|
1
|
Bannert N and Kurth R: Retroelements and
the human genome: new perspectives on an old relation. Proc Natl
Acad Sci USA. 101(Suppl 2): S14572–S14579. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
de Parseval N and Heidmann T: Human
endogenous retroviruses: from infectious elements to human genes.
Cytogenet Genome Res. 110:318–332. 2005.PubMed/NCBI
|
|
3
|
Leib-Mosch C, Haltmeier M, Werner T, et
al: Genomic distribution and transcription of solitary HERV-K LTRs.
Genomics. 18:261–269. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tonjes RR, Lower R, Boller K, et al:
HERV-K: the biologically most active human endogenous retrovirus
family. J Acquir Immune Defic Syndr Hum Retrovirol. 13(Suppl 1):
S261–S267. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Glazkova DV, Nadezhdin EV, Vinogradova TV,
et al: Nucleotide sequences of long terminal repeats of the human
endogenous retrovirus (LTR HERV-K) on the short arm of chromosome
7: identification, analysis and evaluation of transcriptional
activity. Genetika. 39:702–708. 2003.(In Russian).
|
|
6
|
Kurdyukov SG, Lebedev YB, Artamonova II,
et al: Full-sized HERV-K (HML-2) human endogenous retroviral LTR
sequences on human chromosome 21: map locations and evolutionary
history. Gene. 273:51–61. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Smit AF: Interspersed repeats and other
mementos of transposable elements in mammalian genomes. Curr Opin
Genet Dev. 9:657–663. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Belancio VP, Roy-Engel AM and Deininger
PL: All y’all need to know ‘bout retroelements in cancer. Semin
Cancer Biol. 20:200–210. 2010.
|
|
9
|
Lamprecht B, Walter K, Kreher S, et al:
Derepression of an endogenous long terminal repeat activates the
CSF1R proto-oncogene in human lymphoma. Nat Med. 16:571–579. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Papadimitriou E, Mikelis C, Lampropoulou
E, et al: Roles of pleiotrophin in tumor growth and angiogenesis.
Eur Cytokine Netw. 20:180–190. 2009.PubMed/NCBI
|
|
11
|
Sin HS, Huh JW, Kim DS, et al:
Transcriptional control of the HERV-H LTR element of the GSDML gene
in human tissues and cancer cells. Arch Virol. 151:1985–1994. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Feuchter A and Mager D: Functional
heterogeneity of a large family of human LTR-like promoters and
enhancers. Nucleic Acids Res. 18:1261–1270. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Medstrand P, Landry JR and Mager DL: Long
terminal repeats are used as alternative promoters for the
endothelin B receptor and apolipoprotein C-I genes in humans. J
Biol Chem. 276:1896–1903. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dunn CA and Mager DL: Transcription of the
human and rodent SPAM1/PH-20 genes initiates within an ancient
endogenous retrovirus. BMC Genomics. 6:472005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dunn CA, Medstrand P and Mager DL: An
endogenous retroviral long terminal repeat is the dominant promoter
for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl
Acad Sci USA. 100:12841–12846. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dunn CA, van de Lagemaat LN, Baillie GJ
and Mager DL: Endogenous retrovirus long terminal repeats as
ready-to-use mobile promoters: the case of primate beta3GAL-T5.
Gene. 364:2–12. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mager DL, Hunter DG, Schertzer M and
Freeman JD: Endogenous retroviruses provide the primary
polyadenylation signal for two new human genes (HHLA2 and HHLA3).
Genomics. 59:255–263. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Baust C, Seifarth W, Germaier H, Hehlmann
R and Leib-Mosch C: HERV-K-T47D-Related long terminal repeats
mediate polyadenylation of cellular transcripts. Genomics.
66:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Samuelson LC, Wiebauer K, Snow CM and
Meisler MH: Retroviral and pseudogene insertion sites reveal the
lineage of human salivary and pancreatic amylase genes from a
single gene during primate evolution. Mol Cell Biol. 10:2513–2520.
