Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-April 2010 Volume 1 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2010 Volume 1 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Dietary factors, genetic and epigenetic influences in colorectal cancer (Review)

  • Authors:
    • M. L. Pellegrini
    • P. Argibay
    • D. E. Gomez
  • View Affiliations / Copyright

    Affiliations: Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
  • Pages: 241-250
    |
    Published online on: March 1, 2010
       https://doi.org/10.3892/etm_00000038
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Genetic influences, together with epigenetic components and dietary factors, play a fundamental role in the initiation and progression of cancer by causing a number of deregulations. Colorectal cancer (CRC) is a disease influenced by dietary factors, for which established genetic and epigenetic alterations have been identified. Within CRC, there are hereditary syndromes that present mutations in the germ-line hMLH1, and also alterations in the methylation of the promoters. Epigenetics has also been established as a pathway of carcinogenesis. In the present review, we analyzed studies conducted to discern the different pathways leading to established CRC, stressing the importance of identifying factors that may predict CRC at an early stage, since it is mostly a silent disease observed at the clinical level in advanced stages.
View Figures
View References

1. 

Lynch HT and de la Chapelle A: Hereditary colorectal cancer. N Engl J Med. 348:919–932. 2003. View Article : Google Scholar : PubMed/NCBI

2. 

Calvert PM and Frucht H: The genetics of colorectal cancer. Ann Intern Med. 137:603–612. 2002. View Article : Google Scholar : PubMed/NCBI

3. 

Lynch HT, Lanspa S, Smyrk T, Boman B, Watson P and Lynch J: Hereditary nonpolyposis colorectal cancer (Lynch syndromes I & II). Genetics, pathology, natural history and cancer control, Part I. Cancer Genet Cytogenet. 53:143–160. 1991.

4. 

Terdiman JP, Conrad PG and Sleisenger MH: Genetic testing in hereditary colorectal cancer: indications and procedures. Am J Gastroenterol. 94:2344–2356. 1999. View Article : Google Scholar

5. 

Cheung P and Lau P: Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol. 19:563–573. 2005. View Article : Google Scholar

6. 

Hoffmann MJ and Schulz WA: Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 83:296–321. 2005. View Article : Google Scholar

7. 

Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003. View Article : Google Scholar : PubMed/NCBI

8. 

Holliday R: Epigenetics: a historical overview. Epigenetics. 1:76–80. 2006. View Article : Google Scholar

9. 

Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4:351–358. 2003. View Article : Google Scholar : PubMed/NCBI

10. 

Robertson KD and Wolffe AP: DNA methylation in health and disease. Nat Rev Genet. 1:11–19. 2000. View Article : Google Scholar

11. 

Warnecke PM and Bestor TH: Cytosine methylation and human cancer. Curr Opin Oncol. 12:68–73. 2000. View Article : Google Scholar : PubMed/NCBI

12. 

Hoffman AR, Vu TH and Hu J: Mechanisms of genomic imprinting. Growth Horm IGF Res. 10:S18–S19. 2000. View Article : Google Scholar

13. 

Jenuwein T and Allis CD: Translating the histone code. Science. 293:1074–1080. 2001. View Article : Google Scholar : PubMed/NCBI

14. 

Kondo Y and Issa JP: Epigenetic changes in colorectal cancer. Cancer Metastasis Rev. 23:29–39. 2004. View Article : Google Scholar

15. 

Sasaki H, Allen ND and Surani MA: DNA methylation and genomic imprinting in mammals. EXS. 64:469–486. 1993.PubMed/NCBI

16. 

Efstratiadis A: Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev. 4:265–280. 1994. View Article : Google Scholar : PubMed/NCBI

17. 

Reik W and Walter J: Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2:21–32. 2001. View Article : Google Scholar : PubMed/NCBI

18. 

Constancia M, Pickard B, Kelsey G and Reik W: Imprinting mechanisms. Genome Res. 8:881–900. 1998.

19. 

Pollak M: Insulin-like growth factor physiology and neoplasia. Growth Horm IGF Res. 10:S6–S7. 2000. View Article : Google Scholar

20. 

