|
1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI View Article : Google Scholar
|
|
2
|
He T, Li J, Wang P and Zhang Z: Artificial
intelligence predictive system of individual survival rate for lung
adenocarcinoma. Comput Struct Biotechnol J. 20:2352–2359.
2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lin JJ, Cardarella S, Lydon CA, Dahlberg
SE, Jackman DM, Jänne PA and Johnson BE: Five-year survival in
EGFR-mutant metastatic lung adenocarcinoma treated with EGFR-TKIs.
J Thorac Oncol. 11:556–565. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sogbe M, Aliseda D, Sangro P, de la
Torre-Aláez M, Sangro B and Argemi J: Prognostic value of
circulating tumor DNA in different cancer types detected by
ultra-low-pass whole-genome sequencing: A systematic review and
patient-level survival data meta-analysis. Carcinogenesis.
16(bgae073)2025.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Leong IUS, Cabrera CP, Cipriani V, Ross
PJ, Turner RM, Stuckey A, Sanghvi S, Pasko D, Moutsianas L, Odhams
CA, et al: Large-scale pharmacogenomics analysis of patients with
cancer within the 100,000 genomes project combining whole-genome
sequencing and medical records to inform clinical practice. J Clin
Oncol. 43:682–693. 2025.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Larsson L, Corbett C, Kalmambetova G,
Utpatel C, Ahmedov S, Antonenka U, Iskakova A, Kadyrov A, Kohl TA,
Barilar V, et al: Whole-genome sequencing drug susceptibility
testing is associated with positive MDR-TB treatment response. Int
J Tuberc Lung Dis. 28:494–499. 2024.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Liu C, Chen Y, Xu X, Yin M, Zhang H and Su
W: Utilizing macrophages missile for sulfate-based nanomedicine
delivery in lung cancer therapy. Research (Wash D C).
7(0448)2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zhao L, Li M, Shen C and Luo Y, Hou X, Qi
Y, Huang Z, Li W, Gao L, Wu M and Luo Y: Nano-assisted radiotherapy
strategies: New opportunities for treatment of non-small cell lung
cancer. Research (Wash D C). 7(0429)2024.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Wang Y, Shen C, Wu C, Zhan Z, Qu R, Xie Y
and Chen P: Self-assembled DNA machine and selective complexation
recognition enable rapid homogeneous portable quantification of
lung cancer CTCs. Research (Wash D C). 7(0352)2024.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhao Z, Zhao D, Xia J, Wang Y and Wang B:
Immunoscore predicts survival in early-stage lung adenocarcinoma
patients. Front Oncol. 10(691)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41 (Database
Issue):D991–D995. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43(e47)2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Li W: Volcano plots in analyzing
differential expressions with mRNA microarrays. J Bioinform Comput
Biol. 10(1231003)2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9(559)2008.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000.PubMed/NCBI View
Article : Google Scholar
|
|
17
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Stelzl U, Worm U, Lalowski M, Haenig C,
Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A,
Koeppen S, et al: A human protein-protein interaction network: A
resource for annotating the proteome. Cell. 122:957–968.
2005.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and
Lin CY: cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol. 8 (Suppl 4)(S11)2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Breiman L: Random forests. Mach Learn.
45:5–32. 2001.
|
|
21
|
Cortes C and Vapnik V: Support-vector
networks. Mach Learn. 20:273–297. 1995.
|
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Sedgwick P: How to read a receiver
operating characteristic curve. BMJ. 350(h2464)2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
González-Silva L, Quevedo L and Varela I:
Tumor Functional heterogeneity unraveled by scRNA-seq technologies.
Trends Cancer. 6:13–19. 2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Li X, Lu F, Cao M, Yao Y, Guo J, Zeng G
and Qian J: The pro-tumor activity of INTS7 on lung adenocarcinoma
via inhibiting immune infiltration and activating p38MAPK pathway.