1990.PubMed/NCBI
|
|
20
|
Domansky AN, Kopantzev EP, Snezhkov EV,
Lebedev YB, Leib-Mosch C and Sverdlov ED: Solitary HERV-K LTRs
possess bi-directional promoter activity and contain a negative
regulatory element in the U5 region. FEBS Lett. 472:191–195. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ruda VM, Akopov SB, Trubetskoy DO, et al:
Tissue specificity of enhancer and promoter activities of a
HERV-K(HML-2) LTR. Virus Res. 104:11–16. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kapitonov VV and Jurka J: The long
terminal repeat of an endogenous retrovirus induces alternative
splicing and encodes an additional carboxy-terminal sequence in the
human leptin receptor. J Mol Evol. 48:248–251. 1999. View Article : Google Scholar
|
|
23
|
Kato N, Pfeifer-Ohlsson S, Kato M, Larsson
E, Rydnert J, Ohlsson R and Cohen M: Tissue-specific expression of
human provirus ERV3 mRNA in human placenta: two of the three ERV3
mRNAs contain human cellular sequences. J Virol. 61:2182–2191.
1987.PubMed/NCBI
|
|
24
|
Kjellman C, Sjogren HO, Salford LG and
Widegren B: HERV-F (XA34) is a full-length human endogenous
retrovirus expressed in placental and fetal tissues. Gene.
239:99–107. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mallet F, Bouton O, Prudhomme S, et al:
The endogenous retroviral locus ERVWE1 is a bona fide gene involved
in hominoid placental physiology. Proc Natl Acad Sci USA.
101:1731–1736. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Prudhomme S, Oriol G and Mallet F: A
retroviral promoter and a cellular enhancer define a bipartite
element which controls env ERVWE1 placental expression. J Virol.
78:12157–12168. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu M and Eiden MV: Role of human
endogenous retroviral long terminal repeats (LTRs) in maintaining
the integrity of the human germ line. Viruses. 3:901–905. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Landry JR and Mager DL: Functional
analysis of the endogenous retroviral promoter of the human
endothelin B receptor gene. J Virol. 77:7459–7466. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Seidl C, Donner H, Petershofen E, Usadel
KH, Seifried E, Kaltwasser JP and Badenhoop K: An endogenous
retroviral long terminal repeat at the HLA-DQB1 gene locus confers
susceptibility to rheumatoid arthritis. Hum Immunol. 60:63–68.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pascual M, Martin J, Nieto A, Giphart MJ,
van der Slik AR, de Vries RR and Zanelli E: Distribution of
HERV-LTR elements in the 5′-flanking region of HLA-DQB1 and
association with autoimmunity. Immunogenetics. 53:114–118.
2001.PubMed/NCBI
|
|
31
|
Hegyi H: GABBR1 has a HERV-W LTR in its
regulatory region - a possible implication for schizophrenia. Biol
Direct. 8:52013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kamp C, Hirschmann P, Voss H, Huellen K
and Vogt PH: Two long homologous retroviral sequence blocks in
proximal Yq11 cause AZFa microdeletions as a result of
intrachromosomal recombination events. Hum Mol Genet. 9:2563–2572.
2000. View Article : Google Scholar
|
|
33
|
Goering W, Ribarska T and Schulz WA:
Selective changes of retroelement expression in human prostate
cancer. Carcinogenesis. 32:1484–1492. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Armbruester V, Sauter M, Krautkraemer E,
et al: A novel gene from the human endogenous retrovirus K
expressed in transformed cells. Clin Cancer Res. 8:1800–1807.
