
Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease (Review)
- Authors:
- Huan Shen Li
- Xiong Gao Huang
-
Affiliations: Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 571101, P.R. China - Published online on: May 20, 2025 https://doi.org/10.3892/etm.2025.12893
- Article Number: 143
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Swift MR and Weinstein BM: Arterial-venous specification during development. Circ Res. 104:576–588. 2009.PubMed/NCBI View Article : Google Scholar | |
Vishwakarma S and Kaur I: Molecular mediators and regulators of retinal angiogenesis. Semin Ophthalmol. 38:124–133. 2023.PubMed/NCBI View Article : Google Scholar | |
Díaz-Coránguez M, Ramos C and Antonetti DA: The inner blood-retinal barrier: Cellular basis and development. Vision Res. 139:123–137. 2017.PubMed/NCBI View Article : Google Scholar | |
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD and Langmann T: VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 84(100954)2021.PubMed/NCBI View Article : Google Scholar | |
Selvam S, Kumar T and Fruttiger M: Retinal vasculature development in health and disease. Prog Retin Eye Res. 63:1–19. 2018.PubMed/NCBI View Article : Google Scholar | |
Hu WH, Zhang XY, Leung KW, Duan R, Dong TT, Qin QW and Tsim KW: Resveratrol, an inhibitor binding to VEGF, restores the pathology of abnormal angiogenesis in retinopathy of prematurity (ROP) in mice: Application by intravitreal and topical instillation. Int J Mol Sci. 23(6455)2022.PubMed/NCBI View Article : Google Scholar | |
Yan J, Deng J, Cheng F, Zhang T, Deng Y, Cai Y and Cong W: Thioredoxin-interacting protein inhibited vascular endothelial cell-induced HREC angiogenesis treatment of diabetic retinopathy. Appl Biochem Biotechnol. 195:1268–1283. 2023.PubMed/NCBI View Article : Google Scholar | |
Heloterä H and Kaarniranta K: A linkage between angiogenesis and inflammation in neovascular age-related macular degeneration. Cells. 11(3453)2022.PubMed/NCBI View Article : Google Scholar | |
Bakri SJ, Thorne JE, Ho AC, Ehlers JP, Schoenberger SD, Yeh S and Kim SJ: Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: A report by the american academy of ophthalmology. Ophthalmology. 126:55–63. 2019.PubMed/NCBI View Article : Google Scholar | |
Xu X, Han N, Zhao F, Fan R, Guo Q, Han X, Liu Y and Luo G: Inefficacy of anti-VEGF therapy reflected in VEGF-mediated photoreceptor degeneration. Mol Ther Nucleic Acids. 35(102176)2024.PubMed/NCBI View Article : Google Scholar | |
Apte RS, Chen DS and Ferrara NL: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019.PubMed/NCBI View Article : Google Scholar | |
Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P and Rao G: VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer. 1879(189079)2024.PubMed/NCBI View Article : Google Scholar | |
Olsson AK, Dimberg A, Kreuger J and Claesson-Welsh L: VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 7:359–371. 2006.PubMed/NCBI View Article : Google Scholar | |
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE and Woolard J: Molecular pharmacology of VEGF-A isoforms: Binding and signalling at VEGFR2. Int J Mol Sci. 19(1264)2018.PubMed/NCBI View Article : Google Scholar | |
Mallick R and Ylä-Herttuala S: Therapeutic potential of VEGF-B in coronary heart disease and heart failure: Dream or vision? Cells. 11(4134)2022.PubMed/NCBI View Article : Google Scholar | |
Wada H, Suzuki M, Matsuda M, Ajiro Y, Shinozaki T, Sakagami S, Yonezawa K, Shimizu M, Funada J, Takenaka T, et al: Distinct characteristics of VEGF-D and VEGF-C to predict mortality in patients with suspected or known coronary artery disease. J Am Heart Assoc. 9(e015761)2020.PubMed/NCBI View Article : Google Scholar | |
Sarabipour S, Ballmer-Hofer K and Hristova K: VEGFR-2 conformational switch in response to ligand binding. Elife. 5(e13876)2016.PubMed/NCBI View Article : Google Scholar | |
Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016.PubMed/NCBI View Article : Google Scholar | |
Koch S and Claesson-Welsh L: Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2(a006502)2012.PubMed/NCBI View Article : Google Scholar | |
