Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January 2013 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January 2013 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review)

  • Authors:
    • Ubaldo Armato
    • Balu Chakravarthy
    • Raffaella Pacchiana
    • James F. Whitfield
  • View Affiliations / Copyright

    Affiliations: Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy, National Research Council of Canada, Ottawa, Ontario, Canada
  • Pages: 3-10
    |
    Published online on: October 24, 2012
       https://doi.org/10.3892/ijmm.2012.1162
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The pathophysiological mechanisms underlying the onset and inexorable progression of the late‑onset form of Alzheimer's disease (AD) are still the object of controversy. This review takes stock of some most recent advancements of this field concerning the complex roles played by the amyloid‑β (Aβ)‑binding p75 neurotrophin receptor (p75NTR) and calcium‑sensing receptor (CaSR) and by the primary cilia in AD. Apart from their physiological roles, p75NTR is more intensely expressed in the hippocampus of human AD brains and Aβ‑bound p75NTR triggers cell death, whereas Aβ‑bound CaSR signalling induces the de novo synthesis and release of nitric oxide (NO), vascular endothelial growth factor (VEGF)‑A and Aβ peptides (Aβs), particularly on the part of normal adult human astrocytes. The latter effect could significantly increase the pool of Aβ‑ and NO‑producing nerve cells favouring the progressive spread of a self‑sustaining and self‑reinforcing ‘infectious’ mechanism of neural and vascular (i.e. blood-brain barrier) cell damage. Interestingly, primary cilia concentrate p75NTR receptors in their membranes and are abnormally structured/damaged in transgenic (Tg) AD‑model mice, which could impact on the adult neurogenesis occurring in the dentate gyrus's subgranular zone (SGZ) that is necessary for new memory encoding, thereby favouring typical AD cognitive decline. Altogether, these findings may pave the way to novel therapeutic approaches to AD, particularly in its mild cognitive impairment (MCI) and pre‑MCI stages of development.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 4:110–133. 2008.

2 

Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, van Belle G, Jolley L and Larson EB: Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 59:1737–1746. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Querfurth HW and LaFerla FM: Alzheimer’s disease. N Engl J Med. 362:329–344. 2010.

4 

Selkoe DJ, Mandelkow E and Holtzman DM: The Biology of Alzheimer Disease. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 2012

5 

Choy RW, Cheng Z and Schekman R: Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci USA. 109:E2077–E2082. 2012.PubMed/NCBI

6 

LaFerla FM, Green KN and Oddo S: Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 8:499–509. 2007.

7 

Li S, Shankar GM and Selkoe DJ: How do soluble oligomers of amyloid beta-protein impair hippocampal synaptic plasticity? Front Cell Neurosci. 4:52010.PubMed/NCBI

8 

Siegenthaler BM and Rajendran L: Retromers in Alzheimer’s disease. Neurodegener Dis. 10:116–121. 2012.

9 

Whitfield JF: The road to LOAD (late-onset Alzheimer’s disease) and possible ways to block it. Expert Opin Ther Targets. 11:1257–1260. 2007.

10 

Dal Prà I, Chiarini A, Pacchiana R, Chakravarthy B, Whitfield JF and Armato U: Emerging concepts of how β-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an ‘Alzheimer brain’ (Review). Mol Med Rep. 1:173–178. 2008.

11 

Hartlage-Rübsamen M, Morawski M, Waniek A, Jäger C, Zeitschel U, Koch B, Cynis H, Schilling S, Schliebs R, Demuth HU and Rossner S: Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol. 121:705–719. 2011.PubMed/NCBI

12 

Jawhar S, Wirth O and Bayer TA: Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem. 286:38825–38832. 2011.

13 

Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe CG, Demuth HU and Bloom GS: Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature. 485:651–655. 2012.PubMed/NCBI

14 

Prusiner SB: Cell biology. A unifying role for prions in neurodegenerative diseases. Science. 336:1511–1513. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB and Giles K: Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci USA. 109:11025–11030. 2012.

16 

Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE and Gilchrest BA: Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest. 100:2333–2340. 1997.

