|
1.
|
Hall EJ: Hyperthermia. Radiobiology for
the Radiologist. 5th edition. Lippincott Williams and Wilkins;
Philadelphia, PA: pp. 495–520. 2000
|
|
2.
|
van der Zee J, González González D, van
Rhoon GC, van Dijk JD, van Putten WL and Hart AA: Comparison of
radiotherapy alone with radiotherapy plus hyperthermia in locally
advanced pelvic tumours: a prospective, randomised, multicentre
trial. Dutch Deep Hyperthermia Group Lancet. 355:1119–1125.
2000.PubMed/NCBI
|
|
3.
|
Harima Y, Nagata K, Harima K, Ostapenko
VV, Tanaka Y and Sawada S: A randomized clinical trial of radiation
therapy versus thermoradiotherapy in stage IIIB cervical carcinoma.
Int J Hyperthermia. 17:97–105. 2001. View Article : Google Scholar
|
|
4.
|
Wust P, Hildebrandt B, Sreenivasa G, et
al: Hyperthermia in combined treatment of cancer. Lancet Oncol.
3:487–497. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Issels RD: Hyperthermia adds to
chemotherapy. Eur J Cancer. 44:2546–2554. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Zagar TM, Oleson JR, Vujaskovic Z, et al:
Hyperthermia combined with radiation therapy for superficial breast
cancer and chest wall recurrence: a review of the randomised data.
Int J Hyperthermia. 26:612–617. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Westermann A, Mella O, Van Der Zee J, et
al: Long-term survival data of triple modality treatment of stage
IIB-III-IVA cervical cancer with the combination of radiotherapy,
chemotherapy and hyperthermia - an update. Int J Hyperthermia.
28:549–553. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Rhee JG, Schuman VL, Song CW and Levitt
SH: Difference in the thermotolerance of mouse mammary carcinoma
cells in vivo and in vitro. Cancer Res. 47:2571–2575.
1987.PubMed/NCBI
|
|
9.
|
Dings RP, Loren ML, Zhang Y, et al: Tumour
thermotolerance, a physiological phenomenon involving vessel
normalisation. Int J Hyperthermia. 27:42–52. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Li GC, Mivechi NF and Weitzel G: Heat
shock proteins, thermotolerance, and their relevance to clinical
hyperthermia. Int J Hyperthermia. 11:459–488. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Cheng L, Smith DJ, Anderson RL and Nagley
P: Human neuroblastoma SH-SY5Y cells show increased resistance to
hyperthermic stress after differentiation, associated with elevated
levels of Hsp72. Int J Hyperthermia. 27:415–426. 2011. View Article : Google Scholar
|
|
12.
|
Mosser DD and Morimoto RI: Molecular
chaperones and the stress of oncogenesis. Oncogene. 23:2907–2918.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Lindquist S and Craig EA: The heat-shock
proteins. Annu Rev Genet. 22:631–677. 1988. View Article : Google Scholar
|
|
14.
|
Hartl FU: Molecular chaperones in cellular
protein folding. Nature. 381:571–579. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Beere HM: ‘The stress of dying’: the role
of heat shock proteins in the regulation of apoptosis. J Cell Sci.
117:2641–2651. 2004.
|
|
16.
|
Richter K, Haslbeck M and Buchner J: The
heat shock response: life on the verge of death. Mol Cell.
40:253–266. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Morimoto RI: Regulation of the heat shock
transcriptional response: cross talk between a family of heat shock
factors, molecular chaperones, and negative regulators. Genes Dev.
12:3788–3796. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Akerfelt M, Morimoto RI and Sistonen L:
Heat shock factors: integrators of cell stress, development and
lifespan. Nat Rev Mol Cell Biol. 11:545–555. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Hoang AT, Huang J, Rudra-Ganguly N, et al:
A novel association between the human heat shock transcription
factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol.
156:857–864. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Tang D, Khaleque MA, Jones EL, et al:
Expression of heat shock proteins and heat shock protein messenger
ribonucleic acid in human prostate carcinoma in vitro and in tumors
in vivo. Cell Stress Chaperones. 10:46–58. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Khaleque MA, Bharti A, Gong J, et al: Heat
shock factor 1 represses estrogen-dependent transcription through
association with MTA1. Oncogene. 27:1886–1893. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Dudeja V, Chugh RK, Sangwan V, et al:
Prosurvival role of heat shock factor 1 in the pathogenesis of
pancreatobiliary tumors. Am J Physiol Gastrointest Liver Physiol.
300:G948–G955. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Santagata S, Hu R, Lin NU, et al: High
levels of nuclear heat-shock factor 1 (HSF1) are associated with
poor prognosis in breast cancer. Proc Natl Acad Sci USA.
108:18378–18383. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Ishiwata J, Kasamatsu A, Sakuma K, et al:
State of heat shock factor 1 expression as a putative diagnostic
marker for oral squamous cell carcinoma. Int J Oncol. 40:47–52.
