|
1
|
Duan H, Zhang Q, Liu J, Li R, Wang D, Peng
W and Wu C: Suppression of apoptosis in vascular endothelial cell,
the promising way for natural medicines to treat atherosclerosis.
Pharmacol Res. 168(105599)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Qin X, Zhang J, Wang B, Xu G, Yang X, Zou
Z and Yu C: Ferritinophagy is involved in the zinc oxide
nanoparticles-induced ferroptosis of vascular endothelial cells.
Autophagy. 17:4266–4285. 2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Yang Z, Shi J, Chen L, Fu C, Shi D and Qu
H: Role of pyroptosis and ferroptosis in the progression of
atherosclerotic plaques. Front Cell Dev Biol.
10(811196)2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Carlson BA, Tobe R, Yefremova E, Tsuji PA,
Hoffmann VJ, Schweizer U, Gladyshev VN, Hatfield DL and Conrad M:
Glutathione peroxidase 4 and vitamin E cooperatively prevent
hepatocellular degeneration. Redox Biol. 9:22–31. 2016.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Imai H and Nakagawa Y: Biological
significance of phospholipid hydroperoxide glutathione peroxidase
(PHGPx, GPx4) in mammalian cells. Free Radic Biol Med. 34:145–169.
2003.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Illés E, Patra SG, Marks V, Mizrahi A and
Meyerstein D: The Fe(II)(citrate) Fenton reaction under
physiological conditions. J Inorg Biochem.
206(111018)2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Kist M and Vucic D: Cell death pathways:
Intricate connections and disease implications. EMBO J.
40(e106700)2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Bai T, Li M, Liu Y, Qiao Z and Wang Z:
Inhibition of ferroptosis alleviates atherosclerosis through
attenuating lipid peroxidation and endothelial dysfunction in mouse
aortic endothelial cell. Free Radic Biol Med. 160:92–102.
2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Huang D, Zheng S, Liu Z, Zhu K, Zhi H and
Ma G: Machine learning revealed ferroptosis features and a novel
ferroptosis-based classification for diagnosis in acute myocardial
infarction. Front Genet. 13(813438)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang
JJ, Luo XJ and Peng J: Ubiquitin-specific protease 7 promotes
ferroptosis via activation of the p53/TfR1 pathway in the rat
hearts after ischemia/reperfusion. Free Radic Biol Med.
162:339–352. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Guo Y, Zhang W, Zhou X, Zhao S, Wang J,
Guo Y, Liao Y, Lu H, Liu J, Cai Y, et al: Roles of ferroptosis in
cardiovascular diseases. Front Cardiovasc Med.
9(911564)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Chen X, Xu S, Zhao C and Liu B: Role of
TLR4/NADPH oxidase 4 pathway in promoting cell death through
autophagy and ferroptosis during heart failure. Biochem Biophys Res
Commun. 516:37–43. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Stockwell BR, Friedmann Angeli JP, Bayir
H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK,
Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking
metabolism, redox biology, and disease. Cell. 171:273–285.
2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Forcina GC and Dixon SJ: GPX4 at the
crossroads of lipid homeostasis and ferroptosis. Proteomics.
19(e1800311)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Shimada K, Skouta R, Kaplan A, Yang WS,
Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ and
Stockwell BR: Global survey of cell death mechanisms reveals
metabolic regulation of ferroptosis. Nat Chem Biol. 12:497–503.
2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Dixon SJ, Patel DN, Welsch M, Skouta R,
Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS
and Stockwell BR: Pharmacological inhibition of cystine-glutamate
exchange induces endoplasmic reticulum stress and ferroptosis.
Elife. 3(e02523)2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kim J, Kim H, Roh H and Kwon Y: Causes of
hyperhomocysteinemia and its pathological significance. Arch Pharm
Res. 41:372–383. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Qin X, Xu M, Zhang Y, Li J, Xu X, Wang X,
Xu X and Huo Y: Effect of folic acid supplementation on the
progression of carotid intima-media thickness: A meta-analysis of
randomized controlled trials. Atherosclerosis. 222:307–313.