2002.PubMed/NCBI
|
|
35
|
Chen T, Meng Z, Gan Y, et al: The viral
oncogene Np9 acts as a critical molecular switch for co-activating
beta-catenin, ERK, Akt and Notch1 and promoting the growth of human
leukemia stem/progenitor cells. Leukemia. Jan 11–2013.(Epub ahead
of print). View Article : Google Scholar
|
|
36
|
Boese A, Sauter M, Galli U, et al: Human
endogenous retrovirus protein cORF supports cell transformation and
associates with the promyelocytic leukemia zinc finger protein.
Oncogene. 19:4328–4336. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Singh S, Kaye S, Francis N, Peston D, Gore
M, McClure M and Bunker C: Human endogenous retrovirus K (HERV-K)
rec mRNA is expressed in primary melanoma but not in benign naevi
or normal skin. Pigment Cell Melanoma Res. 26:426–428. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sin HS, Huh JW, Kim DS, et al: Endogenous
retrovirus-related sequences provide an alternative transcript of
MCJ genes in human tissues and cancer cells. Genes Genet Syst.
81:333–339. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Romanish MT, Lock WM, van de Lagemaat LN,
Dunn CA and Mager DL: Repeated recruitment of LTR retrotransposons
as promoters by the anti-apoptotic locus NAIP during mammalian
evolution. PLoS Genet. 3:e102007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lengauer C, Kinzler KW and Vogelstein B:
Genetic instabilities in human cancers. Nature. 396:643–649. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin J, Gan CM, Zhang X, et al: A
multidimensional analysis of genes mutated in breast and colorectal
cancers. Genome Res. 17:1304–1318. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Schulte AM, Lai S, Kurtz A, Czubayko F,
Riegel AT and Wellstein A: Human trophoblast and choriocarcinoma
expression of the growth factor pleiotrophin attributable to
germ-line insertion of an endogenous retrovirus. Proc Natl Acad Sci
USA. 93:14759–14764. 1996. View Article : Google Scholar
|
|
43
|
Stoye JP: Endogenous retroviruses: still
active after all these years? Curr Biol. 11:R914–R916.
2001.PubMed/NCBI
|
|
44
|
Romanish MT, Cohen CJ and Mager DL:
Potential mechanisms of endogenous retroviral-mediated genomic
instability in human cancer. Semin Cancer Biol. 20:246–253. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jha AR, Pillai SK, York VA, et al:
Cross-sectional dating of novel haplotypes of HERV-K 113 and HERV-K
115 indicate these proviruses originated in Africa before Homo
sapiens. Mol Biol Evol. 26:2617–2626. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Turner G, Barbulescu M, Su M,
Jensen-Seaman MI, Kidd KK and Lenz J: Insertional polymorphisms of
full-length endogenous retroviruses in humans. Curr Biol.
11:1531–1535. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dangel AW, Mendoza AR, Baker BJ, Daniel
CM, Carroll MC, Wu LC and Yu CY: The dichotomous size variation of
human complement C4 genes is mediated by a novel family of
endogenous retroviruses, which also establishes species-specific
genomic patterns among Old World primates. Immunogenetics.
40:425–436. 1994. View Article : Google Scholar
|
|
48
|
Burmeister T, Ebert AD, Pritze W,
Loddenkemper C, Schwartz S and Thiel E: Insertional polymorphisms
of endogenous HERV-K113 and HERV-K115 retroviruses in breast cancer
patients and age-matched controls. AIDS Res Hum Retroviruses.
20:1223–1229. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang-Johanning F, Radvanyi L, Rycaj K, et
al: Human endogenous retrovirus K triggers an antigen-specific
immune response in breast cancer patients. Cancer Res.
68:5869–5877. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Contreras-Galindo R, Kaplan MH, Leissner
P, et al: Human endogenous retrovirus K (HML-2) elements in the
plasma of people with lymphoma and breast cancer. J Virol.
