Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Epigenetics
Join Editorial Board Propose a Special Issue
Print ISSN: 2752-5406 Online ISSN: 2752-5414
Journal Cover
January-December 2025 Volume 5 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-December 2025 Volume 5 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Role of lncRNAs related to NRs in the regulation of gene expression

  • Authors:
    • Katerina Pierouli
    • Louis Papageorgiou
    • George P. Chrousos
    • Elias Eliopoulos
    • Dimitrios Vlachakis
  • View Affiliations / Copyright

    Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
    Copyright: © Pierouli et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 3
    |
    Published online on: April 22, 2025
       https://doi.org/10.3892/ije.2025.26
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Long non‑coding RNAs (lncRNAs) play a key role in regulating gene expression, influencing various cellular pathways by interacting with transcription factors, other RNA molecules such as microRNAs (miRNAs) and DNA. The present focused on the role of lncRNAs related to nuclear receptors (NRs), which are a family of transcription factors activated by ligands. NRs are involved in vital biological processes, such as metabolism, immune response, reproduction and development. Herein, six novel sequence motifs were discovered within lncRNAs that respond to multiple NRs, suggesting they are not specific to a single receptor. Of note, one of these motifs, was complementary to miRNA hsa‑miR‑1908‑3p, suggesting that lncRNAs containing this motif may function as miRNA sponges, regulating the expression of ~487 target mRNAs. The motifs were also found in key regulatory regions of the human genome, particularly on chromosome 19, including in adeno‑associated virus integration site 1, a region with a high regulatory role in gene expression. Additionally, an evolutionary analysis was conducted, revealing that these motifs are highly conserved across species, including Mus musculus, Euglena gracilis and Saccharomyces cerevisiae, indicating their ancient origins. Based on these results, it is suggested that these motifs may represent ancestral binding sites for NR precursors, and may function as backup mechanisms in modern organisms, ensuring the functional versatility and evolutionary conservation of NR‑mediated gene regulation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the mammalian genome. Science. 309:1559–1563. 2005.PubMed/NCBI View Article : Google Scholar

2 

Mattick JS: RNA regulation: A new genetics? Nat Rev Genet. 5:316–323. 2004.PubMed/NCBI View Article : Google Scholar

3 

Frith MC, Pheasant M and Mattick JS: The amazing complexity of the human transcriptome. Eur J Hum Genet. 13:894–897. 2005.PubMed/NCBI View Article : Google Scholar

4 

Kaikkonen MU, Lam MTY and Glass CK: Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 90:430–440. 2011.PubMed/NCBI View Article : Google Scholar

5 

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, et al: GENCODE: The reference human genome annotation for The ENCODE project. Genome Res. 22:1760–1774. 2012.PubMed/NCBI View Article : Google Scholar

6 

Salviano-Silva A, Lobo-Alves SC, Almeida RC, Malheiros D and Petzl-Erler ML: Besides pathology: Long non-coding RNA in cell and tissue homeostasis. Noncoding RNA. 4(3)2018.PubMed/NCBI View Article : Google Scholar

7 

Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013.PubMed/NCBI View Article : Google Scholar

8 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011.PubMed/NCBI View Article : Google Scholar

9 

Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016.PubMed/NCBI View Article : Google Scholar

10 

Rinn JL and Chang HY: Genome regulation by long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012.PubMed/NCBI View Article : Google Scholar

11 

Francis GA, Fayard E, Picard F and Auwerx J: Nuclear receptors and the control of metabolism. Annu Rev Physiol. 65:261–311. 2003.PubMed/NCBI View Article : Google Scholar

12 

Olivares AM, Moreno-Ramos OA and Haider NB: Role of nuclear receptors in central nervous system development and associated diseases. J Exp Neurosci. 9 (Suppl 2):S93–S121. 2016.PubMed/NCBI View Article : Google Scholar

13 

Foulds CE, Panigrahi AK, Coarfa C, Lanz RB and O'Malley BW: Long noncoding RNAs as targets and regulators of nuclear receptors. Curr Top Microbiol Immunol. 394:143–176. 2016.PubMed/NCBI View Article : Google Scholar

14 

Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J and Mestdagh P: LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 41 (Database Issue):D246–D251. 2013.PubMed/NCBI View Article : Google Scholar

