Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2025 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review)

  • Authors:
    • Huan Shen Li
    • Xiong Gao Huang
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 571101, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 143
    |
    Published online on: May 20, 2025
       https://doi.org/10.3892/etm.2025.12893
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Fundus neovascularization disease is a blinding eye disease, and represents an umbrella term for a group of disorders in which VEGF and its receptor VEGFR2 play important roles in promoting neovascularization. Compared with physiological angiogenesis, pathological angiogenesis involves several different regulatory mechanisms, vascular structures and functions, as well as microenvironmental effects. Although the role of VEGF and its receptor in angiogenesis is well documented, research on its major molecular signaling mechanisms is limited. In the present review, a basic overview of the VEGF and VEGFR2 pathways, including their downstream signaling mechanisms and the latest therapeutic advances in the context of fundus neovascularization disease, is provided, and the limitations and future perspectives of current anti‑VEGF therapies are discussed. Overall, the purpose of the current review is to provide information on the molecular signaling mechanisms associated with VEGF and VEGFR2 and to perform an in‑depth examination of these molecular signaling pathways and their interaction mechanisms. These interaction mechanisms are expected to facilitate the development of more targeted and long‑lasting therapeutic regimens and provide novel concepts for the treatment of fundus neovascularization disease.
View Figures

Figure 1

Figure 2

View References

1 

Swift MR and Weinstein BM: Arterial-venous specification during development. Circ Res. 104:576–588. 2009.PubMed/NCBI View Article : Google Scholar

2 

Vishwakarma S and Kaur I: Molecular mediators and regulators of retinal angiogenesis. Semin Ophthalmol. 38:124–133. 2023.PubMed/NCBI View Article : Google Scholar

3 

Díaz-Coránguez M, Ramos C and Antonetti DA: The inner blood-retinal barrier: Cellular basis and development. Vision Res. 139:123–137. 2017.PubMed/NCBI View Article : Google Scholar

4 

Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD and Langmann T: VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 84(100954)2021.PubMed/NCBI View Article : Google Scholar

5 

Selvam S, Kumar T and Fruttiger M: Retinal vasculature development in health and disease. Prog Retin Eye Res. 63:1–19. 2018.PubMed/NCBI View Article : Google Scholar

6 

Hu WH, Zhang XY, Leung KW, Duan R, Dong TT, Qin QW and Tsim KW: Resveratrol, an inhibitor binding to VEGF, restores the pathology of abnormal angiogenesis in retinopathy of prematurity (ROP) in mice: Application by intravitreal and topical instillation. Int J Mol Sci. 23(6455)2022.PubMed/NCBI View Article : Google Scholar

7 

Yan J, Deng J, Cheng F, Zhang T, Deng Y, Cai Y and Cong W: Thioredoxin-interacting protein inhibited vascular endothelial cell-induced HREC angiogenesis treatment of diabetic retinopathy. Appl Biochem Biotechnol. 195:1268–1283. 2023.PubMed/NCBI View Article : Google Scholar

8 

Heloterä H and Kaarniranta K: A linkage between angiogenesis and inflammation in neovascular age-related macular degeneration. Cells. 11(3453)2022.PubMed/NCBI View Article : Google Scholar

9 

Bakri SJ, Thorne JE, Ho AC, Ehlers JP, Schoenberger SD, Yeh S and Kim SJ: Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: A report by the american academy of ophthalmology. Ophthalmology. 126:55–63. 2019.PubMed/NCBI View Article : Google Scholar

10 

Xu X, Han N, Zhao F, Fan R, Guo Q, Han X, Liu Y and Luo G: Inefficacy of anti-VEGF therapy reflected in VEGF-mediated photoreceptor degeneration. Mol Ther Nucleic Acids. 35(102176)2024.PubMed/NCBI View Article : Google Scholar

11 

Apte RS, Chen DS and Ferrara NL: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019.PubMed/NCBI View Article : Google Scholar

12 

Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P and Rao G: VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer. 1879(189079)2024.PubMed/NCBI View Article : Google Scholar

13 

Olsson AK, Dimberg A, Kreuger J and Claesson-Welsh L: VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 7:359–371. 2006.PubMed/NCBI View Article : Google Scholar

14 

Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE and Woolard J: Molecular pharmacology of VEGF-A isoforms: Binding and signalling at VEGFR2. Int J Mol Sci. 19(1264)2018.PubMed/NCBI View Article : Google Scholar

15 

Mallick R and Ylä-Herttuala S: Therapeutic potential of VEGF-B in coronary heart disease and heart failure: Dream or vision? Cells. 11(4134)2022.PubMed/NCBI View Article : Google Scholar

16 

Wada H, Suzuki M, Matsuda M, Ajiro Y, Shinozaki T, Sakagami S, Yonezawa K, Shimizu M, Funada J, Takenaka T, et al: Distinct characteristics of VEGF-D and VEGF-C to predict mortality in patients with suspected or known coronary artery disease. J Am Heart Assoc. 9(e015761)2020.PubMed/NCBI View Article : Google Scholar

17 

Sarabipour S, Ballmer-Hofer K and Hristova K: VEGFR-2 conformational switch in response to ligand binding. Elife. 5(e13876)2016.PubMed/NCBI View Article : Google Scholar