Pavelic K, Bukovic D and Pavelic J: The role of insulin-like growth factor 2 and its receptors in human tumors. Mol Med. 8:771–780. 2002.PubMed/NCBI

21. 

Van Dijk MA, van Schaik FM, Bootsma HJ, Holthuizen P and Sussenbach JS: Initial characterization of the four promoters of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 81:81–94. 1991.

22. 

Kinouchi Y, Hiwatashi N, Higashioka S, Nagashima F, Chida M and Toyota T: Relaxation of imprinting of the insulin-like growth factor II gene in colorectal cancer. Cancer Lett. 107:105–108. 1996. View Article : Google Scholar : PubMed/NCBI

23. 

Sussenbach JS, Steenbergh PH, Jansen E, et al: Structural and regulatory aspects of the human genes encoding IGF-I and -II. Adv Exp Med Biol. 293:1–14. 1991. View Article : Google Scholar : PubMed/NCBI

24. 

Issa JP, Vertino PM, Boehm CD, Newsham IF and Baylin SB: Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci USA. 93:11757–11762. 1996. View Article : Google Scholar : PubMed/NCBI

25. 

DeChiara TM, Robertson EJ and Efstratiadis A: Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 64:849–859. 1991. View Article : Google Scholar : PubMed/NCBI

26. 

Giannoukakis N, Deal C, Paquette J, Goodyer CG and Polychronakos C: Parental genomic imprinting of the human IGF2 gene. Nat Genet. 4:98–101. 1993. View Article : Google Scholar : PubMed/NCBI

27. 

Henry I, Bonaiti-Pellie C, Chehensse V, et al: Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature. 351:665–667. 1991. View Article : Google Scholar : PubMed/NCBI

28. 

Nicholls RD, Knoll JH, Butler MG, Karam S and Lalande M: Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 342:281–285. 1989. View Article : Google Scholar : PubMed/NCBI

29. 

Cerrato F, Sparago A, Verde G, et al: Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms’ tumour. Hum Mol Genet. 17:1427–1435. 2008.PubMed/NCBI

30. 

Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE and Feinberg AP: Relaxation of imprinted genes in human cancer. Nature. 362:747–749. 1993. View Article : Google Scholar : PubMed/NCBI

31. 

Takano Y, Shiota G and Kawasaki H: Analysis of genomic imprinting of insulin-like growth factor 2 in colorectal cancer. Oncology. 59:210–216. 2000. View Article : Google Scholar : PubMed/NCBI

32. 

Cui H, Horon IL, Ohlsson R, Hamilton SR and Feinberg AP: Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 4:1276–1280. 1998. View Article : Google Scholar : PubMed/NCBI

33. 

Kawakami K, Ruszkiewicz A, Bennett G, et al: DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer. 94:593–598. 2006. View Article : Google Scholar : PubMed/NCBI

34. 

Cui H, Cruz-Correa M, Giardiello FM, et al: Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 299:1753–1755. 2003. View Article : Google Scholar : PubMed/NCBI

35. 

Ohta M, Sugimoto T, Seto M, et al: Genetic alterations in colorectal cancers with demethylation of insulin-like growth factor II. Hum Pathol. 39:1301–1308. 2008. View Article : Google Scholar : PubMed/NCBI

36. 

Cruz-Correa M, Cui H, Giardiello FM, et al: Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology. 126:964–970. 2004. View Article : Google Scholar : PubMed/NCBI

37. 

Cruz-Correa M, Zhao R, Oviedo M, et al: Temporal stability and age-related prevalence of loss of imprinting of the insulin-like growth factor-2 gene. Epigenetics. 4:114–118. 2009. View Article : Google Scholar : PubMed/NCBI

38. 

Bartolomei MS, Zemel S and Tilghman SM: Parental imprinting of the mouse H19 gene. Nature. 351:153–155. 1991. View Article : Google Scholar : PubMed/NCBI

39. 

Brannan CI, Dees EC, Ingram RS and Tilghman SM: The product of the H19 gene may function as an RNA. Mol Cell Biol. 10:28–36. 1990.PubMed/NCBI

40. 

