|
1.
|
Ruoslahti E: RGD and other recognition
sequences for integrins. Annu Rev Cell Dev Biol. 12:697–715. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Hynes RO: Cell adhesion: old and new
questions. Trends Cell Biol. 9:M33–M37. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Carmeliet P: Mechanisms of angiogenesis
and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Friedlander M, Brooks PC, Shaffer RW,
Kincaid CM, Varner JA and Cheresh DA: Definition of two angiogenic
pathways by distinct alpha v integrins. Science. 270:1500–1502.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Cheresh DA: Human endothelial cells
synthesize and express an Arg-Gly-Asp-directed adhesion receptor
involved in attachment to fibrinogen and von Willebrand factor.
Proc Natl Acad Sci USA. 84:6471–6475. 1987. View Article : Google Scholar
|
|
6.
|
Horton MA: The alpha v beta 3 integrin
‘Vitronectin receptor’. Int J Biochem Cell Biol. 29:721–725.
1997.
|
|
7.
|
Van De Wiele C, Oltenfreiter R, De Winter
O, Signore A, Slegers G and Dierckx RA: Tumour angiogenesis
pathways: related clinical issues and implications for nuclear
medicine imaging. Eur J Nucl Med Mol Imaging. 29:699–709.
2002.PubMed/NCBI
|
|
8.
|
Kumar CC: Integrin alpha v beta 3 as a
therapeutic target for blocking tumor-induced angiogenesis. Curr
Drug Targets. 4:123–131. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Hynes RO: Integrins: a family of cell
surface receptors. Cell. 48:549–554. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Smith JW, Vestal DJ, Irwin SV, Burke TA
and Cheresh DA: Purification and functional characterization of
integrin alpha v beta 5. An adhesion receptor for vitronectin. J
Biol Chem. 265:11008–11013. 1990.PubMed/NCBI
|
|
11.
|
Koster J: The integrin page:
Alpha-v/beta-5 integrin [Webpage]. Available from: http://www.geocities.com/capecanaveral/9629/avb5.htmuri.
1997.
|
|
12.
|
Nemeth JA, Nakada MT, Trikha M, et al:
Alpha-v integrins as therapeutic targets in oncology. Cancer
Invest. 25:632–646. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Juliano RL: Membrane receptors for
extracellular matrix macro-molecules: relationship to cell adhesion
and tumor metastasis. Biochim Biophys Acta. 907:261–278.
1987.PubMed/NCBI
|
|
14.
|
Albelda SM, Mette SA, Elder DE, Stewart R,
Damjanovich L, Herlyn M and Buck CA: Integrin distribution in
malignant melanoma: association of the beta 3 subunit with tumor
progression. Cancer Res. 50:6757–6764. 1990.PubMed/NCBI
|
|
15.
|
Gladson CL and Cheresh DA: Glioblastoma
expression of vitronectin and the alpha v beta 3 integrin. Adhesion
mechanism for transformed glial cells. J Clin Invest. 88:1924–1932.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Bello L, Francolini M, Marthyn P, et al:
Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma
periphery. Neurosurgery. 49:380–390. 2001.PubMed/NCBI
|
|
17.
|
Gehlsen KR, Davis GE and Sriramarao P:
Integrin expression in human melanoma cells with differing invasive
and metastatic properties. Clin Exp Metastasis. 10:111–120. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Felding-Habermann B, Mueller BM, Romerdahl
CA and Cheresh DA: Involvement of integrin alpha v gene expression
in human melanoma tumorigenicity. J Clin Invest. 89:2018–2022.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Nip J, Shibata H, Loskutoff DJ, Cheresh DA
and Brodt P: Human melanoma cells derived from lymphatic metastases
use integrin alpha v beta 3 to adhere to lymph node vitronectin. J
Clin Invest. 90:1406–1413. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Gasparini G, Brooks PC, Biganzoli E, et
al: Vascular integrin alpha(v)beta3: a new prognostic indicator in
breast cancer. Clin Cancer Res. 4:2625–2634. 1998.PubMed/NCBI
|
|
21.
|
Landen CN, Kim TJ, Lin YG, et al:
Tumor-selective response to antibody-mediated targeting of
alphavbeta3 integrin in ovarian cancer. Neoplasia. 10:1259–1267.