15 

Bailey TL, Williams N, Misleh C and Li WW: MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34 (Web Server Issue):W369–W373. 2006.PubMed/NCBI View Article : Google Scholar

16 

Liu W and Wang X: Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20(18)2019.PubMed/NCBI View Article : Google Scholar

17 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4(e05005)2015.PubMed/NCBI View Article : Google Scholar

18 

Garcia DM, Baek D, Shin C, Bell GW, Grimson A and Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 18:1139–1146. 2011.PubMed/NCBI View Article : Google Scholar

19 

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP: MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 27:91–105. 2007.PubMed/NCBI View Article : Google Scholar

20 

Goecks J, Nekrutenko A and Taylor J: Galaxy Team. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(R86)2010.PubMed/NCBI View Article : Google Scholar

21 

Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, et al: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44 (W1):W3–W10. 2016.PubMed/NCBI View Article : Google Scholar

22 

Durbin R, Eddy SR, Krogh A and Mitchison G: Biological sequence analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

23 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014.PubMed/NCBI View Article : Google Scholar

24 

Broughton JP, Lovci MT, Huang JL, Yeo GW and Pasquinelli AE: Pairing beyond the seed supports microRNA targeting specificity. Mol Cell. 64:320–333. 2016.PubMed/NCBI View Article : Google Scholar

25 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2(e363)2004.PubMed/NCBI View Article : Google Scholar

26 

Betel D, Koppal A, Agius P, Sander C and Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11(R90)2010.PubMed/NCBI View Article : Google Scholar

27 

Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M and Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 37:495–500. 2005.PubMed/NCBI View Article : Google Scholar

28 

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP and Burge CB: Prediction of mammalian microRNA targets. Cell. 115:787–798. 2003.PubMed/NCBI View Article : Google Scholar

29 

Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005.PubMed/NCBI View Article : Google Scholar

30 

Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B and Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 126:1203–1217. 2006.PubMed/NCBI View Article : Google Scholar

31 

Kertesz M, Iovino N, Unnerstall U, Gaul U and Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 39:1278–1284. 2007.PubMed/NCBI View Article : Google Scholar

32 

Rehmsmeier M, Steffen P, Hochsmann M and Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 10:1507–1517. 2004.PubMed/NCBI View Article : Google Scholar

33 

Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, et al: Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics. 10(295)2009.PubMed/NCBI View Article : Google Scholar

34 

Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, et al: DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 46 (D1):D239–D245. 2018.PubMed/NCBI View Article : Google Scholar

35 

McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM and Bartel DP: The biochemical basis of microRNA targeting efficacy. Science. 366(eaav1741)2019.PubMed/NCBI View Article : Google Scholar

36 

Yang L, Shi CM, Chen L, Pang LX, Xu GF, Gu N, Zhu LJ, Guo XR, Ni YH and Ji CB: The biological effects of hsa-miR-1908 in human adipocytes. Mol Biol Rep. 42:927–935. 2015.PubMed/NCBI View Article : Google Scholar

37 

Kuang Q, Li J, You L, Shi C, Ji C, Guo X, Xu M and Ni Y: Identification and characterization of NF-kappaB binding sites in human miR-1908 promoter. Biomed Pharmacother. 74:158–163. 2015.PubMed/NCBI View Article : Google Scholar

38 

Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, et al: MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells. 26:2496–2505. 2008.PubMed/NCBI View Article : Google Scholar

39 

Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K and Tavazoie SF: Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell. 151:1068–1082. 2012.PubMed/NCBI View Article : Google Scholar

40 

Xia X, Li Y, Wang W, Tang F, Tan J, Sun L, Li Q, Sun L, Tang B and He S: MicroRNA-1908 functions as a glioblastoma oncogene by suppressing PTEN tumor suppressor pathway. Mol Cancer. 14(154)2015.PubMed/NCBI View Article : Google Scholar

41 

Chai Z, Fan H, Li Y, Song L, Jin X, Yu J, Li Y, Ma C and Zhou R: miR-1908 as a novel prognosis marker of glioma via promoting malignant phenotype and modulating SPRY4/RAF1 axis. Oncol Rep. 38:2717–2726. 2017.PubMed/NCBI View Article : Google Scholar

