|
1
|
Buduneli N, Buduneli E, Ciotanar S, Atilla
G, Lappin D and Kinane D: Plasminogen activators and plasminogen
activator inhibitors in gingival crevicular fluid of cyclosporin
A-treated patients. J Clin Periodontol. 31:556–561. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chorostowska-Wynimko J, Swiercz R,
Skrzypczak-Jankun E, Wojtowicz A, Selman SH and Jankun J: A novel
form of the plasminogen activator inhibitor created by cysteine
mutations extends its half-life: relevance to cancer and
angiogenesis. Mol Cancer Ther. 2:19–28. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chow KM, Szeto CC, Szeto CY, Poon P, Lai
FM and Li PK: Plasminogen activator inhibitor-1 polymorphism is
associated with progressive renal dysfunction after acute rejection
in renal transplant recipients. Transplantation. 74:1791–1794.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fay WP, Parker AC, Condrey LR and Shapiro
AD: Human plasminogen activator inhibitor-1 (PAI-1) deficiency:
characterization of a large kindred with a null mutation in the
PAI-1 gene. Blood. 90:204–208. 1997.PubMed/NCBI
|
|
5
|
Jankun J, Aleem AM, Struniawski R,
Lysiak-Szydlowska W, Selman SH and Skrzypczak-Jankun E: Accelerated
thrombus lysis in the blood of plasminogen activator inhibitor
deficient mice is inhibited by PAI-1 with a very long half-life.
Pharmacol Rep. 61:673–680. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhu Y, Carmeliet P and Fay WP: Plasminogen
activator inhibitor-1 is a major determinant of arterial
thrombolysis resistance. Circulation. 99:3050–3055. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lopes C, Dina C, Durand E and Froguel P:
PAI-1 polymorphisms modulate phenotypes associated with the
metabolic syndrome in obese and diabetic Caucasian population.
Diabetologia. 46:1284–1290. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Babu MS, Prabha TS, Kaul S, et al:
Association of genetic variants of fibrinolytic system with stroke
and stroke subtypes. Gene. 495:76–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jood K, Ladenvall P, Tjarnlund-Wolf A, et
al: Fibrinolytic gene polymorphism and ischemic stroke. Stroke.
36:2077–2081. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wiklund PG, Nilsson L, Ardnor SN, et al:
Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of
stroke: replicated findings in two nested case-control studies
based on independent cohorts. Stroke. 36:1661–1665. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ringelstein M, Jung A, Berger K, et al:
Promotor polymorphisms of plasminogen activator inhibitor-1 and
other thrombophilic genotypes in cerebral venous thrombosis: a
case-control study in adults. J Neurol. Apr 12–2012.(Epub ahead of
print).
|
|
12
|
Jankun J, Aleem AM, Selman SH, Basrur V
and Skrzypczak-Jankun E: VLHL plasminogen activator inhibitor
spontaneously reactivates from the latent to active form. Int J Mol
Med. 23:57–63. 2009.PubMed/NCBI
|
|
13
|
Jankun J and Skrzypczak-Jankun E: Yin and
yang of the plasminogen activator inhibitor. Pol Arch Med Wewn.
119:410–417. 2009.PubMed/NCBI
|
|
14
|
Lim JH, Stirling B, Derry J, et al: Tumor
suppressor CYLD regulates acute lung injury in lethal
Streptococcus pneumoniae infections. Immunity. 27:349–360.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Eddy AA and Fogo AB: Plasminogen activator
inhibitor-1 in chronic kidney disease: evidence and mechanisms of
action. J Am Soc Nephrol. 17:2999–3012. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lottermoser K, Petras S, Poge U, et al:
The fibrinolytic system in chronic renal failure. Eur J Med Res.
6:372–376. 2001.PubMed/NCBI
|
|
17
|
Rerolle JP, Munteanu E, Drouet M, et al:
PAI-1 donor polymorphism influences long-term kidney graft
survival. Nephrol Dial Transplant. 23:3325–3332. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang Y, Pratt JR, Hartley B, Evans B,
Zhang L and Sacks SH: Expression of tissue type plasminogen
activator and type 1 plasminogen activator inhibitor, and
persistent fibrin deposition in chronic renal allograft failure.