2008.PubMed/NCBI
|
|
22.
|
Pap T, Gay R and Gay S: Mechanisms of
joint destruction. Rheumatoid Arthritis. New Frontiers in
Pathogenesis and Treatment. Firestein GS, Panayi GS and Wollheim
FA: Oxford University Press; Oxford: pp. 189–199. 2000
|
|
23.
|
Koch AE: The role of angiogenesis in
rheumatoid arthritis: recent developments. Ann Rheum Dis. 59(Suppl
1): i65–i71. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Takayama K, Ueno H, Pei XH, Nakanishi Y,
Yatsunami J and Hara N: The levels of integrin alpha v beta 5 may
predict the susceptibility to adenovirus-mediated gene transfer in
human lung cancer cells. Gene Ther. 5:361–368. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Scotton CJ, Krupiczojc MA, Konigshoff M,
et al: Increased local expression of coagulation factor x
contributes to the fibrotic response in human and murine lung
injury. J Clin Invest. 119:2550–2563. 2009.PubMed/NCBI
|
|
26.
|
Luna J, Tobe T, Mousa SA, Reilly TM and
Campochiaro PA: Antagonists of integrin alpha v beta 3 inhibit
retinal neovascularization in a murine model. Lab Invest.
75:563–573. 1996.PubMed/NCBI
|
|
27.
|
Kerr JS, Mousa SA and Slee AM:
Alpha(v)beta(3) integrin in angiogenesis and restenosis. Drug News
Perspect. 14:143–150. 2001.PubMed/NCBI
|
|
28.
|
Klotz O, Park JK, Pleyer U, Hartmann C and
Baatz H: Inhibition of corneal neovascularization by
alpha(v)-integrin antagonists in the rat. Graefes Arch Clin Exp
Ophthalmol. 238:88–93. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Hemminki A, Belousova N, Zinn KR, et al:
An adenovirus with enhanced infectivity mediates molecular
chemotherapy of ovarian cancer cells and allows imaging of gene
expression. Mol Ther. 4:223–231. 2001. View Article : Google Scholar
|
|
30.
|
Arap W, Pasqualini R and Ruoslahti E:
Cancer treatment by targeted drug delivery to tumor vasculature in
a mouse model. Science. 279:377–380. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J,
Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin.
58:71–96. 2008. View Article : Google Scholar
|
|
32.
|
Choi M, Fuller CD, Thomas CR Jr and Wang
SJ: Conditional survival in ovarian cancer: results from the SEER
dataset 1988–2001. Gynecol Oncol. 109:203–209. 2008.PubMed/NCBI
|
|
33.
|
Bast RC Jr, Hennessy B and Mills GB: The
biology of ovarian cancer: new opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Armstrong DK, Bundy B, Wenzel L, et al:
Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl
J Med. 354:34–43. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Schmidmaier R and Baumann P: Anti-adhesion
evolves to a promising therapeutic concept in oncology. Curr Med
Chem. 15:978–990. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Chames P and Baty D: Antibody engineering
and its applications in tumor targeting and intracellular
immunization. FEMS Microbiol Lett. 189:1–8. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Hudson PJ: Recombinant antibody constructs
in cancer therapy. Curr Opin Immunol. 11:548–557. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
DeNardo SJ, Kroger LA and DeNardo GL: A
new era for radio-labeled antibodies in cancer? Curr Opin Immunol.
11:563–569. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Pasqualini R and Ruoslahti E: Organ
targeting in vivo using phage display peptide libraries. Nature.
380:364–366. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Hong FD and Clayman GL: Isolation of a
peptide for targeted drug delivery into human head and neck solid
tumors. Cancer Res. 60:6551–6556. 2000.PubMed/NCBI
|
|
41.
|
Wickham TJ, Roelvink PW, Brough DE and
Kovesdi I: Adenovirus targeted to heparan-containing receptors
increases its gene delivery efficiency to multiple cell types. Nat
Biotechnol. 14:1570–1573. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Dmitriev I, Krasnykh V, Miller CR, et al:
An adenovirus vector with genetically modified fibers demonstrates
expanded tropism via utilization of a coxsackievirus and adenovirus
receptor-independent cell entry mechanism. J Virol. 72:9706–9713.