Kuhn EJ and Geyer PK: Genomic insulators: connecting properties to mechanism. Curr Opin Cell Biol. 15:259–265. 2003. View Article : Google Scholar : PubMed/NCBI

41. 

Moore T, Constancia M, Zubair M, et al: Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci USA. 94:12509–12514. 1997. View Article : Google Scholar

42. 

Taniguchi T, Schofield AE, Scarlett JL, Morison IM, Sullivan MJ and Reeve AE: Altered specificity of IGF2 promoter imprinting during fetal development and onset of Wilms tumour. Oncogene. 11:751–756. 1995.PubMed/NCBI

43. 

Sullivan MJ, Taniguchi T, Jhee A, Kerr N and Reeve AE: Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Oncogene. 18:7527–7534. 1999. View Article : Google Scholar : PubMed/NCBI

44. 

Ulaner GA, Vu TH, Li T, et al: Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet. 12:535–549. 2003. View Article : Google Scholar : PubMed/NCBI

45. 

Byun HM, Wong HL, Birnstein EA, Wolff EM, Liang G and Yang AS: Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res. 67:10753–10758. 2007. View Article : Google Scholar : PubMed/NCBI

46. 

Murphy SK, Huang Z, Wen Y, et al: Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol Cancer Res. 4:283–292. 2006. View Article : Google Scholar : PubMed/NCBI

47. 

Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL and Feinberg AP: Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 62:6442–6446. 2002.PubMed/NCBI

48. 

Monk D, Sanches R, Arnaud P, et al: Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet. 15:1259–1269. 2006. View Article : Google Scholar : PubMed/NCBI

49. 

Murrell A, Ito Y, Verde G, et al: Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer. PLoS One. 3:e18492008. View Article : Google Scholar : PubMed/NCBI

50. 

Ito Y, Koessler T, Ibrahim AE, et al: Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet. 17:2633–2643. 2008. View Article : Google Scholar : PubMed/NCBI

51. 

Pantoja C, de Los Rios L, Matheu A, Antequera F and Serrano M: Inactivation of imprinted genes induced by cellular stress and tumorigenesis. Cancer Res. 65:26–33. 2005.PubMed/NCBI

52. 

De la Chapelle A: Microsatellite instability. N Engl J Med. 349:209–210. 2003.

53. 

Ehrlich M: DNA methylation in cancer: too much, but also too little. Oncogene. 21:5400–5413. 2002. View Article : Google Scholar : PubMed/NCBI

54. 

Alonso A, Moreno S, Valiente A, Artigas M, Perez-Juana A and Ramos Arroyo MA: Genetic mechanisms in the hereditary predisposition to colorectal cancer. An Sist Sanit Navar. 29:59–76. 2006.PubMed/NCBI

55. 

Kikuchi T, Toyota M, Itoh F, et al: Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene. 21:2741–2749. 2002. View Article : Google Scholar : PubMed/NCBI

56. 

Perucho M: Tumors with microsatellite instability: many mutations, targets and paradoxes. Oncogene. 22:2223–2225. 2003. View Article : Google Scholar : PubMed/NCBI

57. 

Kaz A, Kim YH, Dzieciatkowski S, et al: Evidence for the role of aberrant DNA methylation in the pathogenesis of Lynch syndrome adenomas. Int J Cancer. 120:1922–1929. 2007. View Article : Google Scholar : PubMed/NCBI

58. 

Boland CR, Thibodeau SN, Hamilton SR, et al: A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58:5248–5257. 1998.

59. 

Perucho M: Correspondence ref: Boland CR, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58: 5248–5257, 1998. Cancer Res. 59:249–256. 1999.

60. 

Hoang JM, Cottu PH, Thuille B, Salmon RJ, Thomas G and Hamelin R: BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res. 57:300–303. 1997.PubMed/NCBI

61. 

Ribic CM, Sargent DJ, Moore MJ, et al: Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 349:247–257. 2003. View Article : Google Scholar : PubMed/NCBI

62. 