Kidney Int. 52:371–377. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bedke J, Kiss E, Schaefer L, et al:
Beneficial effects of CCR1 blockade on the progression of chronic
renal allograft damage. Am J Transplant. 7:527–537. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Delarue F, Hertig A, Alberti C, et al:
Prognostic value of plasminogen activator inhibitor type 1 mRNA in
microdissected glomeruli from transplanted kidneys.
Transplantation. 72:1256–1261. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chang HR, Yang SF, Lian JD, et al:
Prediction of chronic allograft damage index of renal allografts
using serum level of plasminogen activator inhibitor-1. Clin
Transplant. 23:206–212. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Reis K, Arinsoy T, Derici U, et al:
Angiotensinogen and plasminogen activator inhibitor-1 gene
polymorphism in relation to chronic allograft dysfunction. Clin
Transplant. 19:10–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pontrelli P, Rossini M, Infante B, et al:
Rapamycin inhibits PAI-1 expression and reduces interstitial
fibrosis and glomerulosclerosis in chronic allograft nephropathy.
Transplantation. 85:125–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ishikawa A, Ohta N, Ozono S, Kawabe K and
Kitamura T: Inhibition of plasminogen activator inhibitor-1 by
angiotensin II receptor blockers on cyclosporine-treated renal
allograft recipients. Transplant Proc. 37:994–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ishikawa A, Tanaka M, Ohta N, Ozono S and
Kitamura T: Prevention of interstitial fibrosis of renal allograft
by angiotensin II blockade. Transplant Proc. 38:3498–3501. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lahlou A, Peraldi MN, Thervet E, et al:
Chronic graft dysfunction in renal transplant patients: potential
role of plasminogen activator inhibitor type 1. Transplantation.
73:1290–1295. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Revelo MP, Federspiel C, Helderman H and
Fogo AB: Chronic allograft nephropathy: expression and localization
of PAI-1 and PPAR-gamma. Nephrol Dial Transplant. 20:2812–2819.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Grandaliano G, Di Paolo S, Monno R, et al:
Protease-activated receptor 1 and plasminogen activator inhibitor 1
expression in chronic allograft nephropathy: the role of
coagulation and fibrinolysis in renal graft fibrosis.
Transplantation. 72:1437–1443. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Alessi MC, Bastelica D, Morange P, et al:
Plasminogen activator inhibitor 1, transforming growth
factor-beta1, and BMI are closely associated in human adipose
tissue during morbid obesity. Diabetes. 49:1374–1380. 2000.
View Article : Google Scholar
|
|
30
|
Brown NJ: Therapeutic potential of
plasminogen activator inhibitor-1 inhibitors. Ther Adv Cardiovasc
Dis. 4:315–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Grant PJ: Diabetes mellitus as a
prothrombotic condition. J Intern Med. 262:157–172. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Y, Thompson EM, Whawell SA and
Fleming KA: Expression and localization of plasminogen activator
inhibitor 1 mRNA in transplant kidneys. J Pathol. 169:445–450.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Patrassi GM, Sartori MT, Rigotti P, et al:
Reduced fibrinolytic potential one year after kidney
transplantation. Relationship to long-term steroid treatment.
Transplantation. 59:1416–1420. 1995.PubMed/NCBI
|
|
34
|
Jankun J, Skotnicka M, Lysiak-Szydlowska
W, Al-Senaidy A and Skrzypczak-Jankun E: Diverse inhibition of
plasminogen activator inhibitor type 1 by theaflavins of black tea.
Int J Mol Med. 27:525–529. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Badawi A, Klip A, Haddad P, et al: Type 2
diabetes mellitus and inflammation: Prospects for biomarkers of
risk and nutritional intervention. Diabetes Metab Syndr Obes.