1998.
|
|
43.
|
Schottelius AJ, Zugel U, Docke WD, et al:
The role of mitogen-activated protein kinase-activated protein
kinase 2 in the p38/TNF-alpha pathway of systemic and cutaneous
inflammation. J Invest Dermatol. Aug 6–2009.(Epub ahead of
print).
|
|
44.
|
Schmieder AH, Caruthers SD, Zhang H,
Williams TA, Robertson JD, Wickline SA and Lanza GM:
Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha
nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435
xenograft mouse model. FASEB J. 22:4179–4189. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Leroy-Dudal J, Demeilliers C, Gallet O, et
al: Transmigration of human ovarian adenocarcinoma cells through
endothelial extracellular matrix involves alphav integrins and the
participation of MMP2. Int J Cancer. 114:531–543. 2005. View Article : Google Scholar
|
|
46.
|
Markland FS, Shieh K, Zhou Q, Golubkov V,
Sherwin RP, Richters V and Sposto R: A novel snake venom
disintegrin that inhibits human ovarian cancer dissemination and
angiogenesis in an orthotopic nude mouse model. Haemostasis.
31:183–191. 2001.PubMed/NCBI
|
|
47.
|
Carreiras F, Thiebot B, Leroy-Dudal J,
Maubant S, Breton MF and Darbeida H: Involvement of alphavbeta 3
integrin and disruption of endothelial fibronectin network during
the adhesion of the human ovarian adenocarcinoma cell line IGROV1
on the human umbilical vein cell extracellular matrix. Int J
Cancer. 99:800–808. 2002. View Article : Google Scholar
|
|
48.
|
Maubant S, Cruet-Hennequart S, Poulain L,
et al: Altered adhesion properties and alphav integrin expression
in a cisplatin-resistant human ovarian carcinoma cell line. Int J
Cancer. 97:186–194. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Hapke S, Kessler H, Luber B, et al:
Ovarian cancer cell proliferation and motility is induced by
engagement of integrin alpha(v) beta3/vitronectin interaction. Biol
Chem. 384:1073–1083. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Gutheil JC, Campbell TN, Pierce PR,
Watkins JD, Huse WD, Bodkin DJ and Cheresh DA: Targeted
antiangiogenic therapy for cancer using Vitaxin: a humanized
monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res.
6:3056–3061. 2000.PubMed/NCBI
|
|
51.
|
Burke PA, DeNardo SJ, Miers LA, Lamborn
KR, Matzku S and DeNardo GL: Cilengitide targeting of
alpha(v)beta(3) integrin receptor synergizes with
radioimmunotherapy to increase efficacy and apoptosis in breast
cancer xenografts. Cancer Res. 62:4263–4272. 2002.PubMed/NCBI
|
|
52.
|
Eskens FA, Dumez H, Hoekstra R, et al:
Phase I and pharmacokinetic study of continuous twice weekly
intravenous administration of cilengitide (EMD 121974), a novel
inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients
with advanced solid tumours. Eur J Cancer. 39:917–926. 2003.
View Article : Google Scholar
|
|
53.
|
Smith JW: Cilengitide Merck. Curr Opin
Investig Drugs. 4:741–745. 2003.
|
|
54.
|
Miller WH, Bondinell WE, Cousins RD, et
al: Orally bioavailable nonpeptide vitronectin receptor antagonists
with efficacy in an osteoporosis model. Bioorg Med Chem Lett.