2012.PubMed/NCBI
|
|
25.
|
Mendillo ML, Santagata S, Koeva M, et al:
HSF1 drives a transcriptional program distinct from heat shock to
support highly malignant human cancers. Cell. 150:549–562. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Gabai VL, Meng L, Kim G, Mills TA,
Benjamin IJ and Sherman MY: Heat shock transcription factor Hsf1 is
involved in tumor progression via regulation of hypoxia-inducible
factor 1 and RNA-binding protein HuR. Mol Cell Biol. 32:929–940.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Dai C, Whitesell L, Rogers AB and
Lindquist S: Heat shock factor 1 is a powerful multifaceted
modifier of carcinogenesis. Cell. 130:1005–1018. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Jin X, Moskophidis D and Mivechi NF: Heat
shock transcription factor 1 is a key determinant of HCC
development by regulating hepatic steatosis and metabolic syndrome.
Cell Metab. 14:91–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Fujimoto M, Takaki E, Takii R, et al: RPA
Assists HSF1 access to nucleosomal DNA by recruiting histone
chaperone FACT. Mol Cell. 48:182–194. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
McMillan DR, Xiao X, Shao L, Graves K and
Benjamin IJ: Targeted disruption of heat shock transcription factor
1 abolishes thermotolerance and protection against heat-inducible
apoptosis. J Biol Chem. 273:7523–7528. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Luft JC, Benjamin IJ, Mestril R and Dix
DJ: Heat shock factor 1-mediated thermotolerance prevents cell
death and results in G2/M cell cycle arrest. Cell Stress
Chaperones. 6:326–336. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Zhang Y, Huang L, Zhang J, Moskophidis D
and Mivechi NF: Targeted disruption of hsf1 leads to lack of
thermotolerance and defines tissue-specific regulation for
stress-inducible Hsp molecular chaperones. J Cell Biochem.
86:376–393. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Wang JH, Yao MZ, Gu JF, Sun LY, Shen YF
and Liu XY: Blocking HSF1 by dominant-negative mutant to sensitize
tumor cells to hyperthermia. Biochem Biophys Res Commun.
290:1454–1461. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Xia W, Vilaboa N, Martin JL, Mestril R,
Guo Y and Voellmy R: Modulation of tolerance by mutant heat shock
transcription factors. Cell Stress Chaperones. 4:8–18. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Westerheide SD, Kawahara TL, Orton K and
Morimoto RI: Triptolide, an inhibitor of the human heat shock
response that enhances stress-induced cell death. J Biol Chem.
281:9616–9622. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Nakamura Y, Fujimoto M, Hayashida N, Takii
R, Nakai A and Muto M: Silencing HSF1 by short hairpin RNA
decreases cell proliferation and enhances sensitivity to
hyperthermia in human melanoma cell lines. J Dermatol Sci.
60:187–192. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Tabuchi Y, Furusawa Y, Wada S, Ohtsuka K
and Kondo T: Silencing heat shock transcription factor 1 using
small interfering RNA enhances mild hyperthermia and hyperthermia
sensitivity in human oral squamous cell carcinoma cells. Thermal
Med. 27:99–108. 2011. View Article : Google Scholar
|
|
38.
|
Rossi A, Ciafrè S, Balsamo M, Pierimarchi
P and Santoro MG: Targeting the heat shock factor 1 by RNA
interference: a potent tool to enhance hyperthermochemotherapy
efficacy in cervical cancer. Cancer Res. 66:7678–7685. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Sakurai H and Enoki Y: Novel aspects of
heat shock factors: DNA recognition, chromatin modulation and gene
expression. FEBS J. 277:4140–4149. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Westwood JT, Clos J and Wu C:
Stress-induced oligomerization and chromosomal relocalization of
heat-shock factor. Nature. 353:822–827. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Mariner PD, Walters RD, Espinoza CA, et
al: Human Alu RNA is a modular transacting repressor of mRNA
transcription during heat shock. Mol Cell. 29:499–509. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Spriggs KA, Bushell M and Willis AE:
Translational regulation of gene expression during conditions of
cell stress. Mol Cell. 40:228–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Furusawa Y, Tabuchi Y, Wada S, Takasaki I,
Ohtsuka K and Kondo T: Identification of biological functions and
gene networks regulated by heat stress in U937 human lymphoma
cells. Int J Mol Med. 28:143–151. 2011.PubMed/NCBI
|
|
44.
|
Tabuchi Y, Wada S, Furusawa Y, Ohtsuka K
and Kondo T: Gene networks related to the cell death elicited by
hyperthermia in human oral squamous cell carcinoma HSC-3 cells. Int
J Mol Med. 29:380–386. 2012.PubMed/NCBI
|
|
45.
|
Tabuchi Y, Furusawa Y, Kariya A, Wada S,
Ohtsuka K and Kondo T: Common gene expression patterns responsive
to mild temperature hyperthermia in normal human fibroblastic
cells. Int J Hyperthermia. 29:38–50. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Jin X, Eroglu B, Moskophidis D and Mivechi
NF: Targeted deletion of Hsf1, 2, and 4 genes in mice. Methods Mol
Biol. 787:1–20. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Xiao X, Zuo X, Davis AA, et al: HSF1 is
required for extra-embryonic development, postnatal growth and
protection during inflammatory responses in mice. EMBO J.
