(1446)2022.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Qi S, Deng S, Lian Z and Yu K: Novel drugs
with high efficacy against tumor angiogenesis. Int J Mol Sci.
23(6934)2022.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Namjoo M, Ghafouri H, Assareh E, Aref AR,
Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S and Asghari
SM: A VEGFB-Based peptidomimetic inhibits VEGFR2-Mediated
PI3K/Akt/mTOR and PLCγ/ERK signaling and elicits apoptotic,
antiangiogenic, and antitumor activities. Pharmaceuticals (Basel).
16(906)2023.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Uemura A and Fukushima Y: Rho GTPases in
retinal vascular diseases. Int J Mol Sci. 22(3684)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Claesson-Welsh L and Welsh M: VEGFA and
tumour angiogenesis. J Intern Med. 273:114–127. 2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Fukushima Y, Nishiyama K, Kataoka H,
Fruttiger M, Fukuhara S, Nishida K, Mochizuki N, Kurihara H,
Nishikawa SI and Uemura A: RhoJ integrates attractive and repulsive
cues in directional migration of endothelial cells. EMBO J.
39(e102930)2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Hauke M, Eckenstaler R, Ripperger A, Ender
A, Braun H and Benndorf RA: Active RhoA exerts an inhibitory effect
on the homeostasis and angiogenic capacity of human endothelial
cells. J Am Heart Assoc. 11(e025119)2022.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Katari V, Dalal K, Adapala RK, Guarino BD,
Kondapalli N, Paruchuri S and Thodeti CK: A TRP to pathological
angiogenesis and vascular normalization. Compr Physiol.
14:5389–5406. 2024.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ramshekar A, Bretz CA and Hartnett ME:
RNA-Seq Provides Insights into VEGF-Induced signaling in human
retinal microvascular endothelial cells: Implications in
retinopathy of prematurity. Int J Mol Sci. 23(7354)2022.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Yu E, Kim H, Park H, Hong JH, Jin J, Song
Y, Woo JM, Min JK and Yun J: Targeting the VEGFR2 signaling pathway
for angiogenesis and fibrosis regulation in neovascular age-related
macular degeneration. Sci Rep. 14(25682)2024.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hara C, Wakabayashi T, Fukushima Y,
Sayanagi K, Kawasaki R, Sato S, Sakaguchi H and Nishida K:
Tachyphylaxis during treatment of exudative age-related macular
degeneration with aflibercept. Graefes Arch Clin Exp Ophthalmol.
257:2559–2569. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ribatti D, Solimando AG and Pezzella F:
The Anti-VEGF(R) drug discovery legacy: Improving attrition rates
by breaking the vicious cycle of angiogenesis in cancer. Cancers
(Basel). 13(3433)2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Estarreja J, Mendes P, Silva C, Camacho P
and Mateus V: The efficacy, safety, and efficiency of the off-label
use of bevacizumab in patients diagnosed with age-related macular
degeneration: Protocol for a systematic review and meta-analysis.
JMIR Res. 12(e38658)2023.PubMed/NCBI View
Article : Google Scholar
|
|
83
|
Siktberg J, Kim SJ, Sternberg P Jr and
Patel S: Effectiveness of bevacizumab step therapy for neovascular
age-related macular degeneration. EYE (Lond). 37:1844–1849.
2023.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Cao X, Sanchez JC, Patel TP, Yang ZY, Guo
CY, Malik D, Sopeyin A, Montaner S and Sodhi A: Aflibercept more
effectively weans patients with neovascular age-related macular
degeneration off therapy with bevacizumab. J Clin Invest.
133(e159125)2023.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Reddy SK, Ballal AR, Shailaja S, Seetharam
RN, Raghu CH, Sankhe R, Pai K, Tender T, Mathew M and Aroor A: ,
et al: Small extracellular vesicle-loaded bevacizumab
reduces the frequency of intravitreal injection required for
diabetic retinopathy. Theranostics. 13:2241–2255. 2023.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Fong AH and Lai TY: Long-term
effectiveness of ranibizumab for age-related macular degeneration
and diabetic macular edema. Clin Interv Aging. 8:467–482.