9:1807–1812. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Kerr JS, Wexler RS, Mousa SA, et al: Novel
small molecule alpha v integrin antagonists: comparative
anti-cancer efficacy with known angiogenesis inhibitors. Anticancer
Res. 19:959–968. 1999.PubMed/NCBI
|
|
56.
|
Freimuth P: A human cell line selected for
resistance to adenovirus infection has reduced levels of the virus
receptor. J Virol. 70:4081–4085. 1996.PubMed/NCBI
|
|
57.
|
Huang S, Kamata T, Takada Y, Ruggeri ZM
and Nemerow GR: Adenovirus interaction with distinct integrins
mediates separate events in cell entry and gene delivery to
hematopoietic cells. J Virol. 70:4502–4508. 1996.PubMed/NCBI
|
|
58.
|
Goldman MJ and Wilson JM: Expression of
alpha v beta 5 integrin is necessary for efficient
adenovirus-mediated gene transfer in the human airway. J Virol.
69:5951–5958. 1995.PubMed/NCBI
|
|
59.
|
Bergelson JM, Cunningham JA, Droguett G,
et al: Isolation of a common receptor for coxsackie b viruses and
adenoviruses 2 and 5. Science. 275:1320–1323. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Wickham TJ, Filardo EJ, Cheresh DA and
Nemerow GR: Integrin alpha v beta 5 selectively promotes
adenovirus-mediated cell membrane permeabilization. J Cell Biol.
127:257–264. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Bai M, Harfe B and Freimuth P: Mutations
that alter an arg-gly-asp (rgd) sequence in the adenovirus type 2
penton base protein abolish its cell-rounding activity and delay
virus reproduction in flat cells. J Virol. 67:5198–5205.
1993.PubMed/NCBI
|
|
62.
|
Belin MT and Boulanger P: Involvement of
cellular adhesion sequences in the attachment of adenovirus to the
HeLa cell surface. J Gen Virol. 74:1485–1497. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Wickham TJ, Mathias P, Cheresh DA and
Nemerow GR: Integrins alpha v beta 3 and alpha v beta 5 promote
adenovirus internalization but not virus attachment. Cell.
73:309–319. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Miller CR, Buchsbaum DJ, Reynolds PN, et
al: Differential susceptibility of primary and established human
glioma cells to adenovirus infection: targeting via the epidermal
growth factor receptor achieves fiber receptor-independent gene
transfer. Cancer Res. 58:5738–5748. 1998.
|
|
65.
|
Huang S, Endo RI and Nemerow GR:
Upregulation of integrins alpha v beta 3 and alpha v beta 5 on
human monocytes and T lymphocytes facilitates adenovirus-mediated
gene delivery. J Virol. 69:2257–2263. 1995.PubMed/NCBI
|
|
66.
|
Douglas JT, Kim M, Sumerel LA, Carey DE
and Curiel DT: Efficient oncolysis by a replicating adenovirus (Ad)
in vivo is critically dependent on tumor expression of primary Ad
receptors. Cancer Res. 61:813–817. 2001.PubMed/NCBI
|
|
67.
|
Russell WC: Update on adenovirus and its
vectors. J Gen Virol. 81:2573–2604. 2000.PubMed/NCBI
|
|
68.
|
Kelly FJ, Miller CR, Buchsbaum DJ,
Gomez-Navarro J, Barnes MN, Alvarez RD and Curiel DT: Selectivity
of TAG-72-targeted adenovirus gene transfer to primary ovarian
carcinoma cells versus autologous mesothelial cells in vitro. Clin
Cancer Res. 6:4323–4333. 2000.PubMed/NCBI
|
|
69.
|
Vanderkwaak TJ, Wang M, Gomez-Navarro J,
et al: An advanced generation of adenoviral vectors selectively
enhances gene transfer for ovarian cancer gene therapy approaches.
Gynecol Oncol. 74:227–234. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Kasono K, Blackwell JL, Douglas JT, et al:
Selective gene delivery to head and neck cancer cells via an
integrin targeted adenoviral vector. Clin Cancer Res. 5:2571–2579.
1999.PubMed/NCBI
|
|
71.
|
Li Y, Pong RC, Bergelson JM, et al: Loss
of adenoviral receptor expression in human bladder cancer cells: a
potential impact on the efficacy of gene therapy. Cancer Res.
59:325–330. 1999.PubMed/NCBI
|
|
72.
|
Hemmi S, Geertsen R, Mezzacasa A, Peter I
and Dummer R: The presence of human coxsackievirus and adenovirus
receptor is associated with efficient adenovirus-mediated transgene
expression in human melanoma cell cultures. Hum Gene Ther.