Kendall RL, Rutledge RZ, Mao X, Tebben AJ, Hungate RW and Thomas KA: Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J Biol Chem. 274:6453–6460. 1999.PubMed/NCBI View Article : Google Scholar | |
Gelfand MV, Hagan N, Tata A, Oh WJ, Lacoste B, Kang KT, Kopycinska J, Bischoff J, Wang JH and Gu C: Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife. 3(e03720)2014.PubMed/NCBI View Article : Google Scholar | |
Gavard J and Gutkind JS: VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 8:1223–1234. 2008.PubMed/NCBI View Article : Google Scholar | |
Smith RO, Ninchoji T, Gordon E, André H, Dejana E, Vestweber D, Kvanta A and Claesson-Welsh L: Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. Elife. 9(e54056)2020.PubMed/NCBI View Article : Google Scholar | |
Shibuya M: VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul). 22:1–9. 2014.PubMed/NCBI View Article : Google Scholar | |
Mabeta P and Steenkamp V: The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int J Mol Sci. 23(15585)2022.PubMed/NCBI View Article : Google Scholar | |
Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM: Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 59:455–467. 2018.PubMed/NCBI | |
Shibuya M: VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr Metab Immune Disord Drug Targets. 15:135–144. 2015.PubMed/NCBI View Article : Google Scholar | |
Patel SA, Nilsson MB, Le X, Cascone T, Jain RK and Heymach JV: Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 29:30–39. 2023.PubMed/NCBI View Article : Google Scholar | |
Shibuya M and Claesson-Welsh L: Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 312:549–560. 2006.PubMed/NCBI View Article : Google Scholar | |
Jin KL, Mao XO and Greenberg DA: Vascular endothelial growth factor: Direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA. 97:10242–10247. 2000.PubMed/NCBI View Article : Google Scholar | |
Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I, Miyamoto T, Mukouyama YS, Sato TN, Suda T, Ema M and Kubota Y: Neurons limit angiogenesis by titrating VEGF in retina. Cell. 159:584–596. 2014.PubMed/NCBI View Article : Google Scholar | |
Campochiaro PA: Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 49:67–81. 2015.PubMed/NCBI View Article : Google Scholar | |
Abu Serhan H, Taha MJJ, Abuawwad MT, Abdelaal A, Irshaidat S, Abu Serhan L, Abu Salim QF, Awamleh N, Abdelazeem B and Elnahry AG: Safety and efficacy of brolucizumab in the treatment of diabetic macular edema and diabetic retinopathy: A systematic review and meta-analysis. Semin Ophthalmol. 39:251–260. 2024.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Zhang N, Lin P, Xing Y and Yang N: Recent advances in the treatment and delivery system of diabetic retinopathy. Front Endocrinol (Lausanne). 15(1347864)2024.PubMed/NCBI View Article : Google Scholar | |
Kaur A, Kumar R and Sharma A: Diabetic retinopathy leading to blindness-a review. Curr Diabetes Rev. 20(e240124225997)2024.PubMed/NCBI View Article : Google Scholar | |
Zhou YM, Cao YH, Guo J and Cen LS: Potential prospects of Chinese medicine application in diabetic retinopathy. World J Diabetes. 15:2010–2014. 2024.PubMed/NCBI View Article : Google Scholar | |
Baseline and early natural history report. The central vein occlusion study. Arch Ophthalmol. 111:1087–1095. 1993.PubMed/NCBI View Article : Google Scholar | |
Vitiello L, Lixi F, Coppola A, Abbinante G, Gagliardi V, Salerno G, De Pascale I, Pellegrino A and Giannaccare G: Intravitreal dexamethasone implant switch after anti-VEGF treatment in patients affected by retinal vein occlusion: A review of the literature. J Clin Med. 13(5006)2024.PubMed/NCBI View Article : Google Scholar | |
Minaker SA, Mason RH, Bamakrid M, Lee Y and Muni RH: Changes in aqueous and vitreous inflammatory cytokine levels in retinal vein occlusion: A systematic review and meta-analysis. J Vitreoretin Dis. 4:36–64. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang B, Zhang X, Chen H, Koh A, Zhao C and Chen Y: A review of intraocular biomolecules in retinal vein occlusion: Toward potential biomarkers for companion diagnostics. Front Pharmacol. 13(859951)2022.PubMed/NCBI View Article : Google Scholar | |
Finocchio L, Zeppieri M, Gabai A, Toneatto G, Spadea L and Salati C: Recent developments in gene therapy for neovascular age-related macular degeneration: A review. Biomedicines. 11(3221)2023.PubMed/NCBI View Article : Google Scholar | |