17 

Yaar M, Zhai S, Fine RE, Eisenhauer PB, Arbie BL, Stewart KB and Gilchrest BA: Amyloid-β binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem. 277:7720–7725. 2001.

18 

Kuner P, Schubenel R and Hertel C: β-amyloid binds to p75NTR and activates NF-kappaB in human neuroblastoma cells. J Neurosci Res. 54:798–804. 1998.

19 

Perini G, Della-Bianca V, Politi V, Della Valle G, Dal Prà I, Rossi F and Armato U: Role of p75 neurotrophin receptor in the neurotoxicity by β-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med. 195:907–918. 2002.

20 

Chiarini A, Dal Prà I, Whitfield JF and Armato U: The killing of neurons by beta-amyloid peptides, prions and pro-inflammatory cytokines. Ital J Anat Embryol. 111:221–246. 2006.PubMed/NCBI

21 

Della-Bianca V, Rossi F, Armato U, Dal Prà I, Costantini C, Perini G, Politi V and Della Valle G: Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106-126). J Biol Chem. 276:38929–38933. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Sotthibundhu A, Li QX, Thangnipon W and Coulson EJ: Abeta(1–42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging. 30:1975–1985. 2009.

23 

Bai M, Trivedi S and Brown EM: Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem. 273:23605–23610. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Chakravarthy B, Gaudet C, Ménard M, Atkinson T, Brown L, Laferla FM, Armato U and Whitfield J: Amyloid-beta peptides stimulate the expression of the p75(NTR) neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD transgenic mice. J Alzheimers Dis. 19:915–925. 2010.PubMed/NCBI

25 

Ito S, Ménard M, Atkinson T, Gaudet C, Brown L, Whitfield J and Chakravarthy B: Involvement of insulin-like growth factor 1 receptor signaling in the amyloid-β peptide oligomers-induced p75 neurotrophin receptor protein expression in mouse hippocampus. J Alzheimers Dis. 31:493–506. 2012.

26 

Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI and Kordower JH: Loss of basal forebrain P75 (NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol. 443:136–153. 2002.PubMed/NCBI

27 

Chakravarthy B, Gaudet C, Ménard M, Atkinson T, Chiarini A, Dal Prà I and Whitfield J: The p75 neurotrophin receptor is localized to primary cilia in adult mouse hippocampal dentate gyrus granule cells. Biochem Biophys Res Commun. 401:458–462. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL and Lu B: Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. 8:1069–1077. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Bernabeu RO and Longo FM: The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC Neurosci. 11:1362010. View Article : Google Scholar : PubMed/NCBI

30 

Chakravarthy B, Ménard M, Ito S, Gaudet C, Dal Prà I, Armato U and Whitfield J: Hippocampal membrane-associated p75NTR levels are increased in Alzheimer’s disease. J Alzheimers Dis. 30:675–684. 2012.PubMed/NCBI

31 

Brown EM and MacLeod RJ: Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 81:239–297. 2001.PubMed/NCBI

32 

Msaouel P, Nixon AM, Bramos AP, Baiba E and Kentarchos NE: Extracellular calcium-sensing receptor: an overview of physiology, pathophysiology and clinical perspectives. In Vivo. 18:739–753. 2004.PubMed/NCBI

33 

Jensen AA and Bräuner-Osborne H: Allosteric modulation of the calcium-sensing receptor. Curr Neuropharmacol. 5:180–186. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Magno AL, Ward BK and Ratajczak T: The calcium-sensing receptor: a molecular perspective. Endocr Rev. 32:3–30. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Hofer AM and Brown EM: Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 4:530–538. 2003. View Article : Google Scholar

36 

Pidasheva S, Grant M, Canaff L, Ercan O, Kumar U and Hendy GN: Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CaSR mutants retained intracellularly. Hum Mol Genet. 15:2200–2209. 2006. View Article : Google Scholar

37 

Chang W and Shoback D: Extracellular Ca2+-sensing receptors-an overview. Cell Calcium. 35:183–196. 2004.