18 

Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016.PubMed/NCBI View Article : Google Scholar

19 

Koch S and Claesson-Welsh L: Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2(a006502)2012.PubMed/NCBI View Article : Google Scholar

20 

Kendall RL, Rutledge RZ, Mao X, Tebben AJ, Hungate RW and Thomas KA: Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J Biol Chem. 274:6453–6460. 1999.PubMed/NCBI View Article : Google Scholar

21 

Gelfand MV, Hagan N, Tata A, Oh WJ, Lacoste B, Kang KT, Kopycinska J, Bischoff J, Wang JH and Gu C: Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife. 3(e03720)2014.PubMed/NCBI View Article : Google Scholar

22 

Gavard J and Gutkind JS: VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 8:1223–1234. 2008.PubMed/NCBI View Article : Google Scholar

23 

Smith RO, Ninchoji T, Gordon E, André H, Dejana E, Vestweber D, Kvanta A and Claesson-Welsh L: Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. Elife. 9(e54056)2020.PubMed/NCBI View Article : Google Scholar

24 

Shibuya M: VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul). 22:1–9. 2014.PubMed/NCBI View Article : Google Scholar

25 

Mabeta P and Steenkamp V: The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int J Mol Sci. 23(15585)2022.PubMed/NCBI View Article : Google Scholar

26 

Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM: Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 59:455–467. 2018.PubMed/NCBI

27 

Shibuya M: VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr Metab Immune Disord Drug Targets. 15:135–144. 2015.PubMed/NCBI View Article : Google Scholar

28 

Patel SA, Nilsson MB, Le X, Cascone T, Jain RK and Heymach JV: Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 29:30–39. 2023.PubMed/NCBI View Article : Google Scholar

29 

Shibuya M and Claesson-Welsh L: Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 312:549–560. 2006.PubMed/NCBI View Article : Google Scholar

30 

Jin KL, Mao XO and Greenberg DA: Vascular endothelial growth factor: Direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA. 97:10242–10247. 2000.PubMed/NCBI View Article : Google Scholar

31 

Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I, Miyamoto T, Mukouyama YS, Sato TN, Suda T, Ema M and Kubota Y: Neurons limit angiogenesis by titrating VEGF in retina. Cell. 159:584–596. 2014.PubMed/NCBI View Article : Google Scholar

32 

Campochiaro PA: Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 49:67–81. 2015.PubMed/NCBI View Article : Google Scholar

33 

Abu Serhan H, Taha MJJ, Abuawwad MT, Abdelaal A, Irshaidat S, Abu Serhan L, Abu Salim QF, Awamleh N, Abdelazeem B and Elnahry AG: Safety and efficacy of brolucizumab in the treatment of diabetic macular edema and diabetic retinopathy: A systematic review and meta-analysis. Semin Ophthalmol. 39:251–260. 2024.PubMed/NCBI View Article : Google Scholar

34 

Wang Z, Zhang N, Lin P, Xing Y and Yang N: Recent advances in the treatment and delivery system of diabetic retinopathy. Front Endocrinol (Lausanne). 15(1347864)2024.PubMed/NCBI View Article : Google Scholar

35 

Kaur A, Kumar R and Sharma A: Diabetic retinopathy leading to blindness-a review. Curr Diabetes Rev. 20(e240124225997)2024.PubMed/NCBI View Article : Google Scholar

36 

Zhou YM, Cao YH, Guo J and Cen LS: Potential prospects of Chinese medicine application in diabetic retinopathy. World J Diabetes. 15:2010–2014. 2024.PubMed/NCBI View Article : Google Scholar

37 

Baseline and early natural history report. The central vein occlusion study. Arch Ophthalmol. 111:1087–1095. 1993.PubMed/NCBI View Article : Google Scholar

38 

Vitiello L, Lixi F, Coppola A, Abbinante G, Gagliardi V, Salerno G, De Pascale I, Pellegrino A and Giannaccare G: Intravitreal dexamethasone implant switch after anti-VEGF treatment in patients affected by retinal vein occlusion: A review of the literature. J Clin Med. 13(5006)2024.PubMed/NCBI View Article : Google Scholar

39 

Minaker SA, Mason RH, Bamakrid M, Lee Y and Muni RH: Changes in aqueous and vitreous inflammatory cytokine levels in retinal vein occlusion: A systematic review and meta-analysis. J Vitreoretin Dis. 4:36–64. 2019.PubMed/NCBI View Article : Google Scholar

40 

Wang B, Zhang X, Chen H, Koh A, Zhao C and Chen Y: A review of intraocular biomolecules in retinal vein occlusion: Toward potential biomarkers for companion diagnostics. Front Pharmacol. 13(859951)2022.PubMed/NCBI View Article : Google Scholar

41 

Finocchio L, Zeppieri M, Gabai A, Toneatto G, Spadea L and Salati C: Recent developments in gene therapy for neovascular age-related macular degeneration: A review. Biomedicines. 11(3221)2023.PubMed/NCBI View Article : Google Scholar