Cheng S, Zhang S, Huang M, Liu Y, Zou X, Chen X and Zhang Z: Treatment of neovascular age-related macular degeneration with anti-vascular endothelial growth factor drugs: progress from mechanisms to clinical applications. Front Med (Lausanne). 11(1411278)2024.PubMed/NCBI View Article : Google Scholar | |
Fragiotta S, Bassis L, Abdolrahimzadeh B, Marino A, Sepe M and Abdolrahimzadeh S: Exploring current molecular targets in the treatment of neovascular age-related macular degeneration toward the perspective of long-term agents. Int J Mol Sci. 25(4433)2024.PubMed/NCBI View Article : Google Scholar | |
Nakao S, Zandi S, Hata Y, Kawahara S, Arita R, Schering A, Sun D, Melhorn MI, Ito Y, Lara-Castillo N, et al: Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: An endogenous trapping mechanism links lymph- and angiogenesis. Blood. 117:1081–1090. 2011.PubMed/NCBI View Article : Google Scholar | |
Duh EJ, Sun JK and Stitt AW: Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight. 2(e93751)2017.PubMed/NCBI View Article : Google Scholar | |
Mrugacz M, Bryl A and Zorena K: Retinal Vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J Clin Med. 10(458)2021.PubMed/NCBI View Article : Google Scholar | |
Zhang YL, Pirmardan ER, Jiang H, Barakat A and Hafezi-Moghadam A: VEGFR-2 adhesive nanoprobes reveal early diabetic retinopathy in vivo. Biosens Bioelectron. 237(115476)2023.PubMed/NCBI View Article : Google Scholar | |
Liu X, Guo A, Tu Y, Li W, Li L, Liu W, Ju Y, Zhou Y, Sang A and Zhu M: Fruquintinib inhibits VEGF/VEGFR2 axis of choroidal endothelial cells and M1-type macrophages to protect against mouse laser-induced choroidal neovascularization. Cell Death Dis. 11(1016)2020.PubMed/NCBI View Article : Google Scholar | |
Xu J, Tu Y, Wang Y, Xu X, Sun X, Xie L, Zhao Q, Guo Y, Gu Y, Du J, et al: Prodrug of epigallocatechin-3-gallate alleviates choroidal neovascularization via down-regulating HIF-1α/VEGF/VEGFR2 pathway and M1 type macrophage/microglia polarization. Biomed Pharmacother. 121(109606)2020.PubMed/NCBI View Article : Google Scholar | |
Leitch IM, Gerometta M, Eichenbaum D, Finger RP, Steinle NC and Baldwin ME: Vascular endothelial growth factor C and D signaling pathways as potential targets for the treatment of neovascular age-related macular degeneration: A narrative review. Ophthalmol Ther. 13:1857–1875. 2024.PubMed/NCBI View Article : Google Scholar | |
Cui K, Liu J, Huang L, Qin B, Yang X, Li L, Liu Y, Gu J, Wu W, Yu Y and Sang A: Andrographolide attenuates choroidal neovascularization by inhibiting the HIF-1α/VEGF signaling pathway. Biochem Biophys Res Commun. 530:60–66. 2020.PubMed/NCBI View Article : Google Scholar | |
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang X, Bove AM, Simone G and Ma B: Molecular Bases of VEGFR-2-Mediated physiological function and pathological role. Front Cell Dev Biol. 8(599281)2020.PubMed/NCBI View Article : Google Scholar | |
Gomes E and Rockwell P: p38 MAPK as a negative regulator of VEGF/VEGFR2 signaling pathway in serum deprived human SK-N-SH neuroblastoma cells. Neurosci Lett. 431:95–100. 2008.PubMed/NCBI View Article : Google Scholar | |
Hendrikse CSE, Theelen PMM, van der Ploeg P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe A, Lambrechts S, Bekkers RLM and Piek JMJ: The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol. 171:83–94. 2023.PubMed/NCBI View Article : Google Scholar | |
Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20(2164)2019.PubMed/NCBI View Article : Google Scholar | |
Almalki SG and Agrawal DK: ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther. 8(113)2017.PubMed/NCBI View Article : Google Scholar | |
Guo GX, Qiu YH, Liu Y, Yu LL, Zhang X, Tsim KW, Qin QW and Hu WH: Fucoxanthin attenuates angiogenesis by blocking the VEGFR2-mediated signaling pathway through binding the vascular endothelial growth factor. J Agric Food Chem. 72:21610–21623. 2024.PubMed/NCBI View Article : Google Scholar | |
Zhou LB, Zhou YQ and Zhang XY: Blocking VEGF signaling augments interleukin-8 secretion via MEK/ERK/1/2 axis in human retinal pigment epithelial cells. Int J Ophthalmol. 13:1039–1045. 2020.PubMed/NCBI View Article : Google Scholar | |