3:173–186. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Birgel M, Gottschling-Zeller H, Rohrig K
and Hauner H: Role of cytokines in the regulation of plasminogen
activator inhibitor-1 expression and secretion in newly
differentiated subcutaneous human adipocytes. Arterioscler Thromb
Vasc Biol. 20:1682–1687. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Samad F and Loskutoff DJ: The fat mouse: a
powerful genetic model to study elevated plasminogen activator
inhibitor 1 in obesity/NIDDM. Thromb Haemost. 78:652–655.
1997.PubMed/NCBI
|
|
38
|
Meshkani R and Adeli K: Hepatic insulin
resistance, metabolic syndrome and cardiovascular disease. Clin
Biochem. 42:1331–1346. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen LL, Zhang JY and Wang BP:
Renoprotective effects of fenofibrate in diabetic rats are achieved
by suppressing kidney plasminogen activator inhibitor-1. Vascul
Pharmacol. 44:309–315. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hagiwara H, Kaizu K, Uriu K, et al:
Expression of type-1 plasminogen activator inhibitor in the kidney
of diabetic rat models. Thromb Res. 111:301–309. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee HB and Ha H: Plasminogen activator
inhibitor-1 and diabetic nephropathy. Nephrology (Carlton).
10(Suppl): S11–S13. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lassila M, Fukami K, Jandeleit-Dahm K, et
al: Plasminogen activator inhibitor-1 production is pathogenetic in
experimental murine diabetic renal disease. Diabetologia.
50:1315–1326. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Miyata T and van Ypersele de Strihou C:
Translation of basic science into clinical medicine: novel targets
for diabetic nephropathy. Nephrol Dial Transplant. 24:1373–1377.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nicholas SB, Aguiniga E, Ren Y, et al:
Plasminogen activator inhibitor-1 deficiency retards diabetic
nephropathy. Kidney Int. 67:1297–1307. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang Y, Border WA, Lawrence DA and Noble
NA: Mechanisms underlying the antifibrotic properties of
noninhibitory PAI-1 (PAI-1R) in experimental nephritis. Am J
Physiol Renal Physiol. 297:F1045–F1054. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Oh KS, Kim EY, Yoon M and Lee CM: Swim
training improves leptin receptor deficiency-induced obesity and
lipid disorder by activating uncoupling proteins. Exp Mol Med.
39:385–394. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang Y, Border WA, Yu L, Zhang J,
Lawrence DA and Noble NA: A PAI-1 mutant, PAI-1R, slows progression
of diabetic nephropathy. J Am Soc Nephrol. 19:329–338. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ho CH and Jap TS: Relationship of
plasminogen activator inhibitor-1 with plasma insulin, glucose,
triglyceride and cholesterol in Chinese patients with diabetes.
Thromb Res. 69:271–277. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Festa A, Williams K, Tracy RP, Wagenknecht
LE and Haffner SM: Progression of plasminogen activator inhibitor-1
and fibrinogen levels in relation to incident type 2 diabetes.
Circulation. 113:1753–1759. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nagi DK, Tracy R and Pratley R:
Relationship of hepatic and peripheral insulin resistance with
plasminogen activator inhibitor-1 in Pima Indians. Metabolism.
45:1243–1247. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Collins SJ, Alexander SL, Lopez-Guisa JM,
et al: Plasminogen activator inhibitor-1 deficiency has renal
benefits but some adverse systemic consequences in diabetic mice.
Nephron Exp Nephrol. 104:e23–e34. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Meigs JB, Dupuis J, Liu C, et al: PAI-1
Gene 4G/5G polymorphism and risk of type 2 diabetes in a
population-based sample. Obesity (Silver Spring). 14:753–758. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Samarakoon R, Overstreet JM, Higgins SP
and Higgins PJ: TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis
in ureteral obstruction-induced renal fibrosis. Cell Tissue Res.