Lothe RA, Peltomaki P, Meling GI, et al: Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res. 53:5849–5852. 1993.PubMed/NCBI

63. 

Nishihara S, Hayashida T, Mitsuya K, et al: Multipoint imprinting analysis in sporadic colorectal cancers with and without micro-satellite instability. Int J Oncol. 17:317–322. 2000.PubMed/NCBI

64. 

Nakagawa H, Chadwick RB, Peltomaki P, Plass C, Nakamura Y and de La Chapelle A: Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA. 98:591–596. 2001. View Article : Google Scholar : PubMed/NCBI

65. 

Sasaki J, Konishi F, Kawamura YJ, Kai T, Takata O and Tsukamoto T: Clinicopathological characteristics of colorectal cancers with loss of imprinting of insulin-like growth factor 2. Int J Cancer. 119:80–83. 2006. View Article : Google Scholar : PubMed/NCBI

66. 

Sherr CJ and Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13:1501–1512. 1999. View Article : Google Scholar : PubMed/NCBI

67. 

Lee MH, Reynisdottir I and Massague J: Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9:639–649. 1995. View Article : Google Scholar : PubMed/NCBI

68. 

Reid LH, Crider-Miller SJ, West A, Lee MH, Massague J and Weissman BE: Genomic organization of the human p57KIP2 gene and its analysis in the G401 Wilms’ tumor assay. Cancer Res. 56:1214–1218. 1996.PubMed/NCBI

69. 

Orlow I, Iavarone A, Crider-Miller SJ, et al: Cyclin-dependent kinase inhibitor p57KIP2 in soft tissue sarcomas and Wilms’ tumors. Cancer Res. 56:1219–1221. 1996.

70. 

Hatada I and Mukai T: Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 11:204–206. 1995. View Article : Google Scholar : PubMed/NCBI

71. 

Hatada I, Inazawa J, Abe T, et al: Genomic imprinting of human p57KIP2 and its reduced expression in Wilms’ tumors. Hum Mol Genet. 5:783–788. 1996.

72. 

Cost GJ, Thompson JS, Reichard BA, Lee JY and Feinberg AP: Lack of imprinting of three human cyclin-dependent kinase inhibitor genes. Cancer Res. 57:926–929. 1997.PubMed/NCBI

73. 

Matsuoka S, Thompson JS, Edwards MC, et al: Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci USA. 93:3026–3030. 1996. View Article : Google Scholar : PubMed/NCBI

74. 

Thompson JS, Reese KJ, DeBaun MR, Perlman EJ and Feinberg AP: Reduced expression of the cyclin-dependent kinase inhibitor gene p57KIP2 in Wilms’ tumor. Cancer Res. 56:5723–5727. 1996.

75. 

Ito Y, Takeda T, Sakon M, Tsujimoto M, Monden M and Matsuura N: Expression of p57/Kip2 protein in hepatocellular carcinoma. Oncology. 61:221–225. 2001. View Article : Google Scholar : PubMed/NCBI

76. 

Shin JY, Kim HS, Lee KS, et al: Mutation and expression of the p27KIP1 and p57KIP2 genes in human gastric cancer. Exp Mol Med. 32:79–83. 2000. View Article : Google Scholar : PubMed/NCBI

77. 

Lai S, Goepfert H, Gillenwater AM, Luna MA and El-Naggar AK: Loss of imprinting and genetic alterations of the cyclin-dependent kinase inhibitor p57KIP2 gene in head and neck squamous cell carcinoma. Clin Cancer Res. 6:3172–3176. 2000.PubMed/NCBI

78. 

Noura S, Yamamoto H, Sekimoto M, et al: Expression of second class of KIP protein p57KIP2 in human colorectal carcinoma. Int J Oncol. 19:39–47. 2001.PubMed/NCBI

79. 

Li JQ, Wu F, Usuki H, et al: Loss of p57KIP2 is associated with colorectal carcinogenesis. Int J Oncol. 23:1537–1543. 2003.PubMed/NCBI

80. 

Ito Y, Yoshida H, Nakano K, et al: Expression of p57/Kip2 protein in normal and neoplastic thyroid tissues. Int J Mol Med. 9:373–376. 2002.PubMed/NCBI

81. 

Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K and Tokuda M: Expression of p57kip2 and its clinical relevance in epithelial ovarian tumors. Anticancer Res. 22:3191–3196. 2002.PubMed/NCBI

82. 

Shin JY, Kim HS, Park J, Park JB and Lee JY: Mechanism for inactivation of the KIP family cyclin-dependent kinase inhibitor genes in gastric cancer cells. Cancer Res. 60:262–265. 2000.PubMed/NCBI

83. 

Gazzoli I, Loda M, Garber J, Syngal S and Kolodner RD: A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting micro-satellite instability-high tumor. Cancer Res. 62:3925–3928. 2002.

84. 

Suter CM, Martin DI and Ward RL: Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 36:497–501. 2004. View Article : Google Scholar : PubMed/NCBI

85. 

Hitchins M, Williams R, Cheong K, et al: MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology. 129:1392–1399. 2005. View Article : Google Scholar : PubMed/NCBI

86. 

Hitchins MP, Wong JJ, Suthers G, et al: Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 356:697–705. 2007. View Article : Google Scholar : PubMed/NCBI

87. 

Kolonel LN: Cancer patterns of four ethnic groups in Hawaii. J Natl Cancer Inst. 65:1127–1139. 1980.PubMed/NCBI

88. 

Kmet J: The role of migrant population in studies of selected cancer sites: a review. J Chronic Dis. 23:305–324. 1970. View Article : Google Scholar : PubMed/NCBI

89. 

Slattery ML, Potter JD, Samowitz W, Schaffer D and Leppert M: Methylenetetrahydrofolate reductase, diet and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 8:513–518. 1999.PubMed/NCBI

90. 

Hubner RA and Houlston RS: Folate and colorectal cancer prevention. Br J Cancer. 100:233–239. 2009. View Article : Google Scholar : PubMed/NCBI

91. 

Feinberg AP, Gehrke CW, Kuo KC and Ehrlich M: Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48:1159–1161. 1988.PubMed/NCBI

92. 

Giovannucci E: Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr. 132:S2350–S2355. 2002.

93. 

Chen J, Giovannucci E, Kelsey K, et al: A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 56:4862–4864. 1996.PubMed/NCBI

94. 

Frosst P, Blom HJ, Milos R, et al: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 10:111–113. 1995. View Article : Google Scholar : PubMed/NCBI

95. 

Ma J, Stampfer MJ, Giovannucci E, et al: Methylenetetrahydrofolate reductase polymorphism, dietary interactions and risk of colorectal cancer. Cancer Res. 57:1098–1102. 1997.PubMed/NCBI

96. 

Chen J, Giovannucci E, Hankinson SE, et al: A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis. 19:2129–2132. 1998. View Article : Google Scholar : PubMed/NCBI

97. 

Pande M, Chen J, Amos CI, Lynch PM, Broaddus R and Frazier ML: Influence of methylenetetrahydrofolate reductase gene polymorphisms C677T and A1298C on age-associated risk for colorectal cancer in a caucasian lynch syndrome population. Cancer Epidemiol Biomarkers Prev. 16:1753–1759. 2007. View Article : Google Scholar : PubMed/NCBI

98. 

Osian G, Procopciuc L and Vlad L: MTHFR polymorphisms as prognostic factors in sporadic colorectal cancer. J Gastrointestin Liver Dis. 16:251–256. 2007.PubMed/NCBI

99. 

Shannon B, Gnanasampanthan S, Beilby J and Iacopetta B: A polymorphism in the methylenetetrahydrofolate reductase gene predisposes to colorectal cancers with microsatellite instability. Gut. 50:520–524. 2002. View Article : Google Scholar : PubMed/NCBI

100. 

Hubner RA, Lubbe S, Chandler I and Houlston RS: MTHFR C677T has differential influence on risk of MSI and MSS colorectal cancer. Hum Mol Genet. 16:1072–1077. 2007. View Article : Google Scholar : PubMed/NCBI

101. 