Bin Y, Liu YY, Jiang SQ and Peng H: Elevated YKL-40 serum levels may contribute to wet age-related macular degeneration via the ERK1/2 pathway. FEBS Open Bio. 11:2933–2942. 2021.PubMed/NCBI View Article : Google Scholar | |
Miller B and Sewell-Loftin MK: Mechanoregulation of vascular endothelial growth factor receptor 2 in angiogenesis. Front Cardiovasc Med. 8(804934)2021.PubMed/NCBI View Article : Google Scholar | |
Jin H, Ko YS, Yun SP, Park SW and Kim HJ: P2Y(2)R-mediated transactivation of VEGFR2 through Src phosphorylation is associated with ESM-1 overexpression in radiotherapy-resistant-triple negative breast cancer cells. Int J Oncol. 62(73)2023.PubMed/NCBI View Article : Google Scholar | |
Gao X, Chen J, Yin G, Liu Y, Gu Z, Sun R, Sun X, Jiao X, Wang L, Wang N, et al: Hyperforin ameliorates neuroinflammation and white matter lesions by regulating microglial VEGFR(2)/SRC pathway in vascular cognitive impairment mice. CNS Neurosci Ther. 30(e14666)2024.PubMed/NCBI View Article : Google Scholar | |
Chen TT, Dong JL, Zhou HY, Deng X, Li R, Chen N, Luo M, Li Y, Wu J and Wang L: Glycation of fibronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2-c-Src crosstalk. J Cell Mol Med. 24:9154–9164. 2020.PubMed/NCBI View Article : Google Scholar | |
Moysenovich AM, Tatarskiy VV, Yastrebova MA, Bessonov IV, Arkhipova AY, Kolosov AS, Davydova LI, Khamidullina AI, Bogush VG, Debabov VG, et al: Akt and Src mediate the photocrosslinked fibroin-induced neural differentiation. Neuroreport. 31:770–775. 2020.PubMed/NCBI View Article : Google Scholar | |
Rezzola S, Di Somma M, Corsini M, Leali D, Ravelli C, Polli VAB, Grillo E, Presta M and Mitola S: VEGFR2 activation mediates the pro-angiogenic activity of BMP4. Angiogenesis. 22:521–533. 2019.PubMed/NCBI View Article : Google Scholar | |
Sergeys J, Van Hove I, Hu TT, Temps C, Carragher NO, Unciti-Broceta A, Feyen JHM, Moons L and Porcu M: The retinal tyrosine kinome of diabetic Akimba mice highlights potential for specific Src family kinase inhibition in retinal vascular disease. Exp Eye Res. 197(108108)2020.PubMed/NCBI View Article : Google Scholar | |
Sjöberg E, Melssen M, Richards M, Ding Y, Chanoca C, Chen D, Nwadozi E, Pal S, Love DT, Ninchoji T, et al: Endothelial VEGFR2-PLCγ signaling regulates vascular permeability and antitumor immunity through eNOS/Src. J Clin Invest. 133(e161366)2023.PubMed/NCBI View Article : Google Scholar | |
Yang L, Guan H, He J, Zeng L, Yuan Z, Xu M, Zhang W, Wu X and Guan J: VEGF increases the proliferative capacity and eNOS/NO levels of endothelial progenitor cells through the calcineurin/NFAT signalling pathway. Cell Biol Int. 36:21–27. 2012.PubMed/NCBI View Article : Google Scholar | |
Huang TF, Wang SW, Lai YW, Liu SC, Chen YJ, Hsueh TM, Lin CC, Lin CH and Chung CH: 4-Acetylantroquinonol B suppresses prostate cancer growth and angiogenesis via a VEGF/PI3K/ERK/mTOR-dependent signaling pathway in subcutaneous xenograft and in vivo angiogenesis models. Int J Mol Sci. 23(1446)2022.PubMed/NCBI View Article : Google Scholar | |
Qi S, Deng S, Lian Z and Yu K: Novel drugs with high efficacy against tumor angiogenesis. Int J Mol Sci. 23(6934)2022.PubMed/NCBI View Article : Google Scholar | |
Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S and Asghari SM: A VEGFB-Based peptidomimetic inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK signaling and elicits apoptotic, antiangiogenic, and antitumor activities. Pharmaceuticals (Basel). 16(906)2023.PubMed/NCBI View Article : Google Scholar | |
Uemura A and Fukushima Y: Rho GTPases in retinal vascular diseases. Int J Mol Sci. 22(3684)2021.PubMed/NCBI View Article : Google Scholar | |
Claesson-Welsh L and Welsh M: VEGFA and tumour angiogenesis. J Intern Med. 273:114–127. 2013.PubMed/NCBI View Article : Google Scholar | |
Fukushima Y, Nishiyama K, Kataoka H, Fruttiger M, Fukuhara S, Nishida K, Mochizuki N, Kurihara H, Nishikawa SI and Uemura A: RhoJ integrates attractive and repulsive cues in directional migration of endothelial cells. EMBO J. 39(e102930)2020.PubMed/NCBI View Article : Google Scholar | |