42 

Cheng S, Zhang S, Huang M, Liu Y, Zou X, Chen X and Zhang Z: Treatment of neovascular age-related macular degeneration with anti-vascular endothelial growth factor drugs: progress from mechanisms to clinical applications. Front Med (Lausanne). 11(1411278)2024.PubMed/NCBI View Article : Google Scholar

43 

Fragiotta S, Bassis L, Abdolrahimzadeh B, Marino A, Sepe M and Abdolrahimzadeh S: Exploring current molecular targets in the treatment of neovascular age-related macular degeneration toward the perspective of long-term agents. Int J Mol Sci. 25(4433)2024.PubMed/NCBI View Article : Google Scholar

44 

Nakao S, Zandi S, Hata Y, Kawahara S, Arita R, Schering A, Sun D, Melhorn MI, Ito Y, Lara-Castillo N, et al: Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: An endogenous trapping mechanism links lymph- and angiogenesis. Blood. 117:1081–1090. 2011.PubMed/NCBI View Article : Google Scholar

45 

Duh EJ, Sun JK and Stitt AW: Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight. 2(e93751)2017.PubMed/NCBI View Article : Google Scholar

46 

Mrugacz M, Bryl A and Zorena K: Retinal Vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J Clin Med. 10(458)2021.PubMed/NCBI View Article : Google Scholar

47 

Zhang YL, Pirmardan ER, Jiang H, Barakat A and Hafezi-Moghadam A: VEGFR-2 adhesive nanoprobes reveal early diabetic retinopathy in vivo. Biosens Bioelectron. 237(115476)2023.PubMed/NCBI View Article : Google Scholar

48 

Liu X, Guo A, Tu Y, Li W, Li L, Liu W, Ju Y, Zhou Y, Sang A and Zhu M: Fruquintinib inhibits VEGF/VEGFR2 axis of choroidal endothelial cells and M1-type macrophages to protect against mouse laser-induced choroidal neovascularization. Cell Death Dis. 11(1016)2020.PubMed/NCBI View Article : Google Scholar

49 

Xu J, Tu Y, Wang Y, Xu X, Sun X, Xie L, Zhao Q, Guo Y, Gu Y, Du J, et al: Prodrug of epigallocatechin-3-gallate alleviates choroidal neovascularization via down-regulating HIF-1α/VEGF/VEGFR2 pathway and M1 type macrophage/microglia polarization. Biomed Pharmacother. 121(109606)2020.PubMed/NCBI View Article : Google Scholar

50 

Leitch IM, Gerometta M, Eichenbaum D, Finger RP, Steinle NC and Baldwin ME: Vascular endothelial growth factor C and D signaling pathways as potential targets for the treatment of neovascular age-related macular degeneration: A narrative review. Ophthalmol Ther. 13:1857–1875. 2024.PubMed/NCBI View Article : Google Scholar

51 

Cui K, Liu J, Huang L, Qin B, Yang X, Li L, Liu Y, Gu J, Wu W, Yu Y and Sang A: Andrographolide attenuates choroidal neovascularization by inhibiting the HIF-1α/VEGF signaling pathway. Biochem Biophys Res Commun. 530:60–66. 2020.PubMed/NCBI View Article : Google Scholar

52 

Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011.PubMed/NCBI View Article : Google Scholar

53 

Wang X, Bove AM, Simone G and Ma B: Molecular Bases of VEGFR-2-Mediated physiological function and pathological role. Front Cell Dev Biol. 8(599281)2020.PubMed/NCBI View Article : Google Scholar

54 

Gomes E and Rockwell P: p38 MAPK as a negative regulator of VEGF/VEGFR2 signaling pathway in serum deprived human SK-N-SH neuroblastoma cells. Neurosci Lett. 431:95–100. 2008.PubMed/NCBI View Article : Google Scholar

55 

Hendrikse CSE, Theelen PMM, van der Ploeg P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe A, Lambrechts S, Bekkers RLM and Piek JMJ: The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol. 171:83–94. 2023.PubMed/NCBI View Article : Google Scholar

56 

Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20(2164)2019.PubMed/NCBI View Article : Google Scholar

57 

Almalki SG and Agrawal DK: ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther. 8(113)2017.PubMed/NCBI View Article : Google Scholar

58 

Guo GX, Qiu YH, Liu Y, Yu LL, Zhang X, Tsim KW, Qin QW and Hu WH: Fucoxanthin attenuates angiogenesis by blocking the VEGFR2-mediated signaling pathway through binding the vascular endothelial growth factor. J Agric Food Chem. 72:21610–21623. 2024.PubMed/NCBI View Article : Google Scholar

59 

Zhou LB, Zhou YQ and Zhang XY: Blocking VEGF signaling augments interleukin-8 secretion via MEK/ERK/1/2 axis in human retinal pigment epithelial cells. Int J Ophthalmol. 13:1039–1045. 2020.PubMed/NCBI View Article : Google Scholar

60 

Bin Y, Liu YY, Jiang SQ and Peng H: Elevated YKL-40 serum levels may contribute to wet age-related macular degeneration via the ERK1/2 pathway. FEBS Open Bio. 11:2933–2942. 2021.PubMed/NCBI View Article : Google Scholar