42 

Jiang X, Yang L, Pang L, Chen L, Guo X, Ji C, Shi C and Ni Y: Expression of obesity-related miR-1908 in human adipocytes is regulated by adipokines, free fatty acids and hormones. Mol Med Rep. 10:1164–1169. 2014.PubMed/NCBI View Article : Google Scholar

43 

Grimwood J, Gordon LA, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M, et al: The DNA sequence and biology of human chromosome 19. Nature. 428:529–535. 2004.PubMed/NCBI View Article : Google Scholar

44 

Kumar S, Stecher G, Suleski M and Hedges SB: TimeTree: A resource for timelines, timetrees, and divergence times. Mol Biol Evol. 34:1812–1819. 2017.PubMed/NCBI View Article : Google Scholar

45 

Kim SH, Elango N, Warden C, Vigoda E and Yi SV: Heterogeneous genomic molecular clocks in primates. PLoS Genet. 2(e163)2006.PubMed/NCBI View Article : Google Scholar

46 

Kotin RM, Menninger JC, Ward DC and Berns KI: Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics. 10:831–834. 1991.PubMed/NCBI View Article : Google Scholar

47 

Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N and Hunter LA: Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10:3941–3950. 1991.PubMed/NCBI View Article : Google Scholar

48 

Kotin RM, Linden RM and Berns KI: Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 11:5071–5078. 1992.PubMed/NCBI View Article : Google Scholar

49 

Aslanidis C, Jansen G, Amemiya C, Shutler G, Mahadevan M, Tsilfidis C, Chen C, Alleman J, Wormskamp NG, Vooijs M, et al: Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature. 355:548–551. 1992.PubMed/NCBI View Article : Google Scholar

50 

Feichtinger W and Schmid M: Increased frequencies of sister chromatid exchanges at common fragile sites (1)(q42) and (19)(q13). Hum Genet. 83:145–147. 1989.PubMed/NCBI View Article : Google Scholar

51 

Sievers F and Higgins DG: Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27:135–145. 2018.PubMed/NCBI View Article : Google Scholar

52 

Waterhouse AM, Procter JB, Martin DMA, Clamp M and Barton GJ: Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 25:1189–1191. 2009.PubMed/NCBI View Article : Google Scholar

53 

Deaton AM and Bird A: CpG islands and the regulation of transcription. Genes Dev. 25:1010–1022. 2011.PubMed/NCBI View Article : Google Scholar

54 

Larsen F, Gundersen G, Lopez R and Prydz H: CpG islands as gene markers in the human genome. Genomics. 13:1095–1107. 1992.PubMed/NCBI View Article : Google Scholar

55 

Yamashita R, Suzuki Y, Sugano S and Nakai K: Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene. 350:129–136. 2005.PubMed/NCBI View Article : Google Scholar

56 

Lamartina S, Sporeno E, Fattori E and Toniatti C: Characteristics of the adeno-associated virus preintegration site in human chromosome 19: Open chromatin conformation and transcription-competent environment. J Virol. 74:7671–7677. 2000.PubMed/NCBI View Article : Google Scholar

57 

Bhagwan JR, Collins E, Mosqueira D, Bakar M, Johnson BB, Thompson A, Smith JGW and Denning C: Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour. F1000Res. 8(1911)2019.PubMed/NCBI View Article : Google Scholar

58 

Ogata T, Kozuka T and Kanda T: Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA. J Virol. 77:9000–9007. 2003.PubMed/NCBI View Article : Google Scholar

59 

Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S, Bjorkegren E, Bayford J, Brown L, Davies EG, et al: Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med. 3(97ra80)2011.PubMed/NCBI View Article : Google Scholar

60 

Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, et al: Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 326:818–823. 2009.PubMed/NCBI View Article : Google Scholar

61 

Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, Bleesing J, Blondeau J, de Boer H, Buckland KF, et al: A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med. 371:1407–1417. 2014.PubMed/NCBI View Article : Google Scholar

62 

Martin DIK and Whitelaw E: The vagaries of variegating transgenes. Bioessays. 18:919–923. 1996.PubMed/NCBI View Article : Google Scholar

63 

Bestor TH: Gene silencing as a threat to the success of gene therapy. J Clin Invest. 105:409–411. 2000.PubMed/NCBI View Article : Google Scholar

64 

Papapetrou EP and Schambach A: Gene insertion into genomic safe harbors for human gene therapy. Mol Ther. 24:678–684. 2016.PubMed/NCBI View Article : Google Scholar

