|
1
|
Losada A: Cohesin in cancer: Chromosome
segregation and beyond. Nat Rev Cancer. 14:389–393. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
2
|
Musio A, Selicorni A, Focarelli ML,
Gervasini C, Milani D, Russo S, Vezzoni P and Larizza L: X-linked
cornelia de Lange syndrome owing to SMC1L1 variants. Nat Genet.
38:528–530. 2006.
|
|
3
|
Solomon DA, Kim T, Diaz-Martinez LA, Fair
J, Elkahloun AG, Harris BT, Toretsky JA, Rosenberg SA, Shukla N,
Ladanyi M, et al: Variantal inactivation of STAG2 causes aneuploidy
in human cancer. Science. 333:1039–1043. 2011.
|
|
4
|
Mullegama SV, Klein SD, Mulatinho MV,
Senaratne TN and Singh K: UCLA Clinical Genomics Center. Nguyen DC,
Gallant NM, Strom SP, Ghahremani S, et al: De novo loss-of-function
variants in STAG2 are associated with developmental delay,
microcephaly, and congenital anomalies. Am J Med Genet A.
173:1319–1327. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Soardi FC, Machado-Silva A, Linhares ND,
Zheng G, Qu Q, Pena HB, Martins TMM, Vieira HGS, Pereira NB,
Melo-Minardi RC, et al: Familial aSTAG2 germline variant
defines a new human cohesinopathy. NPJ Genom Med. 2(7)2017.
|
|
6
|
Aoi H, Lei M, Mizuguchi T, Nishioka N,
Goto T, Miyama S, Suzuki T, Iwama K, Uchiyama Y, Mitsuhashi S, et
al: Nonsense variants of STAG2 result in distinct congenital
anomalies. Hum Genome Var. 7(26)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Mondal G, Stevers M, Goode B, Ashworth A
and Solomon DA: A requirement for STAG2 in replication fork
progression creates a targetable synthetic lethality in
cohesin-mutant cancers. Nat Commun. 10(1686)2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Yu L, Sawle AD, Wynn J, Aspelund G, Stolar
CJ, Arkovitz MS, Potoka D, Azarow KS, Mychaliska GB, Shen Y, et al:
Increased burden of de novo predicted deleterious variants in
complex congenital diaphragmatic hernia. Hum Mol Genet.
24:4764–4773. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Yuan B, Neira J, Pehlivan D, Santiago-Sim
T, Song X, Rosenfeld J, Posey JE, Patel V, Jin W, Adam MP, et al:
Clinical exome sequencing reveals locus heterogeneity and
phenotypic variability of cohesinopathies. Genet Med. 21:663–675.
2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kruszka P, Berger SI, Casa V, Dekker MR,
Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ,
et al: Cohesin complex-associated holoprosencephaly. Brain.
142:2631–2643. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Epilepsy Genetics Initiative. The epilepsy
genetics initiative: Systematic reanalysis of diagnostic exomes
increases yield. Epilepsia. 60:797–806. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Provenzano A, La Barbera A, Lai F, Perra
A, Farina A, Cariati E, Zuffardi O and Giglio S: Non-invasive
detection of a de novo frameshift variant of stag2 in a
female fetus: Escape genes influence the manifestation of X-linked
diseases in females. J Clin Med. 11(4182)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Freyberger F, Kokotović T, Krnjak G,
Frković SH and Nagy V: Expanding the known phenotype of
Mullegama-Klein-Martinez syndrome in male patients. Hum Genome Var.
8(37)2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Harris PC and Torres VE: Polycystic kidney
disease. Annu Rev Med. 60:321–337. 2009.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Hughes J, Ward CJ, Peral B, Aspinwall R,
Clark K, San Millán JL, Gamble V and Harris PC: The polycystic
kidney disease 1 (PKD1) gene encodes a novel protein with multiple
cell recognition domains. Nat Genet. 10:151–160. 1995.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Qian F, Germino FJ, Cai Y, Zhang X, Somlo
S and Germino GG: PKD1 interacts with PKD2 through a probable
coiled-coil domain. Nat Genet. 16:179–183. 1997.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Grantham JJ, Mulamalla S and
Swenson-Fields KI: Why kidneys fail in autosomal dominant
polycystic kidney disease. Nat Rev Nephrol. 7:556–566.
2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Cornec-Le Gall E, Alam A and Perrone RD:
Autosomal dominant polycystic kidney disease. Lancet. 393:919–935.
2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Richards S, Aziz N, Bale S, Bick D, Das S,
Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al: ACMG
Laboratory quality assurance committee. Standards and guidelines
for the interpretation of sequence variants: A joint consensus
recommendation of the American College of Medical genetics and
genomics and the association for molecular pathology. Genet Med.
17:405–424. 2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Rivera-Muñoz EA, Milko LV, Harrison SM,
Azzariti DR, Kurtz CL, Lee K, Mester JL, Weaver MA, Currey E,
Craigen W, et al: ClinGen variant curation expert panel experiences
and standardized processes for disease and gene-level specification
of the ACMG/AMP guidelines for sequence variant interpretation. Hum
Mutat. 39:1614–1622. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Apgar V: A proposal for a new method of
evaluation of the newborn infant. Originally published in July.
1953, volume 32, pages 250-259. Anesth Analg. 120:1056–1059.
2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Spencer-Smith MM, Spittle AJ, Lee KJ,
Doyle LW and Anderson PJ: Bayley-III cognitive and language scales
in preterm children. Pediatrics. 135:e1258–e1265. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Cheng N, Li G, Kanchwala M, Evers BM, Xing
C and Yu H: STAG2 promotes the myelination transcriptional program
in oligodendrocytes. Elife. 12(e77848)2022.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yu C, Dai D and Xie J: Molecular subtype
classification of papillary renal cell cancer using miRNA
expression. Onco Targets Ther. 12:2311–2322. 2019.PubMed/NCBI View Article : Google Scholar
|