Hauke M, Eckenstaler R, Ripperger A, Ender A, Braun H and Benndorf RA: Active RhoA exerts an inhibitory effect on the homeostasis and angiogenic capacity of human endothelial cells. J Am Heart Assoc. 11(e025119)2022.PubMed/NCBI View Article : Google Scholar | |
Katari V, Dalal K, Adapala RK, Guarino BD, Kondapalli N, Paruchuri S and Thodeti CK: A TRP to pathological angiogenesis and vascular normalization. Compr Physiol. 14:5389–5406. 2024.PubMed/NCBI View Article : Google Scholar | |
Ramshekar A, Bretz CA and Hartnett ME: RNA-Seq Provides Insights into VEGF-Induced signaling in human retinal microvascular endothelial cells: Implications in retinopathy of prematurity. Int J Mol Sci. 23(7354)2022.PubMed/NCBI View Article : Google Scholar | |
Yu E, Kim H, Park H, Hong JH, Jin J, Song Y, Woo JM, Min JK and Yun J: Targeting the VEGFR2 signaling pathway for angiogenesis and fibrosis regulation in neovascular age-related macular degeneration. Sci Rep. 14(25682)2024.PubMed/NCBI View Article : Google Scholar | |
Hara C, Wakabayashi T, Fukushima Y, Sayanagi K, Kawasaki R, Sato S, Sakaguchi H and Nishida K: Tachyphylaxis during treatment of exudative age-related macular degeneration with aflibercept. Graefes Arch Clin Exp Ophthalmol. 257:2559–2569. 2019.PubMed/NCBI View Article : Google Scholar | |
Ribatti D, Solimando AG and Pezzella F: The Anti-VEGF(R) drug discovery legacy: Improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers (Basel). 13(3433)2021.PubMed/NCBI View Article : Google Scholar | |
Estarreja J, Mendes P, Silva C, Camacho P and Mateus V: The efficacy, safety, and efficiency of the off-label use of bevacizumab in patients diagnosed with age-related macular degeneration: Protocol for a systematic review and meta-analysis. JMIR Res. 12(e38658)2023.PubMed/NCBI View Article : Google Scholar | |
Siktberg J, Kim SJ, Sternberg P Jr and Patel S: Effectiveness of bevacizumab step therapy for neovascular age-related macular degeneration. EYE (Lond). 37:1844–1849. 2023.PubMed/NCBI View Article : Google Scholar | |
Cao X, Sanchez JC, Patel TP, Yang ZY, Guo CY, Malik D, Sopeyin A, Montaner S and Sodhi A: Aflibercept more effectively weans patients with neovascular age-related macular degeneration off therapy with bevacizumab. J Clin Invest. 133(e159125)2023.PubMed/NCBI View Article : Google Scholar | |
Reddy SK, Ballal AR, Shailaja S, Seetharam RN, Raghu CH, Sankhe R, Pai K, Tender T, Mathew M and Aroor A: , et al: Small extracellular vesicle-loaded bevacizumab reduces the frequency of intravitreal injection required for diabetic retinopathy. Theranostics. 13:2241–2255. 2023.PubMed/NCBI View Article : Google Scholar | |
Fong AH and Lai TY: Long-term effectiveness of ranibizumab for age-related macular degeneration and diabetic macular edema. Clin Interv Aging. 8:467–482. 2013.PubMed/NCBI View Article : Google Scholar | |
Kishishita S, Sakanishi Y, Morita S, Matsuzawa M, Usui-Ouchi A and Ebihara N: Effects of intravitreal injection of ranibizumab and aflibercept for branch retinal vein occlusion on the choroid: A retrospective study. BMC Ophthalmol. 22(458)2022.PubMed/NCBI View Article : Google Scholar | |
Rouvas A, Datseris I, Androudi S, Tsilimbaris M, Kabanarou SA, Pharmakakis N, Koutsandrea C, Charonis A, Kousidou O and Pantelopoulou G: A real-world, multicenter, 6-month prospective study in greece of the effectiveness and safety of ranibizumab in patients with age-related macular degeneration who have inadequately responded to aflibercept: The ‘ELEVATE’ study. Clin Ophthalmol. 16:2579–2593. 2022.PubMed/NCBI View Article : Google Scholar | |
Debourdeau E, Beylerian H, Nguyen V, Barthelmes D, Gillies M, Gabrielle PH, Vujosevic S, Otoole L, Puzo M, Creuzot-Garcher C, et al: Treat-and-Extend Versus Pro re nata regimens of ranibizumab and aflibercept in neovascular age-related macular degeneration: A comparative study from routine clinical practice. Ophthalmol Ther. 13:2343–2355. 2024.PubMed/NCBI View Article : Google Scholar | |
Eichenbaum DA, Ahmed A and Hiya F: Ranibizumab port delivery system: A clinical perspective. BMJ Open Ophthalmol. 7(e001104)2022.PubMed/NCBI View Article : Google Scholar | |
Lowater SJ, Grauslund J, Subhi Y and Vergmann AS: Clinical trials and future outlooks of the port delivery system with ranibizumab: A narrative review. Ophthalmol Ther. 13:51–69. 2023.PubMed/NCBI View Article : Google Scholar | |