2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Esse R, Barroso M, Tavares de Almeida I
and Castro R: The contribution of homocysteine metabolism
disruption to endothelial dysfunction: State-of-the-art. Int J Mol
Sci. 20(867)2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z,
Wei X, Huang B, Shan Z, Liu J, Fan S, et al: Homocysteine induces
oxidative stress and ferroptosis of nucleus pulposus via enhancing
methylation of GPX4. Free Radic Biol Med. 160:552–565.
2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Mancuso C and Santangelo R: Panax ginseng
and Panax quinquefolius: From pharmacology to toxicology. Food Chem
Toxicol. 107:362–372. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Quan HY, Yuan HD, Jung MS, Ko SK, Park YG
and Chung SH: Ginsenoside Re lowers blood glucose and lipid levels
via activation of AMP-activated protein kinase in HepG2 cells and
high-fat diet fed mice. Int J Mol Med. 29:73–80. 2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Kim JM, Park CH, Park SK, Seung TW, Kang
JY, Ha JS, Lee DS, Lee U, Kim DO and Heo HJ: Ginsenoside Re
ameliorates brain insulin resistance and cognitive dysfunction in
high fat diet-induced C57BL/6 mice. J Agric Food Chem.
65:2719–2729. 2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Wang H, Lv J, Jiang N, Huang H, Wang Q and
Liu X: Ginsenoside Re protects against chronic restraint
stress-induced cognitive deficits through regulation of NLRP3 and
Nrf2 pathways in mice. Phytother Res. 35:2523–2535. 2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Su F, Xue Y, Wang Y, Zhang L, Chen W and
Hu S: Protective effect of ginsenosides Rg1 and Re on
lipopolysaccharide-induced sepsis by competitive binding to
Toll-like receptor 4. Antimicrob Agents Chemother. 59:5654–5663.
2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Wang QW, Yu XF, Xu HL, Zhao XZ and Sui DY:
Ginsenoside Re improves isoproterenol-induced myocardial fibrosis
and heart failure in rats. Evid Based Complement Alternat Med.
2019(3714508)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yao H, Li J, Song Y, Zhao H, Wei Z, Li X,
Jin Y, Yang B and Jiang J: Synthesis of ginsenoside Re-based carbon
dots applied for bioimaging and effective inhibition of cancer
cells. Int J Nanomedicine. 13:6249–6264. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lee GH, Lee WJ, Hur J, Kim E, Lee HG and
Seo HG: Ginsenoside Re mitigates 6-hydroxydopamine-induced
oxidative stress through upregulation of GPX4. Molecules.
25(188)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Shi J, Chen D, Wang Z, Li S and Zhang S:
Homocysteine induces ferroptosis in endothelial cells through the
systemXc-/GPX4 signaling pathway. BMC Cardiovasc Disord.
23(316)2023.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yang R, Gao W, Wang Z, Jian H, Peng L, Yu
X, Xue P, Peng W, Li K and Zeng P: Polyphyllin I induced
ferroptosis to suppress the progression of hepatocellular carcinoma
through activation of the mitochondrial dysfunction via
Nrf2/HO-1/GPX4 axis. Phytomedicine. 122(155135)2024.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wu B, Lan X, Chen X, Wu Q, Yang Y and Wang
Y: Researching the molecular mechanisms of Taohong Siwu Decoction
in the treatment of varicocele-associated male infertility using
network pharmacology and molecular docking: A review. Medicine
(Baltimore). 102(e34476)2023.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gimbrone MA Jr and García-Cardeña G:
Endothelial cell dysfunction and the pathobiology of
atherosclerosis. Circ Res. 118:620–636. 2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Botts SR, Fish JE and Howe KL:
Dysfunctional vascular endothelium as a driver of atherosclerosis:
Emerging insights into pathogenesis and treatment. Front Pharmacol.