9:2363–2373. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Fechner H, Wang X, Wang H, et al:
Trans-complementation of vector replication versus
coxsackie-adenovirus-receptor overexpression to improve transgene
expression in poorly permissive cancer cells. Gene Ther.
7:1954–1968. 2000. View Article : Google Scholar
|
|
74.
|
Cripe TP, Dunphy EJ, Holub AD, et al:
Fiber knob modifications overcome low, heterogeneous expression of
the coxsackievirusadenovirus receptor that limits adenovirus gene
transfer and oncolysis for human rhabdomyosarcoma cells. Cancer
Res. 61:2953–2960. 2001.PubMed/NCBI
|
|
75.
|
Krasnykh V, Belousova N, Korokhov N,
Mikheeva G and Curiel DT: Genetic targeting of an adenovirus vector
via replacement of the fiber protein with the phage t4 fibritin. J
Virol. 75:4176–4183. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Goldman CK, Rogers BE, Douglas JT, et al:
Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast
growth factor receptor. Cancer Res. 57:1447–1451. 1997.
|
|
77.
|
Douglas JT, Rogers BE, Rosenfeld ME,
Michael SI, Feng M and Curiel DT: Targeted gene delivery by
tropism-modified adenoviral vectors. Nat Biotechnol. 14:1574–1578.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Stevenson SC, Rollence M, Marshall-Neff J
and McClelland A: Selective targeting of human cells by a chimeric
adenovirus vector containing a modified fiber protein. J Virol.
71:4782–4790. 1997.PubMed/NCBI
|
|
79.
|
Von Seggern DJ, Huang S, Fleck SK,
Stevenson SC and Nemerow GR: Adenovirus vector pseudotyping in
fiber-expressing cell lines: improved transduction of Epstein-barr
virus-transformed B cells. J Virol. 74:354–362. 2000.PubMed/NCBI
|
|
80.
|
Wu H, Seki T, Dmitriev I, Uil T,
Kashentseva E, Han T and Curiel DT: Double modification of
adenovirus fiber with RGD and polylysine motifs improves
coxsackievirus-adenovirus receptor-independent gene transfer
efficiency. Hum Gene Ther. 13:1647–1653. 2002. View Article : Google Scholar
|
|
81.
|
Asaoka K, Tada M, Sawamura Y, Ikeda J and
Abe H: Dependence of efficient adenoviral gene delivery in
malignant glioma cells on the expression levels of the
coxsackievirus and adenovirus receptor. J Neurosurg. 92:1002–1008.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Grill J, van Beusechem VW, van Der Valk P,
et al: Combined targeting of adenoviruses to integrins and
epidermal growth factor receptors increases gene transfer into
primary glioma cells and spheroids. Clin Cancer Res. 7:641–650.
2001.PubMed/NCBI
|
|
83.
|
Kanerva A, Wang M, Bauerschmitz GJ, et al:
Gene transfer to ovarian cancer versus normal tissues with
fiber-modified adenoviruses. Mol Ther. 5:695–704. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Suzuki K, Fueyo J, Krasnykh V, Reynolds
PN, Curiel DT and Alemany R: A conditionally replicative adenovirus
with enhanced infectivity shows improved oncolytic potency. Clin
Cancer Res. 7:120–126. 2001.PubMed/NCBI
|
|
85.
|
Bauerschmitz GJ, Lam JT, Kanerva A, et al:
Treatment of ovarian cancer with a tropism modified oncolytic
adenovirus. Cancer Res. 62:1266–1270. 2002.PubMed/NCBI
|
|
86.
|
Mathis JM, Stoff-Khalili MA and Curiel DT:
Oncolytic adenoviruses – selective retargeting to tumor cells.
Oncogene. 24:7775–7791. 2005.
|
|
87.
|
Vigne E, Mahfouz I, Dedieu JF, Brie A,
Perricaudet M and Yeh P: RGD inclusion in the hexon monomer
provides adenovirus type 5-based vectors with a fiber
knob-independent pathway for infection. J Virol. 73:5156–5161.