Carlà MM, Savastano MC, Boselli F, Giannuzzi F and Rizzo S: Ranibizumab port delivery system in neovascular age-related macular degeneration: Where do we stand? Overview of pharmacokinetics, clinical results, and future directions. Pharmaceutics. 16(314)2024.PubMed/NCBI View Article : Google Scholar | |
Sharma T, Dhingra R, Singh S, Sharma S, Tomar P, Malhotra M and Bhardwaj TR: Aflibercept: A novel VEGF targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple tumors. Mini Rev Med Chem. 13:530–540. 2013.PubMed/NCBI View Article : Google Scholar | |
Baybora H: Perifoveal retinal thickness changes after intravitreal aflibercept injection for choroidal neovascularization in age-related macular degeneration. Photodiagnosis Photodyn Ther. 46(104028)2024.PubMed/NCBI View Article : Google Scholar | |
Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, et al: Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 119:2537–2548. 2012.PubMed/NCBI View Article : Google Scholar | |
Kucukevcilioglu M, Yesiltas YS, Durukan AH, Unlu N, Onen M, Alp MN, Kalayci D, Acar MA, Sekeroglu MA, Citirik M, et al: Real life multicenter comparison of 24-month outcomes of anti-VEGF therapy in diabetic macular Edema in Turkey: Ranibizumab vs. aflibercept vs. ranibizumab-aflibercept switch. Medicina (Kaunas). 59(263)2023.PubMed/NCBI View Article : Google Scholar | |
Kanadani T, Rabelo N, Takahashi D, Magalhaes L and Farah M: Comparison of antiangiogenic agents (ranibizumab, aflibercept, bevacizumab and ziv-aflibercept) in the therapeutic response to the exudative form of age-related macular degeneration according to the treat-and-extend protocol-true head-to-head study. Int J Retina Vitreous. 10(13)2024.PubMed/NCBI View Article : Google Scholar | |
Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C and Zarbin M: Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: A review of preclinical data. Eye (Lond). 35:1305–1316. 2021.PubMed/NCBI View Article : Google Scholar | |
Foxton RH, Uhles S, Grüner S, Revelant F and Ullmer C: Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization. EMBO Mol Med. 11(e10204)2019.PubMed/NCBI View Article : Google Scholar | |
Khanani AM, Guymer RH, Basu K, Boston H, Heier JS, Korobelnik JF, Kotecha A, Lin H, Silverman D, Swaminathan B, et al: TENAYA and LUCERNE: Rationale and design for the phase 3 clinical trials of faricimab for neovascular age-related macular degeneration. Ophthalmol Sci. 1(100076)2021.PubMed/NCBI View Article : Google Scholar | |
Heier JS, Khanani AM, Quezada Ruiz C, Basu K, Ferrone PJ, Brittain C, Figueroa MS, Lin H, Holz FG, Patel V, et al: Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): Two randomised, double-masked, phase 3, non-inferiority trials. Lancet. 399:729–740. 2022.PubMed/NCBI View Article : Google Scholar | |
Pandit SA, Momenaei B, Wakabayashi T, Mansour HA, Vemula S, Durrani AF, Pashaee B, Kazan AS, Ho AC, Klufas M, et al: Clinical outcomes of faricimab in patients with previously treated neovascular age-related macular degeneration. Ophthalmol Retina. 8:360–366. 2024.PubMed/NCBI View Article : Google Scholar | |
Szigiato A, Mohan N, Talcott KE, Mammo DA, Babiuch AS, Kaiser PK, Ehlers JP, Rachitskaya A, Yuan A, Srivastava SK and Sharma S: Short-term outcomes of faricimab in patients with neovascular age-related macular degeneration on prior anti-VEGF Therapy. Ophthalmol Retina. 8:10–17. 2024.PubMed/NCBI View Article : Google Scholar | |
Grimaldi G, Cancian G, Rizzato A, Casanova A, Perruchoud-Ader K, Clerici M, Consigli A and Menghini M: Intravitreal faricimab for neovascular age-related macular degeneration previously treated with traditional anti-VEGF compounds: A real-world prospective study. Graefes Arch Clin Exp Ophthalmol. 262:1151–1159. 2024.PubMed/NCBI View Article : Google Scholar | |
Mori R, Honda S, Gomi F, Tsujikawa A, Koizumi H, Ochi H, Ohsawa S and Okada AA: TENAYA and LUCERNE Investigators. Efficacy, durability, and safety of faricimab up to every 16 weeks in patients with neovascular age-related macular degeneration: 1-year results from the Japan subgroup of the phase 3 TENAYA trial. Jpn J Ophthalmol. 67:301–310. 2023.PubMed/NCBI View Article : Google Scholar | |