61 

Miller B and Sewell-Loftin MK: Mechanoregulation of vascular endothelial growth factor receptor 2 in angiogenesis. Front Cardiovasc Med. 8(804934)2021.PubMed/NCBI View Article : Google Scholar

62 

Jin H, Ko YS, Yun SP, Park SW and Kim HJ: P2Y(2)R-mediated transactivation of VEGFR2 through Src phosphorylation is associated with ESM-1 overexpression in radiotherapy-resistant-triple negative breast cancer cells. Int J Oncol. 62(73)2023.PubMed/NCBI View Article : Google Scholar

63 

Gao X, Chen J, Yin G, Liu Y, Gu Z, Sun R, Sun X, Jiao X, Wang L, Wang N, et al: Hyperforin ameliorates neuroinflammation and white matter lesions by regulating microglial VEGFR(2)/SRC pathway in vascular cognitive impairment mice. CNS Neurosci Ther. 30(e14666)2024.PubMed/NCBI View Article : Google Scholar

64 

Chen TT, Dong JL, Zhou HY, Deng X, Li R, Chen N, Luo M, Li Y, Wu J and Wang L: Glycation of fibronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2-c-Src crosstalk. J Cell Mol Med. 24:9154–9164. 2020.PubMed/NCBI View Article : Google Scholar

65 

Moysenovich AM, Tatarskiy VV, Yastrebova MA, Bessonov IV, Arkhipova AY, Kolosov AS, Davydova LI, Khamidullina AI, Bogush VG, Debabov VG, et al: Akt and Src mediate the photocrosslinked fibroin-induced neural differentiation. Neuroreport. 31:770–775. 2020.PubMed/NCBI View Article : Google Scholar

66 

Rezzola S, Di Somma M, Corsini M, Leali D, Ravelli C, Polli VAB, Grillo E, Presta M and Mitola S: VEGFR2 activation mediates the pro-angiogenic activity of BMP4. Angiogenesis. 22:521–533. 2019.PubMed/NCBI View Article : Google Scholar

67 

Sergeys J, Van Hove I, Hu TT, Temps C, Carragher NO, Unciti-Broceta A, Feyen JHM, Moons L and Porcu M: The retinal tyrosine kinome of diabetic Akimba mice highlights potential for specific Src family kinase inhibition in retinal vascular disease. Exp Eye Res. 197(108108)2020.PubMed/NCBI View Article : Google Scholar

68 

Sjöberg E, Melssen M, Richards M, Ding Y, Chanoca C, Chen D, Nwadozi E, Pal S, Love DT, Ninchoji T, et al: Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and antitumor immunity through eNOS/Src. J Clin Invest. 133(e161366)2023.PubMed/NCBI View Article : Google Scholar

69 

Yang L, Guan H, He J, Zeng L, Yuan Z, Xu M, Zhang W, Wu X and Guan J: VEGF increases the proliferative capacity and eNOS/NO levels of endothelial progenitor cells through the calcineurin/NFAT signalling pathway. Cell Biol Int. 36:21–27. 2012.PubMed/NCBI View Article : Google Scholar

70 

Huang TF, Wang SW, Lai YW, Liu SC, Chen YJ, Hsueh TM, Lin CC, Lin CH and Chung CH: 4-Acetylantroquinonol B suppresses prostate cancer growth and angiogenesis via a VEGF/PI3K/ERK/mTOR-dependent signaling pathway in subcutaneous xenograft and in vivo angiogenesis models. Int J Mol Sci. 23(1446)2022.PubMed/NCBI View Article : Google Scholar

71 

Qi S, Deng S, Lian Z and Yu K: Novel drugs with high efficacy against tumor angiogenesis. Int J Mol Sci. 23(6934)2022.PubMed/NCBI View Article : Google Scholar

72 

Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S and Asghari SM: A VEGFB-Based peptidomimetic inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK signaling and elicits apoptotic, antiangiogenic, and antitumor activities. Pharmaceuticals (Basel). 16(906)2023.PubMed/NCBI View Article : Google Scholar

73 

Uemura A and Fukushima Y: Rho GTPases in retinal vascular diseases. Int J Mol Sci. 22(3684)2021.PubMed/NCBI View Article : Google Scholar

74 

Claesson-Welsh L and Welsh M: VEGFA and tumour angiogenesis. J Intern Med. 273:114–127. 2013.PubMed/NCBI View Article : Google Scholar

75 

Fukushima Y, Nishiyama K, Kataoka H, Fruttiger M, Fukuhara S, Nishida K, Mochizuki N, Kurihara H, Nishikawa SI and Uemura A: RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells. EMBO J. 39(e102930)2020.PubMed/NCBI View Article : Google Scholar

76 

Hauke M, Eckenstaler R, Ripperger A, Ender A, Braun H and Benndorf RA: Active RhoA exerts an inhibitory effect on the homeostasis and angiogenic capacity of human endothelial cells. J Am Heart Assoc. 11(e025119)2022.PubMed/NCBI View Article : Google Scholar

77 

Katari V, Dalal K, Adapala RK, Guarino BD, Kondapalli N, Paruchuri S and Thodeti CK: A TRP to pathological angiogenesis and vascular normalization. Compr Physiol. 14:5389–5406. 2024.PubMed/NCBI View Article : Google Scholar