2013.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Kishishita S, Sakanishi Y, Morita S,
Matsuzawa M, Usui-Ouchi A and Ebihara N: Effects of intravitreal
injection of ranibizumab and aflibercept for branch retinal vein
occlusion on the choroid: A retrospective study. BMC Ophthalmol.
22(458)2022.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Rouvas A, Datseris I, Androudi S,
Tsilimbaris M, Kabanarou SA, Pharmakakis N, Koutsandrea C, Charonis
A, Kousidou O and Pantelopoulou G: A real-world, multicenter,
6-month prospective study in greece of the effectiveness and safety
of ranibizumab in patients with age-related macular degeneration
who have inadequately responded to aflibercept: The ‘ELEVATE’
study. Clin Ophthalmol. 16:2579–2593. 2022.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Debourdeau E, Beylerian H, Nguyen V,
Barthelmes D, Gillies M, Gabrielle PH, Vujosevic S, Otoole L, Puzo
M, Creuzot-Garcher C, et al: Treat-and-Extend Versus Pro re nata
regimens of ranibizumab and aflibercept in neovascular age-related
macular degeneration: A comparative study from routine clinical
practice. Ophthalmol Ther. 13:2343–2355. 2024.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Eichenbaum DA, Ahmed A and Hiya F:
Ranibizumab port delivery system: A clinical perspective. BMJ Open
Ophthalmol. 7(e001104)2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Lowater SJ, Grauslund J, Subhi Y and
Vergmann AS: Clinical trials and future outlooks of the port
delivery system with ranibizumab: A narrative review. Ophthalmol
Ther. 13:51–69. 2023.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Carlà MM, Savastano MC, Boselli F,
Giannuzzi F and Rizzo S: Ranibizumab port delivery system in
neovascular age-related macular degeneration: Where do we stand?
Overview of pharmacokinetics, clinical results, and future
directions. Pharmaceutics. 16(314)2024.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Sharma T, Dhingra R, Singh S, Sharma S,
Tomar P, Malhotra M and Bhardwaj TR: Aflibercept: A novel VEGF
targeted agent to explore the future perspectives of
anti-angiogenic therapy for the treatment of multiple tumors. Mini
Rev Med Chem. 13:530–540. 2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Baybora H: Perifoveal retinal thickness
changes after intravitreal aflibercept injection for choroidal
neovascularization in age-related macular degeneration.
Photodiagnosis Photodyn Ther. 46(104028)2024.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Heier JS, Brown DM, Chong V, Korobelnik
JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos
GD, et al: Intravitreal aflibercept (VEGF trap-eye) in wet
age-related macular degeneration. Ophthalmology. 119:2537–2548.
2012.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Kucukevcilioglu M, Yesiltas YS, Durukan
AH, Unlu N, Onen M, Alp MN, Kalayci D, Acar MA, Sekeroglu MA,
Citirik M, et al: Real life multicenter comparison of 24-month
outcomes of anti-VEGF therapy in diabetic macular Edema in Turkey:
Ranibizumab vs. aflibercept vs. ranibizumab-aflibercept switch.