18:5943–5952. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Homma S, Jin X, Wang G, et al:
Demyelination, astrogliosis, and accumulation of ubiquitinated
proteins, hallmarks of CNS disease in hsf1-deficient mice. J
Neurosci. 27:7974–7986. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Zou Y, Zhu W, Sakamoto M, et al: Heat
shock transcription factor 1 protects cardiomyocytes from
ischemia/reperfusion injury. Circulation. 108:3024–3030. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Takaki E, Fujimoto M, Sugahara K, et al:
Maintenance of olfactory neurogenesis requires HSF1, a major heat
shock transcription factor in mice. J Biol Chem. 281:4931–4937.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Kallio M, Chang Y, Manuel M, et al: Brain
abnormalities, defective meiotic chromosome synapsis and female
subfertility in HSF2 null mice. EMBO J. 21:2591–2601. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Fujimoto M, Izu H, Seki K, et al: HSF4 is
required for normal cell growth and differentiation during mouse
lens development. EMBO J. 23:4297–4306. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Bishop NA and Guarente L: Genetic links
between diet and lifespan: Shared mechanisms from yeast to humans.
Nat Rev Genet. 8:835–844. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Neef DW, Jaeger AM and Thiele DJ: Heat
shock transcription factor 1 as a therapeutic target in
neurodegenerative diseases. Nat Rev Drug Discov. 10:930–944. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Ciocca DR and Calderwood SK: Heat shock
proteins in cancer: diagnostic, prognostic, predictive, and
treatment implications. Cell Stress Chaperones. 10:86–103. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Ciocca DR, Arrigo AP and Calderwood SK:
Heat shock proteins and heat shock factor 1 in carcinogenesis and
tumor development: an update. Arch Toxicol. 87:19–48. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Tabuchi Y, Kariya A, Yunoki T and Kondo T:
Genes involved in the cell death induced by knockdown of heat shock
transcription factor 1 in human oral squamous cell carcinoma HSC-3
cells. Thermal Med. 28:29–42. 2012. View Article : Google Scholar
|
|
59.
|
Meng L, Gabai VL and Sherman MY:
Heat-shock transcription factor HSF1 has a critical role in human
epidermal growth factor receptor-2-induced cellular transformation
and tumorigenesis. Oncogene. 29:5204–5213. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Hahn JS, Hu Z, Thiele DJ and Iyer VR:
Genome-wide analysis of the biology of stress responses through
heat shock transcription factor. Mol Cell Biol. 24:5249–5256. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Trinklein ND, Murray JI, Hartman SJ,
Botstein D and Myers RM: The role of heat shock transcription
factor 1 in the genome-wide regulation of the mammalian heat shock
response. Mol Biol Cell. 15:1254–1261. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Page TJ, Sikder D, Yang L, et al:
Genome-wide analysis of human HSF1 signaling reveals a
transcriptional program linked to cellular adaptation and survival.
Mol Biosyst. 2:627–639. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Min JN, Huang L, Zimonjic DB, Moskophidis
D and Mivechi NF: Selective suppression of lymphomas by functional
loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors.
Oncogene. 26:5086–5097. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Aghdassi A, Phillips P, Dudeja V, et al:
Heat shock protein 70 increases tumorigenicity and inhibits
apoptosis in pancreatic adenocarcinoma. Cancer Res. 67:616–625.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Yoon YJ, Kim JA, Shin KD, et al: KRIBB11
inhibits HSP70 synthesis through inhibition of heat shock factor 1
function by impairing the recruitment of positive transcription
elongation factor b to the hsp70 promoter. J Biol Chem.
286:1737–1747. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Xia Y, Liu Y, Rocchi P, et al: Targeting
heat shock factor 1 with a triazole nucleoside analog to elicit
potent anticancer activity on drug-resistant pancreatic cancer.
Cancer Lett. 318:145–153. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Whitesell L and Lindquist S: Inhibiting
the transcription factor HSF1 as an anticancer strategy. Expert
Opin Ther Targets. 13:469–478. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Xia Y, Rocchi P, Iovanna JL and Peng L:
Targeting heat shock response pathways to treat pancreatic cancer.
Drug Discov Today. 17:35–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Chen SS, Michael A and Butler-Manuel SA:
Advances in the treatment of ovarian cancer: a potential role of
antiinflammatory phytochemicals. Discov Med. 13:7–17.
2012.PubMed/NCBI
|
|
70.
|
Matsumoto H, Hayashi S, Shioura H, et al:
Suppression of heat-induced HSF activation by CDDP in human
glioblastoma cells. Int J Radiat Oncol Biol Phys. 41:915–920. 1998.
View Article : Google Scholar : PubMed/NCBI
|