78 

Ramshekar A, Bretz CA and Hartnett ME: RNA-Seq Provides Insights into VEGF-Induced signaling in human retinal microvascular endothelial cells: Implications in retinopathy of prematurity. Int J Mol Sci. 23(7354)2022.PubMed/NCBI View Article : Google Scholar

79 

Yu E, Kim H, Park H, Hong JH, Jin J, Song Y, Woo JM, Min JK and Yun J: Targeting the VEGFR2 signaling pathway for angiogenesis and fibrosis regulation in neovascular age-related macular degeneration. Sci Rep. 14(25682)2024.PubMed/NCBI View Article : Google Scholar

80 

Hara C, Wakabayashi T, Fukushima Y, Sayanagi K, Kawasaki R, Sato S, Sakaguchi H and Nishida K: Tachyphylaxis during treatment of exudative age-related macular degeneration with aflibercept. Graefes Arch Clin Exp Ophthalmol. 257:2559–2569. 2019.PubMed/NCBI View Article : Google Scholar

81 

Ribatti D, Solimando AG and Pezzella F: The Anti-VEGF(R) drug discovery legacy: Improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers (Basel). 13(3433)2021.PubMed/NCBI View Article : Google Scholar

82 

Estarreja J, Mendes P, Silva C, Camacho P and Mateus V: The efficacy, safety, and efficiency of the off-label use of bevacizumab in patients diagnosed with age-related macular degeneration: Protocol for a systematic review and meta-analysis. JMIR Res. 12(e38658)2023.PubMed/NCBI View Article : Google Scholar

83 

Siktberg J, Kim SJ, Sternberg P Jr and Patel S: Effectiveness of bevacizumab step therapy for neovascular age-related macular degeneration. EYE (Lond). 37:1844–1849. 2023.PubMed/NCBI View Article : Google Scholar

84 

Cao X, Sanchez JC, Patel TP, Yang ZY, Guo CY, Malik D, Sopeyin A, Montaner S and Sodhi A: Aflibercept more effectively weans patients with neovascular age-related macular degeneration off therapy with bevacizumab. J Clin Invest. 133(e159125)2023.PubMed/NCBI View Article : Google Scholar

85 

Reddy SK, Ballal AR, Shailaja S, Seetharam RN, Raghu CH, Sankhe R, Pai K, Tender T, Mathew M and Aroor A: , et al: Small extracellular vesicle-loaded bevacizumab reduces the frequency of intravitreal injection required for diabetic retinopathy. Theranostics. 13:2241–2255. 2023.PubMed/NCBI View Article : Google Scholar

86 

Fong AH and Lai TY: Long-term effectiveness of ranibizumab for age-related macular degeneration and diabetic macular edema. Clin Interv Aging. 8:467–482. 2013.PubMed/NCBI View Article : Google Scholar

87 

Kishishita S, Sakanishi Y, Morita S, Matsuzawa M, Usui-Ouchi A and Ebihara N: Effects of intravitreal injection of ranibizumab and aflibercept for branch retinal vein occlusion on the choroid: A retrospective study. BMC Ophthalmol. 22(458)2022.PubMed/NCBI View Article : Google Scholar

88 

Rouvas A, Datseris I, Androudi S, Tsilimbaris M, Kabanarou SA, Pharmakakis N, Koutsandrea C, Charonis A, Kousidou O and Pantelopoulou G: A real-world, multicenter, 6-month prospective study in greece of the effectiveness and safety of ranibizumab in patients with age-related macular degeneration who have inadequately responded to aflibercept: The ‘ELEVATE’ study. Clin Ophthalmol. 16:2579–2593. 2022.PubMed/NCBI View Article : Google Scholar

89 

Debourdeau E, Beylerian H, Nguyen V, Barthelmes D, Gillies M, Gabrielle PH, Vujosevic S, Otoole L, Puzo M, Creuzot-Garcher C, et al: Treat-and-Extend Versus Pro re nata regimens of ranibizumab and aflibercept in neovascular age-related macular degeneration: A comparative study from routine clinical practice. Ophthalmol Ther. 13:2343–2355. 2024.PubMed/NCBI View Article : Google Scholar

90 

Eichenbaum DA, Ahmed A and Hiya F: Ranibizumab port delivery system: A clinical perspective. BMJ Open Ophthalmol. 7(e001104)2022.PubMed/NCBI View Article : Google Scholar

91 

Lowater SJ, Grauslund J, Subhi Y and Vergmann AS: Clinical trials and future outlooks of the port delivery system with ranibizumab: A narrative review. Ophthalmol Ther. 13:51–69. 2023.PubMed/NCBI View Article : Google Scholar

92 

Carlà MM, Savastano MC, Boselli F, Giannuzzi F and Rizzo S: Ranibizumab port delivery system in neovascular age-related macular degeneration: Where do we stand? Overview of pharmacokinetics, clinical results, and future directions. Pharmaceutics. 16(314)2024.PubMed/NCBI View Article : Google Scholar

93 

Sharma T, Dhingra R, Singh S, Sharma S, Tomar P, Malhotra M and Bhardwaj TR: Aflibercept: A novel VEGF targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple tumors. Mini Rev Med Chem. 13:530–540. 2013.PubMed/NCBI View Article : Google Scholar