82:9329–9336. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Golan M, Hizi A, Resau JH, Yaal-Hahoshen
N, Reichman H, Keydar I and Tsarfaty I: Human endogenous retrovirus
(HERV-K) reverse transcriptase as a breast cancer prognostic
marker. Neoplasia. 10:521–533. 2008.PubMed/NCBI
|
|
52
|
Gimenez J, Montgiraud C, Pichon JP, et al:
Custom human endogenous retroviruses dedicated microarray
identifies self-induced HERV-W family elements reactivated in
testicular cancer upon methylation control. Nucleic Acids Res.
38:2229–2246. 2010. View Article : Google Scholar
|
|
53
|
Liang Q, Xu Z, Xu R, Wu L and Zheng S:
Expression patterns of non-coding spliced transcripts from human
endogenous retrovirus HERV-H elements in colon cancer. PLoS One.
7:e299502012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Stengel S, Fiebig U, Kurth R and Denner J:
Regulation of human endogenous retrovirus-K expression in melanomas
by CpG methylation. Genes Chromosomes Cancer. 49:401–411. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Buzdin AA, Lebedev IuB and Sverdlov ED:
Human genome-specific HERV-K intron LTR genes have a random
orientation relative to the direction of transcription, and,
possibly, participated in antisense gene expression regulation.
Bioorg Khim. 29:103–106. 2003.(In Russian).
|
|
56
|
Li F, Nellaker C, Yolken RH and Karlsson
H: A systematic evaluation of expression of HERV-W elements;
influence of genomic context, viral structure and orientation. BMC
Genomics. 12:222011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gosenca D, Gabriel U, Steidler A, et al:
HERV-E-mediated modulation of PLA2G4A transcription in urothelial
carcinoma. PLoS One. 7:e493412012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim DS and Hahn Y: Human-specific
antisense transcripts induced by the insertion of transposable
element. Int J Mol Med. 26:151–157. 2010.PubMed/NCBI
|
|
59
|
Xu L, Elkahloun AG, Candotti F, et al: A
novel function of RNAs arising from the long terminal repeat of
human endogenous retrovirus 9 in cell cycle arrest. J Virol.
87:25–36. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gaudray G, Gachon F, Basbous J,
Biard-Piechaczyk M, Devaux C and Mesnard JM: The complementary
strand of the human T-cell leukemia virus type 1 RNA genome encodes
a bZIP transcription factor that down-regulates viral
transcription. J Virol. 76:12813–12822. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Arnold J, Zimmerman B, Li M, Lairmore MD
and Green PL: Human T-cell leukemia virus type-1 antisense-encoded
gene, Hbz, promotes T-lymphocyte proliferation. Blood.
112:3788–3797. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Katsumata K, Ikeda H, Sato M, et al:
Cytokine regulation of env gene expression of human endogenous
retrovirus-R in human vascular endothelial cells. Clin Immunol.
93:75–80. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lee JR, Ahn K, Kim YJ, Jung YD and Kim HS:
Radiation-induced human endogenous retrovirus (HERV)-R env gene
expression by epigenetic control. Radiat Res. 178:379–384. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Reiche J, Pauli G and Ellerbrok H:
Differential expression of human endogenous retrovirus K
transcripts in primary human melanocytes and melanoma cell lines
after UV irradiation. Melanoma Res. 20:435–440. 2010.PubMed/NCBI
|
|
65
|
Toufaily C, Landry S, Leib-Mosch C,
Rassart E and Barbeau B: Activation of LTRs from different human
endogenous retrovirus (HERV) families by the HTLV-1 tax protein and
T-cell activators. Viruses. 3:2146–2159. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kwun HJ, Han HJ, Lee WJ, Kim HS and Jang
KL: Transactivation of the human endogenous retrovirus K long
terminal repeat by herpes simplex virus type 1 immediate early
protein 0. Virus Res. 86:93–100. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ruprecht K, Obojes K, Wengel V, et al:
Regulation of human endogenous retrovirus W protein expression by
herpes simplex virus type 1: implications for multiple sclerosis. J
Neurovirol. 12:65–71. 2006. View Article : Google Scholar
|
|
68
|
Nellaker C, Yao Y, Jones-Brando L, Mallet
F, Yolken RH and Karlsson H: Transactivation of elements in the
human endogenous retrovirus W family by viral infection.