38 

Ye C, Ho-Pao CL, Kanazirska M, Quinn S, Rogers K, Seidman CE, Seidman JG, Brown EM and Vassilev PM: Amyloid-beta proteins activate Ca(2+)-permeable channels through calcium-sensing receptors. J Neurosci Res. 47:547–554. 1997.

39 

Chiarini A, Dal Prà I, Marconi M, Chakravarthy B, Whitfield JF and Armato U: Calcium-sensing receptor (CaSR) in human brain’s pathophysiology: roles in late-onset Alzheimer’s disease (LOAD). Curr Pharm Biotechnol. 10:317–326. 2009.

40 

Conley YP, Mukherjee A, Kammerer C, DeKosky ST, Kamboh MI, Finegold DN and Ferrel RE: Evidence supporting a role for the calcium-sensing receptor in Alzheimer disease. Am J Med Genet B Neuropsychiatr Genet. 150B:703–709. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Dal Prà I, Chiarini A, Nemeth EF, Armato U and Whitfield JF: Roles of Ca2+ and the Ca2+-sensing receptor (CaSR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes. J Cell Biochem. 96:428–438. 2005.

42 

Chiarini A, Dal Prà I, Gottardo R, Bortolotti F, Whitfield JF and Armato U: The BH4 (tetrahydrobiopterin)-dependent activation, but not the expression, of inducible NOS (nitric oxide synthase)-2 in proinflammatory cytokine-stimulated, cultured normal human astrocytes is mediated by MEK-ERK kinases. J Cell Biochem. 94:731–743. 2005.

43 

Chiarini A, Dal Prà I, Menapace L, Pacchiana R, Whitfield JF and Armato U: Soluble amyloid β-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes. Int J Mol Med. 16:801–807. 2005.

44 

Chiarini A, Armato U, Pacchiana R and Dal Prà I: Proteomic analysis of GTP cyclohydrolase 1 multiprotein complexes in cultured normal adult human astrocytes under both basal and cytokine-activated conditions. Proteomics. 9:1850–1860. 2009. View Article : Google Scholar

45 

Chiarini A, Whitfield J, Bonafini C, Chakravarthy B, Armato U and Dal Prà I: Amyloid-β(25–35), an amyloid-β(1–42) surrogate, and proinflammatory cytokines stimulate VEGF-A secretion by cultured, early passage, normoxic adult human cerebral astrocytes. J Alzheimers Dis. 21:915–926. 2010.

46 

Dal Prà I, Whitfileld JF, Pacchiana R, Bonafini C, Talacchi A, Chakravarthy B, Armato U and Chiarini A: The amyloid-β42 proxy, amyloid-β25–35, induces normal human cerebral astrocytes to produce amyloid-β42. J Alzheimers Dis. 24:335–347. 2011.

47 

Nedergaard M, Ransom B and Goldman SA: New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26:523–530. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Nagele RG and Wegiel J, Venkataraman V, Imaki H, Wang KC and Wegiel J: Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging. 25:663–674. 2004.

49 

Nedergaard M and Verkhratsky A: Artefact versus reality-how astrocytes contribute to synaptic events. Glia. 60:1013–1023. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Theodosis DT, Poulain DA and Oliet SH: Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev. 88:983–1008. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Guenette SY: Astrocytes: a cellular player in Abeta clearance and degradation. Trends Mol Med. 9:279–280. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Biron KE, Dickstein DL, Gopaul R and Jefferies WA: Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 6:e237892011.PubMed/NCBI

53 

Pogue AI and Lukiw WJ: Angiogenic signaling in Alzheimer’s disease. Neuroreport. 15:1507–1510. 2004.

54 

Zand L, Ryu JK and McLarnon JG: Induction of angiogenesis in the beta-amyloid peptide-injected rat hippocampus. Neuroreport. 16:129–132. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Bell RD and Zlokovic BV: Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropatol. 118:103–113. 2008.