Diabetic Retinopathy Clinical Research Network. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, et al: Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 372:1193–1203. 2015.PubMed/NCBI View Article : Google Scholar | |
Huang X, Wu W, Qi H, Yan X, Dong L, Yang Y, Zhang Q, Ma G, Zhang G and Lei H: Exploitation of enhanced prime editing for blocking aberrant angiogenesis. J Adv Res: Jul 10, 2024 (Epub ahead of print). | |
Zech TJ, Wolf A, Hector M, Bischoff-Kont I, Krishnathas GM, Kuntschar S, Schmid T, Bracher F, Langmann T and Fürst R: 2-Desaza-annomontine (C81) impedes angiogenesis through reduced VEGFR2 expression derived from inhibition of CDC2-like kinases. Angiogenesis. 27:245–272. 2024.PubMed/NCBI View Article : Google Scholar | |
Tang X, Cui K, Wu P, Hu A, Fan M, Lu X, Yang F, Lin J, Yu S, Xu Y and Liang X: Acrizanib as a novel therapeutic agent for fundus neovascularization via inhibitory phosphorylation of VEGFR2. Transl Vis Sci Technol. 13(1)2024.PubMed/NCBI View Article : Google Scholar | |
Lei W, Xu H, Yao H, Li L, Wang M, Zhou X and Liu X: 5α-Hydroxycostic acid inhibits choroidal neovascularization in rats through a dual signalling pathway mediated by VEGF and angiopoietin 2. Mol Med. 29(151)2023.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Feng M, Cai J, Li S, Dai X, Shan G and Wu S: Repurposing bortezomib for choroidal neovascularization treatment via antagonizing VEGF-A and PDGF-D mediated signaling. Exp Eye Res. 204(108446)2021.PubMed/NCBI View Article : Google Scholar | |
Zeng Z, Li S, Ye X, Wang Y, Wang Q, Chen Z, Wang Z, Zhang J, Wang Q, Chen L, et al: Genome editing VEGFA prevents corneal neovascularization in vivo. Adv Sci (Weinh). 11(e2401710)2024.PubMed/NCBI View Article : Google Scholar | |
Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D'Amore PA and Lei H: Genome editing abrogates angiogenesis in vivo. Nat Commun. 8(112)2017.PubMed/NCBI View Article : Google Scholar | |
Toutounchian S, Ahmadbeigi N and Mansouri V: Retinal and choroidal neovascularization antivascular endothelial growth factor treatments: The role of gene therapy. J Ocul Pharmacol Ther. 38:529–548. 2022.PubMed/NCBI View Article : Google Scholar | |
Yiu G, Gulati S, Higgins V, Coak E, Mascia D, Kim E, Spicer G and Tabano D: Factors involved in anti-VEGF treatment decisions for neovascular age-related macular degeneration: Insights from real-world clinical practice. Clin Ophthalmol. 18:1679–1690. 2024.PubMed/NCBI View Article : Google Scholar | |
Wykoff CC, Garmo V, Tabano D, Menezes A, Kim E, Fevrier HB, LaPrise A and Leng T: Impact of Anti-VEGF treatment and patient characteristics on vision outcomes in neovascular age-related macular degeneration: Up to 6-year analysis of the AAO IRIS® Registry. Ophthalmol Sci. 4(100421)2023.PubMed/NCBI View Article : Google Scholar | |
Liu D, Zhang C and Zhang J, Xu GT and Zhang J: Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis. 185(106250)2023.PubMed/NCBI View Article : Google Scholar | |
Fleckenstein M, Mitchell P, Freund KB, Sadda S, Holz FG, Brittain C, Henry EC and Ferrara D: The progression of geographic atrophy secondary to age-related macular degeneration. Ophthalmology. 125:369–390. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhuang X, Su Y, Li M, Zhang L, Mi L, Ji Y, Deng F, Xiao O, Zhang X and Zhou L: , et al: A prospective observation of influence of anti-VEGF on optic disc vasculature in nAMD patients. Photodiagnosis Photodyn Ther. 45(103863)2024.PubMed/NCBI View Article : Google Scholar | |
Pérez-Gutiérrez L and Ferrara N: Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 24:816–834. 2023.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Wang J, Zhao J, Su Y, Li X, Chen Z, Wu X, Huang S, He X and Liang L: LTR retrotransposon-derived LncRNA LINC01446 promotes hepatocellular carcinoma progression and angiogenesis by regulating the SRPK2/SRSF1/VEGF axis. Cancer Lett. 598(217088)2024.PubMed/NCBI View Article : Google Scholar | |
Bao M, Chen Y, Liu JT, Bao H, Wang WB, Qi YX and Lv F: Extracellular matrix stiffness controls VEGF(165) secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis. 25:71–86. 2022.PubMed/NCBI View Article : Google Scholar | |