65 

Wu C and Dunbar CE: Stem cell gene therapy: The risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med. 5:356–371. 2011.PubMed/NCBI View Article : Google Scholar

66 

Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, Neri M, Magnani Z, Cantore A, Lo Riso P, et al: Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods. 8:861–869. 2011.PubMed/NCBI View Article : Google Scholar

67 

Klatt D, Cheng E, Hoffmann D, Santilli G, Thrasher AJ, Brendel C and Schambach A: Differential transgene silencing of myeloid-specific promoters in the AAVS1 safe harbor locus of induced pluripotent stem cell-derived myeloid cells. Hum Gene Ther. 31:199–210. 2019.PubMed/NCBI View Article : Google Scholar

68 

Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, et al: Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol. 29:73–78. 2011.PubMed/NCBI View Article : Google Scholar

69 

Sadelain M, Papapetrou EP and Bushman FD: Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. 12:51–58. 2011.PubMed/NCBI View Article : Google Scholar

70 

Smith SD, Morgan R, Gemmell R, Amylon MD, Link MP, Linker C, Hecht BK, Warnke R, Glader BE and Hecht F: Clinical and biologic characterization of T-cell neoplasias with rearrangements of chromosome 7 band q34. Blood. 71:395–402. 1988.PubMed/NCBI

71 

Maes OC, Chertkow HM, Wang E and Schipper HM: MicroRNA: Implications for alzheimer disease and other human CNS disorders. Curr Genomics. 10:154–168. 2009.PubMed/NCBI View Article : Google Scholar

72 

Garofalo M, Condorelli G and Croce CM: MicroRNAs in diseases and drug response. Curr Opin Pharmacol. 8:661–667. 2008.PubMed/NCBI View Article : Google Scholar

73 

Juźwik CA, S Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS and Fournier AE: microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol. 182(101664)2019.PubMed/NCBI View Article : Google Scholar

74 

Venneri M and Passantino A: MiRNA: What clinicians need to know. Eur J Intern Med. 113:6–9. 2023.PubMed/NCBI View Article : Google Scholar

75 

Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007.PubMed/NCBI View Article : Google Scholar

76 

Small EM and Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–342. 2011.PubMed/NCBI View Article : Google Scholar

77 

Romaine SPR, Tomaszewski M, Condorelli G and Samani NJ: MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. 101:921–928. 2015.PubMed/NCBI View Article : Google Scholar

78 

Bailey TL and Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 2:28–36. 1994.PubMed/NCBI

79 

Tirosh I and Barkai N: Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18:1084–1091. 2008.PubMed/NCBI View Article : Google Scholar

80 

Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21. 2002.PubMed/NCBI View Article : Google Scholar

81 

Li E, Bestor TH and Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69:915–926. 1992.PubMed/NCBI View Article : Google Scholar

82 

Ulitsky I, Shkumatava A, Jan CH, Sive H and Bartel DP: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 147:1537–1550. 2011.PubMed/NCBI View Article : Google Scholar

83 

Liu L, Wang Z, Jia J, Shi Y, Lian T and Han X: Linc01230, transcriptionally regulated by PPARγ, is identified as a novel modifier in endothelial function. Biochem Biophys Res Commun. 507:369–376. 2018.PubMed/NCBI View Article : Google Scholar

84 

Cunningham TJ, Kumar S, Yamaguchi TP and Duester G: Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn. 244:797–807. 2015.PubMed/NCBI View Article : Google Scholar

85 

Okubo Y, Sugawara T, Abe-Koduka N, Kanno J, Kimura A and Saga Y: Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat Commun. 3(1141)2012.PubMed/NCBI View Article : Google Scholar

86 

Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK and Giles FJ: Wnt/beta-catenin pathway: Modulating anticancer immune response. J Hematol Oncol. 10(101)2017.PubMed/NCBI View Article : Google Scholar

87 

Amsellem V, Dryden NH, Martinelli R, Gavins F, Almagro LO, Birdsey GM, Haskard DO, Mason JC, Turowski P and Randi AM: ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling. Cell Commun Signal. 12(12)2014.PubMed/NCBI View Article : Google Scholar

88 

Overton HA, Fyfe MCT and Reynet C: GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol. 153 (Suppl 1):S76–S81. 2008.PubMed/NCBI View Article : Google Scholar