56 

Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL and Gallagher M: Reduction of hippocampal hyperactivity improves cognition in anamnestic mild cognitive impairment. Neuron. 74:467–474. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Putcha D, Brickhouse M, O’Keefe K, Sullivan C, Rentz D, Marshall G, Dickerson B and Sperling R: Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci. 31:17680–17688. 2011.PubMed/NCBI

58 

Sperling R: Potential of functional MRI as a biomarker in early Alzheimer’s disease. Neurobiol Aging. 32(Suppl 1): S37–S43. 2011.

59 

Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M and Stark CE: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with anamnestic mild cognitive impairment. Neuroimage. 51:1242–1252. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Jantaratnotai N, Ryu JK, Schwab C, McGeer PL and McLarnon JG: Comparison of vascular perturbations in an Aβ-injected animal model and in AD brain. Int J Alzheimers Dis. 2011:9182802011.PubMed/NCBI

61 

Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ and Hyman BT: Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 451:720–724. 2008.PubMed/NCBI

62 

Altman J and Das GD: Postnatal neurogenesis in the guinea-pig. Nature. 214:1098–1101. 1967. View Article : Google Scholar : PubMed/NCBI

63 

Nottebohm F: Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res. 189:429–436. 1980. View Article : Google Scholar : PubMed/NCBI

64 

Kempermann G: Adult Neurogenesis. 2. Oxford University Press; New York: 2011

65 

Einstein EB, Patterson CA, Hon BJ, Regan KA, Reddi J, Melnikoff DE, Mateer MJ, Schulz S, Johnson BN and Tallent MK: Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci. 30:4306–4314. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Burgos-Ramos E, Hervás-Aguilar A, Aguado-Liera D, Puebla-Jiménez L, Hernández-Pinto AM, Barrios V and Arilla-Ferreiro E: Somatostatin and Alzheimer’s disease. Mol Cell Endocrinol. 286:104–111. 2008.

67 

Händel M, Schultz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G and Höllt V: Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience. 89:909–926. 1999.PubMed/NCBI

68 

Stanić D, Malmgren H, He H, Scott L, Aperia A and Hökfelt T: Developmental changes in frequency of the ciliary somatostatin receptor 3 protein. Brain Res. 1249:101–112. 2009.PubMed/NCBI

69 

Berbari NF, Johnson AD, Lewis JS, Askwith CC and Mykytyn K: Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell. 19:1540–1547. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Goetz SC, Ocbina PJ and Anderson KV: The primary cilium as a hedgehog signal transduction machine. Methods Cell Biol. 94:199–222. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY and Reiter JF: Vertebrate smoothened functions at the primary cilium. Nature. 437:1018–1021. 2005. View Article : Google Scholar : PubMed/NCBI

72 

Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S and Alvarez-Buylla A: Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 11:277–284. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Amador-Arjona A, Elliott J, Miller A, Ginbey A, Pazour GJ, Enikolopov G, Roberts AJ and Terskikh AV: Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory. J Neurosci. 31:9933–9944. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Schaeffer EL, Novaes BA, Da Silva ER, Skaf HD and Mendes-Neto AG: Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Prog Neuropsychopharmacol Biol Psychiatry. 33:1087–1102. 2009. View Article : Google Scholar : PubMed/NCBI

75 

van Tijn P, Kamphuis W, Marlatt MW, Hol EM and Lucassen PJ: Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog Neurobiol. 93:149–164. 2011.PubMed/NCBI

76 

Waldau B and Shetty AK: Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci. 65:2372–2384. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Armato U, Chakravarthy B, Chiarini A, Dal Prà I and Whitfield JF: Is Alzheimer’s disease at least partly a ciliopathy? J Alzheimers Dis. 1:101e2011. View Article : Google Scholar

78 

Gaudet C, Ménard M, Brown L, Atkinson T, LaFerla FM, Ito S, Armato U, Dal Prà I, Whitfield J and Chakravarthy B: Reduction of the immunostainable length of the hippocampal dentate granule cells’ primary cilia in 3xAD-transgenic mice producing human Aβ1–42 and tau. Biochem Biophys Res Commun. September 17–2012.(Epub ahead of print).