Sci Rep. 14(25636)2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Kim YJ, Kim JH, Kim O, Ahn EJ, Oh SJ,
Akanda MR, Oh IJ, Jung S, Kim KK, Lee JH, et al: Caveolin-1
enhances brain metastasis of non-small cell lung cancer,
potentially in association with the epithelial-mesenchymal
transition marker SNAIL. Cancer Cell Int. 19(171)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Kakogiannos N, Ferrari L, Giampietro C,
Scalise AA, Maderna C, Ravà M, Taddei A, Lampugnani MG, Pisati F,
Malinverno M, et al: JAM-A acts via C/EBP-α to promote claudin-5
expression and enhance endothelial barrier function. Circ Res.
127:1056–1073. 2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Parton RG and del Pozo MA: Caveolae as
plasma membrane sensors, protectors and organizers. Nat Rev Mol
Cell Biol. 14:98–112. 2013.PubMed/NCBI View
Article : Google Scholar
|
|
29
|
Chen D and Che G: Value of caveolin-1 in
cancer progression and prognosis: Emphasis on cancer-associated
fibroblasts, human cancer cells and mechanism of caveolin-1
expression (Review). Oncol Lett. 8:1409–1421. 2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z,
Nakamura Y and Fukami K: Lipid rafts and caveolin-1 are required
for invadopodia formation and extracellular matrix degradation by
human breast cancer cells. Cancer Res. 69:8594–8602.
2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Li Y, Wu Q, Lv J and Gu J: A comprehensive
pan-cancer analysis of CDH5 in immunological response. Front
Immunol. 14(1239875)2023.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Dejana E, Orsenigo F and Lampugnani MG:
The role of adherens junctions and VE-cadherin in the control of
vascular permeability. J Cell Sci. 121:2115–2122. 2008.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Strilic B and Offermanns S: Intravascular
survival and extravasation of tumor cells. Cancer Cell. 32:282–293.
2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Vestweber D: VE-cadherin: The major
endothelial adhesion molecule controlling cellular junctions and
blood vessel formation. Arterioscler Thromb Vasc Biol. 28:223–232.
2008.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Sun Y, Liu JQ, Chen WJ, Tang WF, Zhou YL,
Liu BJ, Wei Y and Dong JC: Astragaloside III inhibits MAPK-mediated
M2 tumor-associated macrophages to suppress the progression of lung
cancer cells via Akt/mTOR signaling pathway. Int Immunopharmacol.
154(114546)2025.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Huang F, Xue F, Wang Q, Huang Y, Wan Z,
Cao X and Zhong L: Transcription factor-target gene regulatory
network analysis in human lung adenocarcinoma. J Thorac Dis.
15:6996–7012. 2023.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhang J, Yin Y, Wang B, Chen J, Yang H, Li
T and Chen Y: Discovery of novel small molecules targeting TGF-β
signaling for the treatment of non-small cell lung cancer. Eur J
Med Chem. 289(117442)2025.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Guardavaccaro D and Clevers H:
Wnt/β-catenin and MAPK signaling: Allies and enemies in different
battlefields. Sci Signal. 5(pe15)2012.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Derynck R, Turley SJ and Akhurst RJ: TGFβ
biology in cancer progression and immunotherapy. Nat Rev Clin
Oncol. 18:9–34. 2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Zhao Y, Li J, Ting KK, Chen J, Coleman P,
Liu K, Wan L, Moller T, Vadas MA and Gamble JR: The
VE-cadherin/β-catenin signalling axis regulates immune cell
infiltration into tumours. Cancer Lett. 496:1–15. 2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zheng F, Chen Z, Jia W and Zhao R:
Editorial: Community series in the role of angiogenesis and immune
response in tumor microenvironment of solid tumor, volume III.
Front Immunol. 15(1495465)2024.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wan JCM, Massie C, Garcia-Corbacho J,
Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R and Rosenfeld N:
Liquid biopsies come of age: Towards implementation of circulating
tumour DNA. Nat Rev Cancer. 17:223–238. 2017.PubMed/NCBI View Article : Google Scholar
|