Medicina (Kaunas). 59(263)2023.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kanadani T, Rabelo N, Takahashi D,
Magalhaes L and Farah M: Comparison of antiangiogenic agents
(ranibizumab, aflibercept, bevacizumab and ziv-aflibercept) in the
therapeutic response to the exudative form of age-related macular
degeneration according to the treat-and-extend protocol-true
head-to-head study. Int J Retina Vitreous. 10(13)2024.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Joussen AM, Ricci F, Paris LP, Korn C,
Quezada-Ruiz C and Zarbin M: Angiopoietin/Tie2 signalling and its
role in retinal and choroidal vascular diseases: A review of
preclinical data. Eye (Lond). 35:1305–1316. 2021.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Foxton RH, Uhles S, Grüner S, Revelant F
and Ullmer C: Efficacy of simultaneous VEGF-A/ANG-2 neutralization
in suppressing spontaneous choroidal neovascularization. EMBO Mol
Med. 11(e10204)2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Khanani AM, Guymer RH, Basu K, Boston H,
Heier JS, Korobelnik JF, Kotecha A, Lin H, Silverman D, Swaminathan
B, et al: TENAYA and LUCERNE: Rationale and design for the phase 3
clinical trials of faricimab for neovascular age-related macular
degeneration. Ophthalmol Sci. 1(100076)2021.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Heier JS, Khanani AM, Quezada Ruiz C, Basu
K, Ferrone PJ, Brittain C, Figueroa MS, Lin H, Holz FG, Patel V, et
al: Efficacy, durability, and safety of intravitreal faricimab up
to every 16 weeks for neovascular age-related macular degeneration
(TENAYA and LUCERNE): Two randomised, double-masked, phase 3,
non-inferiority trials. Lancet. 399:729–740. 2022.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Pandit SA, Momenaei B, Wakabayashi T,
Mansour HA, Vemula S, Durrani AF, Pashaee B, Kazan AS, Ho AC,
Klufas M, et al: Clinical outcomes of faricimab in patients with
previously treated neovascular age-related macular degeneration.
Ophthalmol Retina. 8:360–366. 2024.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Szigiato A, Mohan N, Talcott KE, Mammo DA,
Babiuch AS, Kaiser PK, Ehlers JP, Rachitskaya A, Yuan A, Srivastava
SK and Sharma S: Short-term outcomes of faricimab in patients with
neovascular age-related macular degeneration on prior anti-VEGF
Therapy. Ophthalmol Retina. 8:10–17. 2024.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Grimaldi G, Cancian G, Rizzato A, Casanova
A, Perruchoud-Ader K, Clerici M, Consigli A and Menghini M:
Intravitreal faricimab for neovascular age-related macular
degeneration previously treated with traditional anti-VEGF
compounds: A real-world prospective study. Graefes Arch Clin Exp
Ophthalmol. 262:1151–1159. 2024.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Mori R, Honda S, Gomi F, Tsujikawa A,
Koizumi H, Ochi H, Ohsawa S and Okada AA: TENAYA and LUCERNE
Investigators. Efficacy, durability, and safety of faricimab up to
every 16 weeks in patients with neovascular age-related macular
degeneration: 1-year results from the Japan subgroup of the phase 3
TENAYA trial. Jpn J Ophthalmol. 67:301–310. 2023.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Diabetic Retinopathy Clinical Research
Network. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP,
Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, et al:
Aflibercept, bevacizumab, or ranibizumab for diabetic macular
edema. N Engl J Med. 372:1193–1203. 2015.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Huang X, Wu W, Qi H, Yan X, Dong L, Yang
Y, Zhang Q, Ma G, Zhang G and Lei H: Exploitation of enhanced prime
editing for blocking aberrant angiogenesis. J Adv Res: Jul 10, 2024
(Epub ahead of print).
|
|
108
|
Zech TJ, Wolf A, Hector M, Bischoff-Kont
I, Krishnathas GM, Kuntschar S, Schmid T, Bracher F, Langmann T and
Fürst R: 2-Desaza-annomontine (C81) impedes angiogenesis through
reduced VEGFR2 expression derived from inhibition of CDC2-like
kinases. Angiogenesis. 27:245–272. 2024.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Tang X, Cui K, Wu P, Hu A, Fan M, Lu X,
Yang F, Lin J, Yu S, Xu Y and Liang X: Acrizanib as a novel
therapeutic agent for fundus neovascularization via inhibitory
phosphorylation of VEGFR2. Transl Vis Sci Technol.
13(1)2024.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Lei W, Xu H, Yao H, Li L, Wang M, Zhou X
and Liu X: 5α-Hydroxycostic acid inhibits choroidal
neovascularization in rats through a dual signalling pathway
mediated by VEGF and angiopoietin 2. Mol Med.