94 

Baybora H: Perifoveal retinal thickness changes after intravitreal aflibercept injection for choroidal neovascularization in age-related macular degeneration. Photodiagnosis Photodyn Ther. 46(104028)2024.PubMed/NCBI View Article : Google Scholar

95 

Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, et al: Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 119:2537–2548. 2012.PubMed/NCBI View Article : Google Scholar

96 

Kucukevcilioglu M, Yesiltas YS, Durukan AH, Unlu N, Onen M, Alp MN, Kalayci D, Acar MA, Sekeroglu MA, Citirik M, et al: Real life multicenter comparison of 24-month outcomes of anti-VEGF therapy in diabetic macular Edema in Turkey: Ranibizumab vs. aflibercept vs. ranibizumab-aflibercept switch. Medicina (Kaunas). 59(263)2023.PubMed/NCBI View Article : Google Scholar

97 

Kanadani T, Rabelo N, Takahashi D, Magalhaes L and Farah M: Comparison of antiangiogenic agents (ranibizumab, aflibercept, bevacizumab and ziv-aflibercept) in the therapeutic response to the exudative form of age-related macular degeneration according to the treat-and-extend protocol-true head-to-head study. Int J Retina Vitreous. 10(13)2024.PubMed/NCBI View Article : Google Scholar

98 

Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C and Zarbin M: Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: A review of preclinical data. Eye (Lond). 35:1305–1316. 2021.PubMed/NCBI View Article : Google Scholar

99 

Foxton RH, Uhles S, Grüner S, Revelant F and Ullmer C: Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization. EMBO Mol Med. 11(e10204)2019.PubMed/NCBI View Article : Google Scholar

100 

Khanani AM, Guymer RH, Basu K, Boston H, Heier JS, Korobelnik JF, Kotecha A, Lin H, Silverman D, Swaminathan B, et al: TENAYA and LUCERNE: Rationale and design for the phase 3 clinical trials of faricimab for neovascular age-related macular degeneration. Ophthalmol Sci. 1(100076)2021.PubMed/NCBI View Article : Google Scholar

101 

Heier JS, Khanani AM, Quezada Ruiz C, Basu K, Ferrone PJ, Brittain C, Figueroa MS, Lin H, Holz FG, Patel V, et al: Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): Two randomised, double-masked, phase 3, non-inferiority trials. Lancet. 399:729–740. 2022.PubMed/NCBI View Article : Google Scholar

102 

Pandit SA, Momenaei B, Wakabayashi T, Mansour HA, Vemula S, Durrani AF, Pashaee B, Kazan AS, Ho AC, Klufas M, et al: Clinical outcomes of faricimab in patients with previously treated neovascular age-related macular degeneration. Ophthalmol Retina. 8:360–366. 2024.PubMed/NCBI View Article : Google Scholar

103 

Szigiato A, Mohan N, Talcott KE, Mammo DA, Babiuch AS, Kaiser PK, Ehlers JP, Rachitskaya A, Yuan A, Srivastava SK and Sharma S: Short-term outcomes of faricimab in patients with neovascular age-related macular degeneration on prior anti-VEGF Therapy. Ophthalmol Retina. 8:10–17. 2024.PubMed/NCBI View Article : Google Scholar

104 

Grimaldi G, Cancian G, Rizzato A, Casanova A, Perruchoud-Ader K, Clerici M, Consigli A and Menghini M: Intravitreal faricimab for neovascular age-related macular degeneration previously treated with traditional anti-VEGF compounds: A real-world prospective study. Graefes Arch Clin Exp Ophthalmol. 262:1151–1159. 2024.PubMed/NCBI View Article : Google Scholar

105 

Mori R, Honda S, Gomi F, Tsujikawa A, Koizumi H, Ochi H, Ohsawa S and Okada AA: TENAYA and LUCERNE Investigators. Efficacy, durability, and safety of faricimab up to every 16 weeks in patients with neovascular age-related macular degeneration: 1-year results from the Japan subgroup of the phase 3 TENAYA trial. Jpn J Ophthalmol. 67:301–310. 2023.PubMed/NCBI View Article : Google Scholar

106 

Diabetic Retinopathy Clinical Research Network. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, et al: Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 372:1193–1203. 2015.PubMed/NCBI View Article : Google Scholar

107 

Huang X, Wu W, Qi H, Yan X, Dong L, Yang Y, Zhang Q, Ma G, Zhang G and Lei H: Exploitation of enhanced prime editing for blocking aberrant angiogenesis. J Adv Res: Jul 10, 2024 (Epub ahead of print).