89 

Shang R, Wang M, Dai B, Du J, Wang J, Liu Z, Qu S, Yang X, Liu J, Xia C, et al: Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol. 14:1381–1396. 2020.PubMed/NCBI View Article : Google Scholar

90 

Kim JJ, Lee SB, Jang J, Yi SY, Kim SH, Han SA, Lee JM, Tong SY, Vincelette ND, Gao B, et al: WSB1 promotes tumor metastasis by inducing pVHL degradation. Genes Dev. 29:2244–2257. 2015.PubMed/NCBI View Article : Google Scholar

91 

Shao X, Zhao T, Xi L, Zhang Y, He J, Zeng J and Deng L: LINC00565 promotes the progression of colorectal cancer by upregulating EZH2. Oncol Lett. 21(53)2021.PubMed/NCBI View Article : Google Scholar

92 

Chen C, Feng Y, Wang J, Liang Y and Zou W: Long non-coding RNA SNHG15 in various cancers: A meta and bioinformatic analysis. BMC Cancer. 20(1156)2020.PubMed/NCBI View Article : Google Scholar

93 

Qian C, Li H, Chang D, Wei B and Wang Y: Identification of functional lncRNAs in atrial fibrillation by integrative analysis of the lncRNA-mRNA network based on competing endogenous RNAs hypothesis. J Cell Physiol. 234:11620–11630. 2019.PubMed/NCBI View Article : Google Scholar

94 

Liu J, Xu R, Mai SJ, Ma YS, Zhang MY, Cao PS, Weng NQ, Wang RQ, Cao D, Wei W, et al: LncRNA CSMD1-1 promotes the progression of hepatocellular carcinoma by activating MYC signaling. Theranostics. 10:7527–7544. 2020.PubMed/NCBI View Article : Google Scholar

95 

Talwar D and Hammer MF: SCN8A epilepsy, developmental encephalopathy, and related disorders. Pediatr Neurol. 122:76–83. 2021.PubMed/NCBI View Article : Google Scholar

96 

Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY, Guo N, Huang HP, Xiong W, Zheng H, et al: DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol. 181:791–801. 2008.PubMed/NCBI View Article : Google Scholar

97 

Chen CL, Ke Q, Luo M, Gao ZY, Li ZJ, Luo ZG and Liu DB: Loss of LINC01939 expression predicts progression and poor survival in gastric cancer. Pathol Res Pract. 214:1539–1543. 2018.PubMed/NCBI View Article : Google Scholar

98 

Dosil M and Bustelo XR: Functional characterization of Pwp2, a WD family protein essential for the assembly of the 90 S pre-ribosomal particle. J Biol Chem. 279:37385–37397. 2004.PubMed/NCBI View Article : Google Scholar

99 

Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, et al: Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell. 148:84–98. 2012.PubMed/NCBI View Article : Google Scholar

100 

Li Z, Li X, Jian W, Xue Q and Liu Z: Roles of long non-coding RNAs in the development of chronic pain. Front Mol Neurosci. 14(760964)2021.PubMed/NCBI View Article : Google Scholar

101 

Luo L, Martin SC, Parkington J, Cadena SM, Zhu J, Ibebunjo C, Summermatter S, Londraville N, Patora-Komisarska K, Widler L, et al: HDAC4 controls muscle homeostasis through deacetylation of myosin heavy chain, PGC-1α, and Hsc70. Cell Rep. 29:749–763.e12. 2019.PubMed/NCBI View Article : Google Scholar

102 

Mortison JD, Schenone M, Myers JA, Zhang Z, Chen L, Ciarlo C, Comer E, Natchiar SK, Carr SA, Klaholz BP and Myers AG: Tetracyclines modify translation by targeting key human rRNA substructures. Cell Chem Biol. 25:1506–1518.e13. 2018.PubMed/NCBI View Article : Google Scholar

103 

Nelson JK, Koenis DS, Scheij S, Cook EC, Moeton M, Santos A, Lobaccaro JA, Baron S and Zelcer N: EEPD1 is a novel LXR target gene in macrophages which regulates ABCA1 abundance and cholesterol efflux. Arterioscler Thromb Vasc Biol. 37:423–432. 2017.PubMed/NCBI View Article : Google Scholar