1999.PubMed/NCBI
|
|
88.
|
Wu H, Han T, Lam JT, et al: Preclinical
evaluation of a class of infectivity-enhanced adenoviral vectors in
ovarian cancer gene therapy. Gene Ther. 11:874–878. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Borovjagin AV, Krendelchtchikov A, Ramesh
N, Yu DC, Douglas JT and Curiel DT: Complex mosaicism is a novel
approach to infectivity enhancement of adenovirus type 5-based
vectors. Cancer Gene Ther. 12:475–486. 2005.PubMed/NCBI
|
|
90.
|
Hesse A, Kosmides D, Kontermann RE and
Nettelbeck DM: Tropism modification of adenovirus vectors by
peptide ligand insertion into various positions of the adenovirus
serotype 41 short-fiber knob domain. J Virol. 81:2688–2699. 2007.
View Article : Google Scholar
|
|
91.
|
Page JG, Tian B, Schweikart K, et al:
Identifying the safety profile of a novel infectivity-enhanced
conditionally replicative adenovirus, Ad5-delta24-RGD, in
anticipation of a phase I trial for recurrent ovarian cancer. Am J
Obstet Gynecol. 196(389): e9–10. 2007.
|
|
92.
|
Parker AL, Waddington SN, Nicol CG, et al:
Multiple vitamin k-dependent coagulation zymogens promote
adenovirus-mediated gene delivery to hepatocytes. Blood.
108:2554–2561. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
93.
|
Blackwell JL, Li H, Gomez-Navarro J, et
al: Using a tropismmodified adenoviral vector to circumvent
inhibitory factors in ascites fluid. Hum Gene Ther. 11:1657–1669.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
94.
|
Elkas J, Baldwin R, Pegram M, Tseng Y and
Karlan B: Immunoglobulin in ovarian cancer ascites inhibits viral
infection: implications for adenoviral-mediated gene therapy.
Gynecol Oncol. 72:4561999.
|
|
95.
|
Kanerva A, Mikheeva GV, Krasnykh V, et al:
Targeting adenovirus to the serotype 3 receptor increases gene
transfer efficiency to ovarian cancer cells. Clin Cancer Res.
8:275–280. 2002.PubMed/NCBI
|
|
96.
|
Yu W and Fang H: Clinical trials with
oncolytic adenovirus in China. Curr Cancer Drug Targets. 7:141–148.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
97.
|
Marshall E: Gene therapy death prompts
review of adenovirus vector. Science. 286:2244–2245. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
98.
|
Beardsley T: Gene therapy setback. Sci Am.
282:36–37. 2000. View Article : Google Scholar
|
|
99.
|
Jenks S: Gene therapy death – ‘Everyone
has to share in the guilt’. J Natl Cancer Inst. 92:98–100.
2000.
|
|
100.
|
Miller HI: Gene therapy on trial. Science.
287:591–592. 2000. View Article : Google Scholar
|
|
101.
|
Raper SE, Yudkoff M, Chirmule N, et al: A
pilot study of in vivo liver-directed gene transfer with an
adenoviral vector in partial ornithine transcarbamylase deficiency.
Hum Gene Ther. 13:163–175. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
102.
|
Shirakawa T: The current status of
adenovirus-based cancer gene therapy. Mol Cells. 25:462–466.
2008.PubMed/NCBI
|
|
103.
|
Barnes MN, Coolidge CJ, Hemminki A,
Alvarez RD and Curiel DT: Conditionally replicative adenoviruses
for ovarian cancer therapy. Mol Cancer Ther. 1:435–439.
2002.PubMed/NCBI
|
|
104.
|
Young A and McNeish IA: Oncolytic
adenoviral gene therapy in ovarian cancer: why we are not wasting
our time. Future Oncol. 5:339–357. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105.
|
O’Shea CC, Johnson L, Bagus B, et al: Late
viral RNA export, rather than p53 inactivation, determines Onyx-015
tumor selectivity. Cancer Cell. 6:611–623. 2004.PubMed/NCBI
|
|
106.
|
Lieber A, He CY, Meuse L, Schowalter D,
Kirillova I, Winther B and Kay MA: The role of Kupffer cell
activation and viral gene expression in early liver toxicity after
infusion of recombinant adenovirus vectors. J Virol. 71:8798–8807.