347:117–128. 2012.
|
|
54
|
Stam F, van Guldener C, Schalkwijk CG, ter
Wee PM, Donker AJ and Stehouwer CD: Impaired renal function is
associated with markers of endothelial dysfunction and increased
inflammatory activity. Nephrol Dial Transplant. 18:892–898. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Smyr KV, Shcherbak AV, Kozlovskaia LV,
Sokolova IA, Bobkova IN and Podorolskaia LV: Significance of the
markers of endothelial dysfunction and hemorheological disorders
for assessing the activity and prognosis of chronic
glomerulonephritis. Ter Arkh. 82:47–51. 2010.(In Russian).
|
|
56
|
Folsom AR, Delaney JA, Lutsey PL, et al:
Associations of factor VIIIc, D-dimer, and plasmin-antiplasmin with
incident cardiovascular disease and all-cause mortality. Am J
Hematol. 84:349–353. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dubin R, Cushman M, Folsom AR, et al:
Kidney function and multiple hemostatic markers: cross sectional
associations in the multi-ethnic study of atherosclerosis. BMC
Nephrol. 12:32011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Coresh J, Astor B and Sarnak MJ: Evidence
for increased cardiovascular disease risk in patients with chronic
kidney disease. Curr Opin Nephrol Hypertens. 13:73–81. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hellenthal FA, Buurman WA, Wodzig WK and
Schurink GW: Biomarkers of AAA progression. Part 1: extracellular
matrix degeneration. Nat Rev Cardiol. 6:464–474. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Marney AM, Ma J, Luther JM, Ikizler TA and
Brown NJ: Endogenous bradykinin contributes to increased
plasminogen activator inhibitor 1 antigen following hemodialysis. J
Am Soc Nephrol. 20:2246–2252. 2009. View Article : Google Scholar
|
|
61
|
Horl WH: Hemodialysis membranes:
interleukins, biocompatibility, and middle molecules. J Am Soc
Nephrol. 13(Suppl 1): S62–S71. 2002.PubMed/NCBI
|
|
62
|
Segarra A, Chacon P, Martinez-Eyarre C, et
al: Circulating levels of plasminogen activator inhibitor type-1,
tissue plasminogen activator, and thrombomodulin in hemodialysis
patients: biochemical correlations and role as independent
predictors of coronary artery stenosis. J Am Soc Nephrol.
12:1255–1263. 2001.
|
|
63
|
Arikan H, Koc M, Tuglular S, Ozener C and
Akoglu E: Elevated plasma levels of PAI-1 predict cardiovascular
events and cardiovascular mortality in prevalent peritoneal
dialysis patients. Ren Fail. 31:438–445. 2009. View Article : Google Scholar
|
|
64
|
Nakamura Y, Tomura S, Tachibana K, Chida Y
and Marumo F: Enhanced fibrinolytic activity during the course of
hemodialysis. Clin Nephrol. 38:90–96. 1992.PubMed/NCBI
|
|
65
|
Kunz K, Petitjean P, Lisri M, et al:
Cardiovascular morbidity and endothelial dysfunction in chronic
haemodialysis patients: is homocyst(e)ine the missing link? Nephrol
Dial Transplant. 14:1934–1942. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Stefoni S, Cianciolo G, Donati G, et al:
Low TGF-beta1 serum levels are a risk factor for atherosclerosis
disease in ESRD patients. Kidney Int. 61:324–335. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kim KJ, Yang WS, Kim SB, Lee SK and Park
JS: Fibrinogen and fibrinolytic activity in CAPD patients with
atherosclerosis and its correlation with serum albumin. Perit Dial
Int. 17:157–161. 1997.PubMed/NCBI
|
|
68
|
Gray RP, Mohamed-Ali V, Patterson DL and
Yudkin JS: Determinants of plasminogen activator inhibitor-1
activity in survivors of myocardial infarction. Thromb Haemost.
73:261–267. 1995.PubMed/NCBI
|
|
69
|
Pawlak K, Mysliwiec M and Pawlak D:
Haemostatic system, biochemical profiles, kynurenines and the
prevalence of cardiovascular disease in peritoneally dialyzed
patients. Thromb Res. 125:40–45. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Malyszko J, Malyszko JS, Brzosko S,
Wolczynski S and Mysliwiec M: Adiponectin is related to CD146, a
novel marker of endothelial cell activation/injury in chronic renal
failure and peritoneally dialyzed patients. J Clin Endocrinol
Metab. 89:4620–4627. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Maruyoshi H, Kojima S, Funahashi T, et al:
Adiponectin is inversely related to plasminogen activator inhibitor
type 1 in patients with stable exertional angina. Thromb Haemost.