104 

Zhang T, Xia W, Song X, Mao Q, Huang X, Chen B, Liang Y, Wang H, Chen Y, Yu X, et al: Super-enhancer hijacking LINC01977 promotes malignancy of early-stage lung adenocarcinoma addicted to the canonical TGF-β/SMAD3 pathway. J Hematol Oncol. 15(114)2022.PubMed/NCBI View Article : Google Scholar

105 

Zeng J, Sun W, Chang J, Yi D, Zhu L, Zhang Y, Pan X, Zhou Y, Lai M, Bian G, et al: HOXC4 up-regulates NF-κB signaling and promotes the cell proliferation to drive development of human hematopoiesis, especially CD43+ cells. Blood Sci. 2:117–128. 2020.PubMed/NCBI View Article : Google Scholar

106 

Gao Y, Wang F, Zhang L, Kang M, Zhu L, Xu L, Liang W and Zhang W: LINC00311 promotes cancer stem-like properties by targeting miR-330-5p/TLR4 pathway in human papillary thyroid cancer. Cancer Med. 9:1515–1528. 2020.PubMed/NCBI View Article : Google Scholar

107 

Flosbach M, Oberle SG, Scherer S, Zecha J, von Hoesslin M, Wiede F, Chennupati V, Cullen JG, List M, Pauling JK, et al: PTPN2 deficiency enhances programmed T cell expansion and survival capacity of activated T cells. Cell Rep. 32(107957)2020.PubMed/NCBI View Article : Google Scholar

108 

Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC and Rana TM: The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci USA. 111:1002–1007. 2014.PubMed/NCBI View Article : Google Scholar

109 

Xu LB, Bo BX, Xiong J, Ren YJ, Han D, Wei SH and Ren XP: Long non-coding RNA LINC00887 promotes progression of lung carcinoma by targeting the microRNA-206/NRP1 axis. Oncol Lett. 21(87)2021.PubMed/NCBI View Article : Google Scholar

110 

Byun S, Affolter KE, Snow AK, Curtin K, Cannon AR, Cannon-Albright LA, Thota R and Neklason DW: Differential methylation of G-protein coupled receptor signaling genes in gastrointestinal neuroendocrine tumors. Sci Rep. 11(12303)2021.PubMed/NCBI View Article : Google Scholar

111 

Fang Z, Zhong M, Zhou L, Le Y, Wang H and Fang Z: Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered. 13:6807–6818. 2022.PubMed/NCBI View Article : Google Scholar

112 

Huang R, Liu J, Chen X, Zhi Y, Ding S, Ming J, Li Y, Wang Y and Na J: A long non-coding RNA LncSync regulates mouse cardiomyocyte homeostasis and cardiac hypertrophy through coordination of miRNA actions. Protein Cell. 14:153–157. 2023.PubMed/NCBI View Article : Google Scholar

113 

Li N and Zhan X and Zhan X: The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol Oncol. 150:343–354. 2018.PubMed/NCBI View Article : Google Scholar

114 

Zhen H, Du P, Yi Q, Tang X and Wang T: LINC00958 promotes bladder cancer carcinogenesis by targeting miR-490-3p and AURKA. BMC Cancer. 21(1145)2021.PubMed/NCBI View Article : Google Scholar

115 

Majumdar R, Bandyopadhyay A, Deng H and Maitra U: Phosphorylation of mammalian translation initiation factor 5 (eIF5) in vitro and in vivo. Nucleic Acids Res. 30:1154–1162. 2002.PubMed/NCBI View Article : Google Scholar

116 

Xu L, Wu Q, Yan H, Shu C, Fan W, Tong X and Li Q: Long noncoding RNA KB-1460A1.5 inhibits glioma tumorigenesis via miR-130a-3p/TSC1/mTOR/YY1 feedback loop. Cancer Lett. 525:33–45. 2022.PubMed/NCBI View Article : Google Scholar

117 

Wang F, Peters R, Jia J, Mudd M, Salemi M, Allers L, Javed R, Duque TLA, Paddar MA, Trosdal ES, et al: ATG5 provides host protection acting as a switch in the atg8ylation cascade between autophagy and secretion. Dev Cell. 58:866–884.e8. 2023.PubMed/NCBI View Article : Google Scholar