1997.PubMed/NCBI
|
|
107.
|
Tao N, Gao GP, Parr M, et al:
Sequestration of adenoviral vector by Kupffer cells leads to a
nonlinear dose response of transduction in liver. Mol Ther.
3:28–35. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
108.
|
Wolff G, Worgall S, van Rooijen N, Song
WR, Harvey BG and Crystal RG: Enhancement of in vivo
adenovirus-mediated gene transfer and expression by prior depletion
of tissue macrophages in the target organ. J Virol. 71:624–629.
1997.PubMed/NCBI
|
|
109.
|
Alemany R and Curiel DT: CAR-binding
ablation does not change biodistribution and toxicity of adenoviral
vectors. Gene Ther. 8:1347–1353. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
110.
|
Smith TA, Idamakanti N, Rollence ML, et
al: Adenovirus serotype 5 fiber shaft influences in vivo gene
transfer in mice. Hum Gene Ther. 14:777–787. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
111.
|
Shayakhmetov DM, Gaggar A, Ni S, Li ZY and
Lieber A: Adenovirus binding to blood factors results in liver cell
infection and hepatotoxicity. J Virol. 79:7478–7491. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
112.
|
Kalyuzhniy O, Di Paolo NC, Silvestry M,
Hofherr SE, Barry MA, Stewart PL and Shayakhmetov DM: Adenovirus
serotype 5 hexon is critical for virus infection of hepatocytes in
vivo. Proc Natl Acad Sci USA. 105:5483–5488. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
113.
|
Waddington SN, McVey JH, Bhella D, et al:
Adenovirus serotype 5 hexon mediates liver gene transfer. Cell.
132:397–409. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114.
|
Alvarez RD, Barnes MN, Gomez-Navarro J, et
al: A cancer gene therapy approach utilizing an anti-erbb-2
single-chain antibody-encoding adenovirus (Ad21): a phase I trial.
Clin Cancer Res. 6:3081–3087. 2000.PubMed/NCBI
|
|
115.
|
Alvarez RD, Gomez-Navarro J, Wang M, et
al: Adenoviral-mediated suicide gene therapy for ovarian cancer.
Mol Ther. 2:524–530. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
116.
|
Hasenburg A, Tong XW, Rojas-Martinez A, et
al: Thymidine kinase gene therapy with concomitant topotecan
chemotherapy for recurrent ovarian cancer. Cancer Gene Ther.
7:839–844. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
117.
|
Alvarez RD and Curiel DT: A phase I study
of recombinant adenovirus vector-mediated delivery of an
anti-erbb-2 single-chain (sFv) antibody gene for previously treated
ovarian and extraovarian cancer patients. Hum Gene Ther. 8:229–242.
1997. View Article : Google Scholar
|
|
118.
|
Buller RE, Shahin MS, Horowitz JA, et al:
Long term follow-up of patients with recurrent ovarian cancer after
Ad p53 gene replacement with SCH 58500. Cancer Gene Ther.
9:567–572. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
119.
|
Muller C, Coleman RL, Rogers P, et al:
Phase I intraperitoneal p53 gene transfer in ovarian cancer.
American Society of Clinical Oncology. 2001.
|
|
120.
|
Kanerva A, Bauerschmitz GJ, Yamamoto M, et
al: A cyclooxygenase-2 promoter-based conditionally replicating
adenovirus with enhanced infectivity for treatment of ovarian
adenocarcinoma. Gene Ther. 11:552–559. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
121.
|
Dmitriev IP, Kashentseva EA and Curiel DT:
Engineering of adenovirus vectors containing heterologous peptide
sequences in the C terminus of capsid protein IX. J Virol.
76:6893–6899. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
122.
|
Vellinga J, Rabelink MJ, Cramer SJ, et al:
Spacers increase the accessibility of peptide ligands linked to the
carboxyl terminus of adenovirus minor capsid protein IX. J Virol.
78:3470–3479. 2004. View Article : Google Scholar : PubMed/NCBI
|