29(151)2023.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Liu Y, Feng M, Cai J, Li S, Dai X, Shan G
and Wu S: Repurposing bortezomib for choroidal neovascularization
treatment via antagonizing VEGF-A and PDGF-D mediated signaling.
Exp Eye Res. 204(108446)2021.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Zeng Z, Li S, Ye X, Wang Y, Wang Q, Chen
Z, Wang Z, Zhang J, Wang Q, Chen L, et al: Genome editing VEGFA
prevents corneal neovascularization in vivo. Adv Sci (Weinh).
11(e2401710)2024.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Huang X, Zhou G, Wu W, Duan Y, Ma G, Song
J, Xiao R, Vandenberghe L, Zhang F, D'Amore PA and Lei H: Genome
editing abrogates angiogenesis in vivo. Nat Commun.
8(112)2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Toutounchian S, Ahmadbeigi N and Mansouri
V: Retinal and choroidal neovascularization antivascular
endothelial growth factor treatments: The role of gene therapy. J
Ocul Pharmacol Ther. 38:529–548. 2022.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Yiu G, Gulati S, Higgins V, Coak E, Mascia
D, Kim E, Spicer G and Tabano D: Factors involved in anti-VEGF
treatment decisions for neovascular age-related macular
degeneration: Insights from real-world clinical practice. Clin
Ophthalmol. 18:1679–1690. 2024.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Wykoff CC, Garmo V, Tabano D, Menezes A,
Kim E, Fevrier HB, LaPrise A and Leng T: Impact of Anti-VEGF
treatment and patient characteristics on vision outcomes in
neovascular age-related macular degeneration: Up to 6-year analysis
of the AAO IRIS® Registry. Ophthalmol Sci. 4(100421)2023.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Liu D, Zhang C and Zhang J, Xu GT and
Zhang J: Molecular pathogenesis of subretinal fibrosis in
neovascular AMD focusing on epithelial-mesenchymal transformation
of retinal pigment epithelium. Neurobiol Dis.
185(106250)2023.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Fleckenstein M, Mitchell P, Freund KB,
Sadda S, Holz FG, Brittain C, Henry EC and Ferrara D: The
progression of geographic atrophy secondary to age-related macular
degeneration. Ophthalmology. 125:369–390. 2018.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Zhuang X, Su Y, Li M, Zhang L, Mi L, Ji Y,
Deng F, Xiao O, Zhang X and Zhou L: , et al: A prospective
observation of influence of anti-VEGF on optic disc vasculature in
nAMD patients. Photodiagnosis Photodyn Ther.
45(103863)2024.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Pérez-Gutiérrez L and Ferrara N: Biology
and therapeutic targeting of vascular endothelial growth factor A.
Nat Rev Mol Cell Biol. 24:816–834. 2023.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Wu Y, Wang J, Zhao J, Su Y, Li X, Chen Z,
Wu X, Huang S, He X and Liang L: LTR retrotransposon-derived LncRNA
LINC01446 promotes hepatocellular carcinoma progression and
angiogenesis by regulating the SRPK2/SRSF1/VEGF axis. Cancer Lett.
598(217088)2024.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Bao M, Chen Y, Liu JT, Bao H, Wang WB, Qi
YX and Lv F: Extracellular matrix stiffness controls VEGF(165)
secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1
axis. Angiogenesis. 25:71–86. 2022.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Camacho P, Ribeiro E, Pereira B, Varandas
T, Nascimento J, Henriques J, Dutra-Medeiros M, Delgadinho M,
Oliveira K, Silva C and Brito M: DNA methyltransferase expression
(DNMT1, DNMT3a and DNMT3b) as a potential biomarker for anti-VEGF
diabetic macular edema response. Eur J Ophthalmol. 33:2267–2274.
2023.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Xu L, Prentice JR, Velez-Montoya R, Sinha
A, Barakat MR, Gupta A, Lowenthal R, Khanani AM, Kaiser PK, Heier
JS, et al: Bispecific VEGF-A and Angiopoietin-2 Antagonist RO-101
preclinical efficacy in model of neovascular eye disease.