118 

Cruickshank BM, Wasson MD, Brown JM, Fernando W, Venkatesh J, Walker OL, Morales-Quintanilla F, Dahn ML, Vidovic D, Dean CA, et al: LncRNA PART1 promotes proliferation and migration, is associated with cancer stem cells, and alters the miRNA landscape in triple-negative breast cancer. Cancers (Basel). 13(2644)2021.PubMed/NCBI View Article : Google Scholar

119 

Vogler M: BCL2A1: The underdog in the BCL2 family. Cell Death Differ. 19:67–74. 2012.PubMed/NCBI View Article : Google Scholar

120 

Barriocanal M, Carnero E, Segura V and Fortes P: Long non-coding RNA BST2/BISPR is induced by IFN and regulates the expression of the antiviral factor tetherin. Front Immunol. 5(655)2015.PubMed/NCBI View Article : Google Scholar

121 

Mohamed Haroon M, Lakshmanan V, Sarkar SR, Lei K, Vemula PK and Palakodeti D: Mitochondrial state determines functionally divergent stem cell population in planaria. Stem Cell Reports. 16:1302–1316. 2021.PubMed/NCBI View Article : Google Scholar

122 

Zhu W, Zhou BL, Rong LJ, Ye L, Xu HJ, Zhou Y, Yan XJ, Liu WD, Zhu B, Wang L, et al: Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis. J Zhejiang Univ Sci B. 21:122–136. 2020.PubMed/NCBI View Article : Google Scholar

123 

Lee MY, Sumpter R Jr, Zou Z, Sirasanagandla S, Wei Y, Mishra P, Rosewich H, Crane DI and Levine B: Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 18:48–60. 2017.PubMed/NCBI View Article : Google Scholar

124 

L'Abbate A, Tolomeo D, De Astis F, Lonoce A, Lo Cunsolo C, Mühlematter D, Schoumans J, Vandenberghe P, Van Hoof A, Palumbo O, et al: t(15;21) translocations leading to the concurrent downregulation of RUNX1 and its transcription factor partner genes SIN3A and TCF12 in myeloid disorders. Mol Cancer. 14(211)2015.PubMed/NCBI View Article : Google Scholar

125 

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al: The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33. 2016.PubMed/NCBI View Article : Google Scholar

126 

Laudet V: Evolution of the nuclear receptor superfamily: Early diversification from an ancestral orphan receptor. J Mol Endocrinol. 19:207–226. 1997.PubMed/NCBI View Article : Google Scholar

127 

Letunic I and Bork P: Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47 (W1):W256–W259. 2019.PubMed/NCBI View Article : Google Scholar

128 

Mouse Genome Sequencing Consortium. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520–562. 2002.PubMed/NCBI View Article : Google Scholar

129 

Castoe TA, de Koning APJ, Hall KT, Card DC, Schield DR, Fujita MK, Ruggiero RP, Degner JF, Daza JM, Gu W, et al: The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci USA. 110:20645–20650. 2013.PubMed/NCBI View Article : Google Scholar

130 

Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al: The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496:498–503. 2013.PubMed/NCBI View Article : Google Scholar

131 

Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al: The genome sequence of Drosophila melanogaster. Science. 287:2185–2195. 2000.PubMed/NCBI View Article : Google Scholar

132 

Hodgkin J, Plasterk RH and Waterston RH: The nematode Caenorhabditis elegans and its genome. Science. 270:410–414. 1995.PubMed/NCBI View Article : Google Scholar

133 

Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al: The complete genome sequence of Escherichia coli K-12. Science. 277:1453–1462. 1997.PubMed/NCBI View Article : Google Scholar

134 

Weng S, Dong Q, Balakrishnan R, Christie K, Costanzo M, Dolinski K, Dwight SS, Engel S, Fisk DG, Hong E, et al: Saccharomyces genome database (SGD) provides biochemical and structural information for budding yeast proteins. Nucleic Acids Res. 31:216–218. 2003.PubMed/NCBI View Article : Google Scholar

135 

Petersohn A, Brigulla M, Haas S, Hoheisel JD, Völker U and Hecker M: Global analysis of the general stress response of Bacillus subtilis. J Bacteriol. 183:5617–5631. 2001.PubMed/NCBI View Article : Google Scholar