108 

Zech TJ, Wolf A, Hector M, Bischoff-Kont I, Krishnathas GM, Kuntschar S, Schmid T, Bracher F, Langmann T and Fürst R: 2-Desaza-annomontine (C81) impedes angiogenesis through reduced VEGFR2 expression derived from inhibition of CDC2-like kinases. Angiogenesis. 27:245–272. 2024.PubMed/NCBI View Article : Google Scholar

109 

Tang X, Cui K, Wu P, Hu A, Fan M, Lu X, Yang F, Lin J, Yu S, Xu Y and Liang X: Acrizanib as a novel therapeutic agent for fundus neovascularization via inhibitory phosphorylation of VEGFR2. Transl Vis Sci Technol. 13(1)2024.PubMed/NCBI View Article : Google Scholar

110 

Lei W, Xu H, Yao H, Li L, Wang M, Zhou X and Liu X: 5α-Hydroxycostic acid inhibits choroidal neovascularization in rats through a dual signalling pathway mediated by VEGF and angiopoietin 2. Mol Med. 29(151)2023.PubMed/NCBI View Article : Google Scholar

111 

Liu Y, Feng M, Cai J, Li S, Dai X, Shan G and Wu S: Repurposing bortezomib for choroidal neovascularization treatment via antagonizing VEGF-A and PDGF-D mediated signaling. Exp Eye Res. 204(108446)2021.PubMed/NCBI View Article : Google Scholar

112 

Zeng Z, Li S, Ye X, Wang Y, Wang Q, Chen Z, Wang Z, Zhang J, Wang Q, Chen L, et al: Genome editing VEGFA prevents corneal neovascularization in vivo. Adv Sci (Weinh). 11(e2401710)2024.PubMed/NCBI View Article : Google Scholar

113 

Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D'Amore PA and Lei H: Genome editing abrogates angiogenesis in vivo. Nat Commun. 8(112)2017.PubMed/NCBI View Article : Google Scholar

114 

Toutounchian S, Ahmadbeigi N and Mansouri V: Retinal and choroidal neovascularization antivascular endothelial growth factor treatments: The role of gene therapy. J Ocul Pharmacol Ther. 38:529–548. 2022.PubMed/NCBI View Article : Google Scholar

115 

Yiu G, Gulati S, Higgins V, Coak E, Mascia D, Kim E, Spicer G and Tabano D: Factors involved in anti-VEGF treatment decisions for neovascular age-related macular degeneration: Insights from real-world clinical practice. Clin Ophthalmol. 18:1679–1690. 2024.PubMed/NCBI View Article : Google Scholar

116 

Wykoff CC, Garmo V, Tabano D, Menezes A, Kim E, Fevrier HB, LaPrise A and Leng T: Impact of Anti-VEGF treatment and patient characteristics on vision outcomes in neovascular age-related macular degeneration: Up to 6-year analysis of the AAO IRIS® Registry. Ophthalmol Sci. 4(100421)2023.PubMed/NCBI View Article : Google Scholar

117 

Liu D, Zhang C and Zhang J, Xu GT and Zhang J: Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 185(106250)2023.PubMed/NCBI View Article : Google Scholar

118 

Fleckenstein M, Mitchell P, Freund KB, Sadda S, Holz FG, Brittain C, Henry EC and Ferrara D: The progression of geographic atrophy secondary to age-related macular degeneration. Ophthalmology. 125:369–390. 2018.PubMed/NCBI View Article : Google Scholar

119 

Zhuang X, Su Y, Li M, Zhang L, Mi L, Ji Y, Deng F, Xiao O, Zhang X and Zhou L: , et al: A prospective observation of influence of anti-VEGF on optic disc vasculature in nAMD patients. Photodiagnosis Photodyn Ther. 45(103863)2024.PubMed/NCBI View Article : Google Scholar

120 

Pérez-Gutiérrez L and Ferrara N: Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 24:816–834. 2023.PubMed/NCBI View Article : Google Scholar

121 

Wu Y, Wang J, Zhao J, Su Y, Li X, Chen Z, Wu X, Huang S, He X and Liang L: LTR retrotransposon-derived LncRNA LINC01446 promotes hepatocellular carcinoma progression and angiogenesis by regulating the SRPK2/SRSF1/VEGF axis. Cancer Lett. 598(217088)2024.PubMed/NCBI View Article : Google Scholar

122 

Bao M, Chen Y, Liu JT, Bao H, Wang WB, Qi YX and Lv F: Extracellular matrix stiffness controls VEGF(165) secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis. 25:71–86. 2022.PubMed/NCBI View Article : Google Scholar

123 

Camacho P, Ribeiro E, Pereira B, Varandas T, Nascimento J, Henriques J, Dutra-Medeiros M, Delgadinho M, Oliveira K, Silva C and Brito M: DNA methyltransferase expression (DNMT1, DNMT3a and DNMT3b) as a potential biomarker for anti-VEGF diabetic macular edema response. Eur J Ophthalmol. 33:2267–2274. 2023.PubMed/NCBI View Article : Google Scholar

124 

Xu L, Prentice JR, Velez-Montoya R, Sinha A, Barakat MR, Gupta A, Lowenthal R, Khanani AM, Kaiser PK, Heier JS, et al: Bispecific VEGF-A and Angiopoietin-2 Antagonist RO-101 preclinical efficacy in model of neovascular eye disease. Ophthalmol Sci. 4(100467)2024.PubMed/NCBI View Article : Google Scholar

125 

Jian HJ, Anand A, Lai JY, Huang CC, Ma DH, Lai CC and Chang HT: Ultrahigh-Efficacy VEGF neutralization using carbonized nanodonuts: Implications for intraocular anti-angiogenic therapy. Adv Healthc Mater. 13(e2302881)2024.PubMed/NCBI View Article : Google Scholar