Retrovirology. 3:442006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Katoh I, Mirova A, Kurata S, et al:
Activation of the long terminal repeat of human endogenous
retrovirus K by melanoma-specific transcription factor MITF-M.
Neoplasia. 13:1081–1092. 2011.PubMed/NCBI
|
|
70
|
Lee YN and Bieniasz PD: Reconstitution of
an infectious human endogenous retrovirus. PLoS Pathog. 3:e102007.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lee JW and Kim HS: Endogenous retrovirus
HERV-I LTR family in primates: sequences, phylogeny, and evolution.
Arch Virol. 151:1651–1658. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yi JM and Kim HS: Evolutionary implication
of human endogenous retrovirus HERV-H family. J Hum Genet.
49:215–219. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mager DL and Henthorn PS: Identification
of a retrovirus-like repetitive element in human DNA. Proc Natl
Acad Sci USA. 81:7510–7514. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Blond JL, Beseme F, Duret L, et al:
Molecular characterization and placental expression of HERV-W, a
new human endogenous retrovirus family. J Virol. 73:1175–1185.
1999.PubMed/NCBI
|
|
75
|
Gifford R and Tristem M: The evolution,
distribution and diversity of endogenous retroviruses. Virus Genes.
26:291–315. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Strazzullo M, Parisi T, Di Cristofano A,
Rocchi M and La Mantia G: Characterization and genomic mapping of
chimeric ERV9 endogenous retroviruses-host gene transcripts. Gene.
206:77–83. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tonjes RR, Czauderna F and Kurth R:
Genome-wide screening, cloning, chromosomal assignment, and
expression of full-length human endogenous retrovirus type K. J
Virol. 73:9187–9195. 1999.PubMed/NCBI
|
|
78
|
Wang-Johanning F, Frost AR, Jian B, Epp L,
Lu DW and Johanning GL: Quantitation of HERV-K env gene expression
and splicing in human breast cancer. Oncogene. 22:1528–1535. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Herbst H, Sauter M and Mueller-Lantzsch N:
Expression of human endogenous retrovirus K elements in germ cell
and trophoblastic tumors. Am J Pathol. 149:1727–1735.
1996.PubMed/NCBI
|
|
80
|
Huh JW, Kim DS, Kang DW, et al:
Transcriptional regulation of GSDML gene by antisense-oriented
HERV-H LTR element. Arch Virol. 153:1201–1205. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sun Q, Yang J, Xing G, Sun Q, Zhang L and
He F: Expression of GSDML associates with tumor progression in
uterine cervix cancer. Transl Oncol. 1:73–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Backman SA, Ghazarian D, So K, et al:
Early onset of neoplasia in the prostate and skin of mice with
tissue-specific deletion of Pten. Proc Natl Acad Sci USA.
101:1725–1730. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tsirmoula S, Dimas K, Hatziapostolou M,
Lamprou M, Ravazoula P and Papadimitriou E: Implications of
pleiotrophin in human PC3 prostate cancer cell growth in vivo.
Cancer Sci. 103:1826–1832. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Landry JR, Rouhi A, Medstrand P and Mager
DL: The Opitz syndrome gene Mid1 is transcribed from a human
endogenous retroviral promoter. Mol Biol Evol. 19:1934–1942. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kowalski PE, Freeman JD and Mager DL:
Intergenic splicing between a HERV-H endogenous retrovirus and two
adjacent human genes. Genomics. 57:371–379. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gebefügi E, Brunmeir R, Weierich C, Wolff
H, Brack-Werner R and Leib M: Activation of a HERV-H LTR induces
expression of an aberrant calbindin protein in human prostate
carcinoma cells. Retrovirology. 6(Suppl 2): P482009.
|