136 

Ebenezer TE, Carrington M, Lebert M, Kelly S and Field MC: Euglena gracilis genome and transcriptome: Organelles, nuclear genome assembly strategies and initial features. Adv Exp Med Biol. 979:125–140. 2017.PubMed/NCBI View Article : Google Scholar

137 

Owen GI and Zelent A: Origins and evolutionary diversification of the nuclear receptor superfamily. Cell Mol Life Sci. 57:809–827. 2000.PubMed/NCBI View Article : Google Scholar

138 

Holzer G, Markov GV and Laudet V: Evolution of nuclear receptors and ligand signaling: Toward a soft key-lock model? Curr Top Dev Biol. 125:1–38. 2017.PubMed/NCBI View Article : Google Scholar

139 

Penvose A, Keenan JL, Bray D, Ramlall V and Siggers T: Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun. 10(2514)2019.PubMed/NCBI View Article : Google Scholar

140 

Cotnoir-White D, Laperrière D and Mader S: Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol Cell Endocrinol. 334:76–82. 2011.PubMed/NCBI View Article : Google Scholar

141 

Hanly D, Esteller M and Berdasco M: Altered long non-coding RNA expression in cancer: Potential biomarkers and therapeutic targets? In: Chemical Epigenetics. Mai A (ed). Topics in Medicinal Chemistry. Vol. 33. Springer, Cham, pp401-428, 2019.

142 

Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM and Ma YS: Targeting long non-coding RNA to therapeutically regulate gene expression in cancer. Mol Ther Nucleic Acids. 21:712–724. 2020.PubMed/NCBI View Article : Google Scholar

143 

Zhang L, Peng D, Sood AK, Dang CV and Zhong X: Shedding light on the dark cancer genomes: Long noncoding RNAs as novel biomarkers and potential therapeutic targets for cancer. Mol Cancer Ther. 17:1816–1823. 2018.PubMed/NCBI View Article : Google Scholar

144 

Fatima R, Akhade VS, Pal D and Rao SM: Long noncoding RNAs in development and cancer: Potential biomarkers and therapeutic targets. Mol Cell Ther. 3(5)2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Pierouli K, Papageorgiou L, Chrousos GP, Eliopoulos E and Vlachakis D: Role of lncRNAs related to NRs in the regulation of gene expression. Int J Epigen 5: 3, 2025.
APA
Pierouli, K., Papageorgiou, L., Chrousos, G.P., Eliopoulos, E., & Vlachakis, D. (2025). Role of lncRNAs related to NRs in the regulation of gene expression. International Journal of Epigenetics, 5, 3. https://doi.org/10.3892/ije.2025.26
MLA
Pierouli, K., Papageorgiou, L., Chrousos, G. P., Eliopoulos, E., Vlachakis, D."Role of lncRNAs related to NRs in the regulation of gene expression". International Journal of Epigenetics 5.1 (2025): 3.
Chicago
Pierouli, K., Papageorgiou, L., Chrousos, G. P., Eliopoulos, E., Vlachakis, D."Role of lncRNAs related to NRs in the regulation of gene expression". International Journal of Epigenetics 5, no. 1 (2025): 3. https://doi.org/10.3892/ije.2025.26
Copy and paste a formatted citation
x
Spandidos Publications style
Pierouli K, Papageorgiou L, Chrousos GP, Eliopoulos E and Vlachakis D: Role of lncRNAs related to NRs in the regulation of gene expression. Int J Epigen 5: 3, 2025.
APA
Pierouli, K., Papageorgiou, L., Chrousos, G.P., Eliopoulos, E., & Vlachakis, D. (2025). Role of lncRNAs related to NRs in the regulation of gene expression. International Journal of Epigenetics, 5, 3. https://doi.org/10.3892/ije.2025.26
MLA
Pierouli, K., Papageorgiou, L., Chrousos, G. P., Eliopoulos, E., Vlachakis, D."Role of lncRNAs related to NRs in the regulation of gene expression". International Journal of Epigenetics 5.1 (2025): 3.
Chicago
Pierouli, K., Papageorgiou, L., Chrousos, G. P., Eliopoulos, E., Vlachakis, D."Role of lncRNAs related to NRs in the regulation of gene expression". International Journal of Epigenetics 5, no. 1 (2025): 3. https://doi.org/10.3892/ije.2025.26
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team