126 

Xu M, Fan R, Fan X, Shao Y and Li X: Progress and challenges of Anti-VEGF agents and their sustained-release strategies for retinal angiogenesis. Drug Des Devel Ther. 16:3241–3262. 2022.PubMed/NCBI View Article : Google Scholar

127 

Zhou C, Lei F, Sharma J, Hui PC, Wolkow N, Dohlman CH, Vavvas DG, Chodosh J and Paschalis EI: Sustained inhibition of VEGF and TNF-α achieves multi-ocular protection and prevents formation of blood vessels after severe ocular trauma. Pharmaceutics. 15(2059)2023.PubMed/NCBI View Article : Google Scholar

128 

Puranen J, Koponen S, Nieminen T, Kanerva I, Kokki E, Toivanen P, Urtti A, Ylä-Herttuala S and Ruponen M: Antiangiogenic AAV2 gene therapy with a truncated form of soluble VEGFR-2 reduces the growth of choroidal neovascularization in mice after intravitreal injection. Exp Eye Res. 224(109237)2022.PubMed/NCBI View Article : Google Scholar

129 

Desideri LF, Vaccaro S, Vagge A, Nicolò M, Scorcia V, Traverso CE and Giannaccare G: AAV8 gene therapy encoding anti-VEGF Fab Treatment of wet age-related macular degeneration Treatment of diabetic retinopathy. Drugs Future. 47:737–741. 2022.

130 

Papaioannou C: Advancements in the treatment of age-related macular degeneration: A comprehensive review. Postgrad Med J. 100:445–450. 2024.PubMed/NCBI View Article : Google Scholar

131 

Campochiaro PA, Avery R, Brown DM, Heier JS, Ho AC, Huddleston SM, Jaffe GJ, Khanani AM, Pakola S, Pieramici DJ, et al: Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: A phase 1/2a dose-escalation study. Lancet. 403:1563–1573. 2024.PubMed/NCBI View Article : Google Scholar

132 

Poulsen K, Hanna K, Nieves J, Nguyen N, Sharma P, Grishanin R, Corbau R and Kiss S: Nonclinical study of ixo-vec gene therapy for nAMD supports efficacy for a human dose of 6E10 vg/eye and staggered dosing of fellow eyes. Mol Ther Methods Clin Dev. 33(101430)2025.PubMed/NCBI View Article : Google Scholar

133 

Shirian JD, Shukla P and Singh RP: Exploring new horizons in neovascular age-related macular degeneration: Novel mechanisms of action and future therapeutic avenues. Eye (Lond). 39:40–44. 2025.PubMed/NCBI View Article : Google Scholar

134 

Modi SJ and Kulkarni VM: Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors. J Biomol Struct Dyn. 40:5712–5727. 2022.PubMed/NCBI View Article : Google Scholar

135 

Zong Y, Xiao S, Lei D and Li H: Discoveries in retina physiology and disease biology using single-cell RNA sequencing. Front Biosci (Landmark Ed). 28(247)2023.PubMed/NCBI View Article : Google Scholar

136 

Lyu Y, Zauhar R, Dana N, Strang CE, Hu J, Wang K, Liu S, Pan N, Gamlin P, Kimble JA, et al: Implication of specific retinal cell-type involvement and gene expression changes in AMD progression using integrative analysis of single-cell and bulk RNA-seq profiling. Sci Rep. 11(15612)2021.PubMed/NCBI View Article : Google Scholar

137 

Becker K, Klein H, Simon E, Viollet C, Haslinger C, Leparc G, Schultheis C, Chong V, Kuehn MH, Fernandez-Albert F and Bakker RA: In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci Rep. 11(10494)2021.PubMed/NCBI View Article : Google Scholar

138 

Deng J and Qin YH: Advancements and emerging trends in ophthalmic anti-VEGF therapy: A bibliometric analysis. Int Ophthalmol. 44(368)2024.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li HS and Huang XG: Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review). Exp Ther Med 30: 143, 2025.
APA
Li, H.S., & Huang, X.G. (2025). Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review). Experimental and Therapeutic Medicine, 30, 143. https://doi.org/10.3892/etm.2025.12893
MLA
Li, H. S., Huang, X. G."Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review)". Experimental and Therapeutic Medicine 30.1 (2025): 143.
Chicago
Li, H. S., Huang, X. G."Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review)". Experimental and Therapeutic Medicine 30, no. 1 (2025): 143. https://doi.org/10.3892/etm.2025.12893
Copy and paste a formatted citation
x
Spandidos Publications style
Li HS and Huang XG: Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review). Exp Ther Med 30: 143, 2025.
APA
Li, H.S., & Huang, X.G. (2025). Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review). Experimental and Therapeutic Medicine, 30, 143. https://doi.org/10.3892/etm.2025.12893
MLA
Li, H. S., Huang, X. G."Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review)". Experimental and Therapeutic Medicine 30.1 (2025): 143.
Chicago
Li, H. S., Huang, X. G."Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review)". Experimental and Therapeutic Medicine 30, no. 1 (2025): 143. https://doi.org/10.3892/etm.2025.12893
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team