Oyama K, Kawakami K, Maeda K, Ishiguro K and Watanabe G: The association between methylenetetrahydrofolate reductase polymorphism and promoter methylation in proximal colon cancer. Anticancer Res. 24:649–654. 2004.

102. 

Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Watanabe G and Iacopetta B: The folate pool in colorectal cancers is associated with DNA hypermethylation and with a polymorphism in methylenetetrahydrofolate reductase. Clin Cancer Res. 9:5860–5865. 2003.PubMed/NCBI

103. 

Clarizia AD, Bastos-Rodrigues L, Pena HB, et al: Relationship of the methylenetetrahydrofolate reductase C677T polymorphism with microsatellite instability and promoter hypermethylation in sporadic colorectal cancer. Genet Mol Res. 5:315–322. 2006.PubMed/NCBI

104. 

Eaton AM, Sandler R, Carethers JM, Millikan RC, Galanko J and Keku TO: 5,10-Methylenetetrahydrofolate reductase 677 and 1298 polymorphisms, folate intake, and microsatellite instability in colon cancer. Cancer Epidemiol Biomarkers Prev. 14:2023–2029. 2005. View Article : Google Scholar : PubMed/NCBI

105. 

Li YN, Gulati S, Baker PJ, Brody LC, Banerjee R and Kruger WD: Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet. 5:1851–1858. 1996. View Article : Google Scholar : PubMed/NCBI

106. 

Chen LH, Liu ML, Hwang HY, Chen LS, Korenberg J and Shane B: Human methionine synthase. cDNA cloning, gene localization and expression. J Biol Chem. 272:3628–3634. 1997. View Article : Google Scholar : PubMed/NCBI

107. 

Ma J, Stampfer MJ, Christensen B, et al: A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 8:825–829. 1999.PubMed/NCBI

108. 

Paz MF, Avila S, Fraga MF, et al: Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 62:4519–4524. 2002.PubMed/NCBI

109. 

Matsuo K, Hamajima N, Hirai T, et al: Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 3:353–359. 2002.PubMed/NCBI

110. 

Leclerc D, Wilson A, Dumas R, et al: Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA. 95:3059–3064. 1998. View Article : Google Scholar : PubMed/NCBI

111. 

Olteanu H, Munson T and Banerjee R: Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 41:13378–13385. 2002. View Article : Google Scholar

112. 

Ulrich CM, Curtin K, Potter JD, Bigler J, Caan B and Slattery ML: Polymorphisms in the reduced folate carrier, thymidylate synthase, or methionine synthase and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 14:2509–2516. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pellegrini ML, Argibay P and Gomez DE: Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) . Exp Ther Med 1: 241-250, 2010.
APA
Pellegrini, M.L., Argibay, P., & Gomez, D.E. (2010). Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) . Experimental and Therapeutic Medicine, 1, 241-250. https://doi.org/10.3892/etm_00000038
MLA
Pellegrini, M. L., Argibay, P., Gomez, D. E."Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) ". Experimental and Therapeutic Medicine 1.2 (2010): 241-250.
Chicago
Pellegrini, M. L., Argibay, P., Gomez, D. E."Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) ". Experimental and Therapeutic Medicine 1, no. 2 (2010): 241-250. https://doi.org/10.3892/etm_00000038
Copy and paste a formatted citation
x
Spandidos Publications style
Pellegrini ML, Argibay P and Gomez DE: Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) . Exp Ther Med 1: 241-250, 2010.
APA
Pellegrini, M.L., Argibay, P., & Gomez, D.E. (2010). Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) . Experimental and Therapeutic Medicine, 1, 241-250. https://doi.org/10.3892/etm_00000038
MLA
Pellegrini, M. L., Argibay, P., Gomez, D. E."Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) ". Experimental and Therapeutic Medicine 1.2 (2010): 241-250.
Chicago
Pellegrini, M. L., Argibay, P., Gomez, D. E."Dietary factors, genetic and epigenetic influences in colorectal cancer (Review) ". Experimental and Therapeutic Medicine 1, no. 2 (2010): 241-250. https://doi.org/10.3892/etm_00000038
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team