12(787541)2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12(34)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ouyang S, You J, Zhi C, Li P, Lin X, Tan
X, Ma W, Li L and Xie W: Ferroptosis: The potential value target in
atherosclerosis. Cell Death Dis. 12(782)2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Azad MAK, Huang P, Liu G, Ren W, Teklebrh
T, Yan W, Zhou X and Yin Y: Hyperhomocysteinemia and cardiovascular
disease in animal model. Amino Acids. 50:3–9. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Shi Q, Liu R and Chen L: Ferroptosis
inhibitor ferrostatin-1 alleviates homocysteine-induced ovarian
granulosa cell injury by regulating TET activity and DNA
methylation. Mol Med Rep. 25(130)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Wang Y, Kuang X, Yin Y, Han N, Chang L,
Wang H, Hou Y, Li H, Li Z, Liu Y, et al: Tongxinluo prevents
chronic obstructive pulmonary disease complicated with
atherosclerosis by inhibiting ferroptosis and protecting against
pulmonary microvascular barrier dysfunction. Biomed Pharmacother.
145(112367)2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ye J, Lyu TJ, Li LY, Liu Y, Zhang H, Wang
X, Xi X, Liu ZJ and Gao JQ: Ginsenoside Re attenuates myocardial
ischemia/reperfusion induced ferroptosis via miR-144-3p/SLC7A11.
Phytomedicine. 113(154681)2023.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Chen Y, Deng Y, Chen L and Huang Z, Yan Y
and Huang Z: miR-16-5p regulates ferroptosis by targeting SLC7A11
in adriamycin-induced ferroptosis in cardiomyocytes. J Inflamm Res.
16:1077–1089. 2023.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X,
Huang Z, Lin M, Wu H and Xu D: Naringenin alleviates myocardial
ischemia/reperfusion injury by regulating the nuclear
factor-erythroid factor 2-related factor 2 (Nrf2)/System
xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis.
Bioengineered. 12:10924–10934. 2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhang L, Liu W, Liu F, Wang Q, Song M, Yu
Q, Tang K, Teng T, Wu D, Wang X, et al: IMCA induces ferroptosis
mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal
cancer. Oxid Med Cell Longev. 2020(1675613)2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M,
Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes
erastin-induced ferroptosis by suppressing system Xc. Cell Death
Differ. 27:662–675. 2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Parker JL, Deme JC, Kolokouris D, Kuteyi
G, Biggin PC, Lea SM and Newstead S: Molecular basis for redox
control by the human cystine/glutamate antiporter system xc. Nat
Commun. 12(7147)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Qiao O, Zhang L, Han L, Wang X, Li Z, Bao
F, Hao H, Hou Y, Duan X, Li N and Gong Y: Rosmarinic acid plus
deferasirox inhibits ferroptosis to alleviate crush
syndrome-related AKI via Nrf2/Keap1 pathway. Phytomedicine.
129(155700)2024.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ren S, Wang J, Dong Z, Li J, Ma Y, Yang Y,
Zhou T, Qiu T, Jiang L, Li Q, et al: Perfluorooctane sulfonate
induces ferroptosis-dependent non-alcoholic steatohepatitis via
autophagy-MCU-caused mitochondrial calcium overload and MCU-ACSL4
interaction. Ecotoxicol Environ Saf. 280(116553)2024.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Wei XL, Yu AG, Zhang X, Pantopoulos K, Liu
ZB, Xu PC, Zheng H and Luo Z: Fe2O3
nanoparticles induce ferroptosis by binding to the N-terminus of
ACSL4 and suppressing its ubiquitin-mediated degradation. Free
Radic Biol Med. 238:123–136. 2025.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Cai J, Huang K, Han S, Chen R, Li Z, Chen
Y, Chen B, Li S, Xinhua L and Yao H: A comprehensive system review
of pharmacological effects and relative mechanisms of Ginsenoside
Re: Recent advances and future perspectives. Phytomedicine.
102(154119)2022.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhu Y, Yue J, Yan R, Xia W, Li T and Fu X:
Enhancement in the intestinal absorption of ginsenoside Re by
ginseng polysaccharides and its mechanisms. Food Chem.
488(144914)2025.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Jeon JH, Lee J, Choi MK and Song IS:
Pharmacokinetics of ginsenosides following repeated oral
administration of red ginseng extract significantly differ between
species of experimental animals. Arch Pharm Res. 43:1335–1346.
2020.PubMed/NCBI View Article : Google Scholar
|