Camacho P, Ribeiro E, Pereira B, Varandas T, Nascimento J, Henriques J, Dutra-Medeiros M, Delgadinho M, Oliveira K, Silva C and Brito M: DNA methyltransferase expression (DNMT1, DNMT3a and DNMT3b) as a potential biomarker for anti-VEGF diabetic macular edema response. Eur J Ophthalmol. 33:2267–2274. 2023.PubMed/NCBI View Article : Google Scholar | |
Xu L, Prentice JR, Velez-Montoya R, Sinha A, Barakat MR, Gupta A, Lowenthal R, Khanani AM, Kaiser PK, Heier JS, et al: Bispecific VEGF-A and Angiopoietin-2 Antagonist RO-101 preclinical efficacy in model of neovascular eye disease. Ophthalmol Sci. 4(100467)2024.PubMed/NCBI View Article : Google Scholar | |
Jian HJ, Anand A, Lai JY, Huang CC, Ma DH, Lai CC and Chang HT: Ultrahigh-Efficacy VEGF neutralization using carbonized nanodonuts: Implications for intraocular anti-angiogenic therapy. Adv Healthc Mater. 13(e2302881)2024.PubMed/NCBI View Article : Google Scholar | |
Xu M, Fan R, Fan X, Shao Y and Li X: Progress and challenges of Anti-VEGF agents and their sustained-release strategies for retinal angiogenesis. Drug Des Devel Ther. 16:3241–3262. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhou C, Lei F, Sharma J, Hui PC, Wolkow N, Dohlman CH, Vavvas DG, Chodosh J and Paschalis EI: Sustained inhibition of VEGF and TNF-α achieves multi-ocular protection and prevents formation of blood vessels after severe ocular trauma. Pharmaceutics. 15(2059)2023.PubMed/NCBI View Article : Google Scholar | |
Puranen J, Koponen S, Nieminen T, Kanerva I, Kokki E, Toivanen P, Urtti A, Ylä-Herttuala S and Ruponen M: Antiangiogenic AAV2 gene therapy with a truncated form of soluble VEGFR-2 reduces the growth of choroidal neovascularization in mice after intravitreal injection. Exp Eye Res. 224(109237)2022.PubMed/NCBI View Article : Google Scholar | |
Desideri LF, Vaccaro S, Vagge A, Nicolò M, Scorcia V, Traverso CE and Giannaccare G: AAV8 gene therapy encoding anti-VEGF Fab Treatment of wet age-related macular degeneration Treatment of diabetic retinopathy. Drugs Future. 47:737–741. 2022. | |
Papaioannou C: Advancements in the treatment of age-related macular degeneration: A comprehensive review. Postgrad Med J. 100:445–450. 2024.PubMed/NCBI View Article : Google Scholar | |
Campochiaro PA, Avery R, Brown DM, Heier JS, Ho AC, Huddleston SM, Jaffe GJ, Khanani AM, Pakola S, Pieramici DJ, et al: Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: A phase 1/2a dose-escalation study. Lancet. 403:1563–1573. 2024.PubMed/NCBI View Article : Google Scholar | |
Poulsen K, Hanna K, Nieves J, Nguyen N, Sharma P, Grishanin R, Corbau R and Kiss S: Nonclinical study of ixo-vec gene therapy for nAMD supports efficacy for a human dose of 6E10 vg/eye and staggered dosing of fellow eyes. Mol Ther Methods Clin Dev. 33(101430)2025.PubMed/NCBI View Article : Google Scholar | |
Shirian JD, Shukla P and Singh RP: Exploring new horizons in neovascular age-related macular degeneration: Novel mechanisms of action and future therapeutic avenues. Eye (Lond). 39:40–44. 2025.PubMed/NCBI View Article : Google Scholar | |
Modi SJ and Kulkarni VM: Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors. J Biomol Struct Dyn. 40:5712–5727. 2022.PubMed/NCBI View Article : Google Scholar | |
Zong Y, Xiao S, Lei D and Li H: Discoveries in retina physiology and disease biology using single-cell RNA sequencing. Front Biosci (Landmark Ed). 28(247)2023.PubMed/NCBI View Article : Google Scholar | |
Lyu Y, Zauhar R, Dana N, Strang CE, Hu J, Wang K, Liu S, Pan N, Gamlin P, Kimble JA, et al: Implication of specific retinal cell-type involvement and gene expression changes in AMD progression using integrative analysis of single-cell and bulk RNA-seq profiling. Sci Rep. 11(15612)2021.PubMed/NCBI View Article : Google Scholar | |
Becker K, Klein H, Simon E, Viollet C, Haslinger C, Leparc G, Schultheis C, Chong V, Kuehn MH, Fernandez-Albert F and Bakker RA: In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci Rep. 11(10494)2021.PubMed/NCBI View Article : Google Scholar | |
Deng J and Qin YH: Advancements and emerging trends in ophthalmic anti-VEGF therapy: A bibliometric analysis. Int Ophthalmol. 44(368)2024.PubMed/NCBI View Article : Google Scholar |