91:1026–1030. 2004.PubMed/NCBI
|
|
72
|
Lin JJ, Singhal K, Parton L, Cascio C,
Patlak CS and Stewart CL: Correlations between plasminogen
activator inhibitor-1 and peritoneal transport in pediatric CCPD
patients. Perit Dial Int. 15:246–251. 1995.PubMed/NCBI
|
|
73
|
Chang HR, Yang SF, Tsai JP, et al:
Plasminogen activator inhibitor-1 5G/5G genotype is a protecting
factor preventing posttransplant diabetes mellitus. Clin Chim Acta.
412:322–326. 2011. View Article : Google Scholar
|
|
74
|
Gao MJ, Liu M, Li B, Li ML, Bian LX and Yu
GN: Protective effect of calcium dobesilate against early diabetic
nephropathy of rat kidney. Yao Xue Xue Bao. 44:126–133. 2009.(In
Chinese).
|
|
75
|
Qi W, Poronnik P, Young B, Jackson CJ,
Field MJ and Pollock CA: Human cortical fibroblast responses to
high glucose and hypoxia. Nephron Physiol. 96:121–129. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Czekay RP, Aertgeerts K, Curriden SA and
Loskutoff DJ: Plasminogen activator inhibitor-1 detaches cells from
extracellular matrices by inactivating integrins. J Cell Biol.
160:781–791. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jankun J, Aleem AM, Specht Z, et al: PAI-1
induces cell detachment, downregulates nucleophosmin (B23) and
fortilin (TCTP) in LnCAP prostate cancer cells. Int J Mol Med.
20:11–20. 2007.PubMed/NCBI
|
|
78
|
Guo B, Inoki K, Isono M, et al:
MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-beta
in rat mesangial cells. Kidney Int. 68:972–984. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huang W, Xu C, Kahng KW, Noble NA, Border
WA and Huang Y: Aldosterone and TGF-beta1 synergistically increase
PAI-1 and decrease matrix degradation in rat renal mesangial and
fibroblast cells. Am J Physiol Renal Physiol. 294:F1287–F1295.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ma J, Weisberg A, Griffin JP, Vaughan DE,
Fogo AB and Brown NJ: Plasminogen activator inhibitor-1 deficiency
protects against aldosterone-induced glomerular injury. Kidney Int.
69:1064–1072. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ma LJ, Yang H, Gaspert A, et al:
Transforming growth factor-beta-dependent and -independent pathways
of induction of tubulointerstitial fibrosis in beta6(−/−) mice. Am
J Pathol. 163:1261–1273. 2003.PubMed/NCBI
|
|
82
|
Song CY, Kim BC, Hong HK and Lee HS:
TGF-beta type II receptor deficiency prevents renal injury via
decrease in ERK activity in crescentic glomerulonephritis. Kidney
Int. 71:882–888. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tesch GH and Lim AK: Recent insights into
diabetic renal injury from the db/db mouse model of type 2 diabetic
nephropathy. Am J Physiol Renal Physiol. 300:F301–F310. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Choudhury D, Tuncel M and Levi M: Diabetic
nephropathy - a multifaceted target of new therapies. Discov Med.
10:406–415. 2010.PubMed/NCBI
|
|
85
|
Guney I, Selcuk NY, Altintepe L, Atalay H,
Basarali MK and Buyukbas S: Antifibrotic effects of aldosterone
receptor blocker (spironolactone) in patients with chronic kidney
disease. Ren Fail. 31:779–784. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Peters H, Border WA and Noble NA:
Targeting TGF-beta overexpression in renal disease: maximizing the
antifibrotic action of angiotensin II blockade. Kidney Int.
54:1570–1580. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yu L, Border WA, Anderson I, McCourt M,
Huang Y and Noble NA: Combining TGF-beta inhibition and angiotensin
II blockade results in enhanced antifibrotic effect. Kidney Int.
66:1774–1784. 2004. View Article : Google Scholar : PubMed/NCBI
|