79 

Rodríguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S and Verkhratsky A: Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One. 3:e29352008.PubMed/NCBI

80 

Avila J, Insausti R and Del Rio J: Memory and neurogenesis in aging and Alzheimer’s disease. Aging Dis. 1:30–36. 2010.

81 

Shetty AK: Reelin signaling, hippocampal neurogenesis and efficacy of aspirin intake and stem cell transplantation in aging and Alzheimer’s disease. Aging Dis. 1:2–11. 2010.PubMed/NCBI

82 

Whitfield JF, Chakravarthy B, Chiarini A and Dal Prà I: The primary cilium: The tiny driver of dentate gyral neurogenesis. Neurogenesis Research. Clark GJ and Anderson WT: Chapter V. Nova Science Publishers Inc; Hauppauge, NY: pp. 137–159. 2012, (In press). ISBN: 9781620817230

83 

Fortress AM, Buhusi M, Helke KL and Granholm AC: Cholinergic degeneration and alterations in the TrkA and p75NTR balance as a result of pro-NGF injection into aged rats. J Aging Res. 2011:4605432011. View Article : Google Scholar : PubMed/NCBI

84 

Armato U, Chakravarthy B, Chiarini A, Dal Prà I and Whitfield JF: A Paradigm-changing surprise from dentate gyrus granule cells-cilium-localized p75NTR may drive their progenitor cell proliferation. J Alzheimers Dis. 1:e1042011. View Article : Google Scholar

85 

Pérez-González R, Antequera D, Vargas T, Spuch C, Bolos M and Carro E: Leptin induces the proliferation of neuronal progenitors and neuroprotection in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 24:17–25. 2011.PubMed/NCBI

86 

Armato U, Chakravarthy B, Chiarini A, Chioffi F, Dal Prà I and Whitfield JF: Leptin, sonic hedgehogs and neurogenesis-a primary cilium’s tale. J Alzheimers Dis. 1:e1052012. View Article : Google Scholar

87 

Bianca VD, Dusi S, Bianchini E, Dal Prà I and Rossi F: Beta-amyloid activates the O2-forming NADPH oxidase in microglia, monocytes and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem. 274:15493–15499. 1999.PubMed/NCBI

88 

Armato U, Bonafini C, Chakravarthy B, Pacchiana R, Chiarini A, Whitfield JF and Dal Prà I: The calcium-sensing receptor: A novel Alzheimer’s disease crucial target? J Neurol Sci. July 27–2012.(Epub ahead of print). View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Armato U, Chakravarthy B, Pacchiana R and Whitfield JF: Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review). Int J Mol Med 31: 3-10, 2013.
APA
Armato, U., Chakravarthy, B., Pacchiana, R., & Whitfield, J.F. (2013). Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review). International Journal of Molecular Medicine, 31, 3-10. https://doi.org/10.3892/ijmm.2012.1162
MLA
Armato, U., Chakravarthy, B., Pacchiana, R., Whitfield, J. F."Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review)". International Journal of Molecular Medicine 31.1 (2013): 3-10.
Chicago
Armato, U., Chakravarthy, B., Pacchiana, R., Whitfield, J. F."Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review)". International Journal of Molecular Medicine 31, no. 1 (2013): 3-10. https://doi.org/10.3892/ijmm.2012.1162
Copy and paste a formatted citation
x
Spandidos Publications style
Armato U, Chakravarthy B, Pacchiana R and Whitfield JF: Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review). Int J Mol Med 31: 3-10, 2013.
APA
Armato, U., Chakravarthy, B., Pacchiana, R., & Whitfield, J.F. (2013). Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review). International Journal of Molecular Medicine, 31, 3-10. https://doi.org/10.3892/ijmm.2012.1162
MLA
Armato, U., Chakravarthy, B., Pacchiana, R., Whitfield, J. F."Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review)". International Journal of Molecular Medicine 31.1 (2013): 3-10.
Chicago
Armato, U., Chakravarthy, B., Pacchiana, R., Whitfield, J. F."Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review)". International Journal of Molecular Medicine 31, no. 1 (2013): 3-10. https://doi.org/10.3892/ijmm.2012.1162
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team