Ophthalmol Sci. 4(100467)2024.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Jian HJ, Anand A, Lai JY, Huang CC, Ma DH,
Lai CC and Chang HT: Ultrahigh-Efficacy VEGF neutralization using
carbonized nanodonuts: Implications for intraocular anti-angiogenic
therapy. Adv Healthc Mater. 13(e2302881)2024.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Xu M, Fan R, Fan X, Shao Y and Li X:
Progress and challenges of Anti-VEGF agents and their
sustained-release strategies for retinal angiogenesis. Drug Des
Devel Ther. 16:3241–3262. 2022.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Zhou C, Lei F, Sharma J, Hui PC, Wolkow N,
Dohlman CH, Vavvas DG, Chodosh J and Paschalis EI: Sustained
inhibition of VEGF and TNF-α achieves multi-ocular protection and
prevents formation of blood vessels after severe ocular trauma.
Pharmaceutics. 15(2059)2023.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Puranen J, Koponen S, Nieminen T, Kanerva
I, Kokki E, Toivanen P, Urtti A, Ylä-Herttuala S and Ruponen M:
Antiangiogenic AAV2 gene therapy with a truncated form of soluble
VEGFR-2 reduces the growth of choroidal neovascularization in mice
after intravitreal injection. Exp Eye Res.
224(109237)2022.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Desideri LF, Vaccaro S, Vagge A, Nicolò M,
Scorcia V, Traverso CE and Giannaccare G: AAV8 gene therapy
encoding anti-VEGF Fab Treatment of wet age-related macular
degeneration Treatment of diabetic retinopathy. Drugs Future.
47:737–741. 2022.
|
|
130
|
Papaioannou C: Advancements in the
treatment of age-related macular degeneration: A comprehensive
review. Postgrad Med J. 100:445–450. 2024.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Campochiaro PA, Avery R, Brown DM, Heier
JS, Ho AC, Huddleston SM, Jaffe GJ, Khanani AM, Pakola S, Pieramici
DJ, et al: Gene therapy for neovascular age-related macular
degeneration by subretinal delivery of RGX-314: A phase 1/2a
dose-escalation study. Lancet. 403:1563–1573. 2024.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Poulsen K, Hanna K, Nieves J, Nguyen N,
Sharma P, Grishanin R, Corbau R and Kiss S: Nonclinical study of
ixo-vec gene therapy for nAMD supports efficacy for a human dose of
6E10 vg/eye and staggered dosing of fellow eyes. Mol Ther Methods
Clin Dev. 33(101430)2025.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Shirian JD, Shukla P and Singh RP:
Exploring new horizons in neovascular age-related macular
degeneration: Novel mechanisms of action and future therapeutic
avenues. Eye (Lond). 39:40–44. 2025.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Modi SJ and Kulkarni VM: Exploration of
structural requirements for the inhibition of VEGFR-2 tyrosine
kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors. J
Biomol Struct Dyn. 40:5712–5727. 2022.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Zong Y, Xiao S, Lei D and Li H:
Discoveries in retina physiology and disease biology using
single-cell RNA sequencing. Front Biosci (Landmark Ed).
28(247)2023.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Lyu Y, Zauhar R, Dana N, Strang CE, Hu J,
Wang K, Liu S, Pan N, Gamlin P, Kimble JA, et al: Implication of
specific retinal cell-type involvement and gene expression changes
in AMD progression using integrative analysis of single-cell and
bulk RNA-seq profiling. Sci Rep. 11(15612)2021.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Becker K, Klein H, Simon E, Viollet C,
Haslinger C, Leparc G, Schultheis C, Chong V, Kuehn MH,
Fernandez-Albert F and Bakker RA: In-depth transcriptomic analysis
of human retina reveals molecular mechanisms underlying diabetic
retinopathy. Sci Rep. 11(10494)2021.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Deng J and Qin YH: Advancements and
emerging trends in ophthalmic anti-VEGF therapy: A bibliometric
analysis. Int Ophthalmol. 44(368)2024.PubMed/NCBI View Article : Google Scholar
|