Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October 2013 Volume 32 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October 2013 Volume 32 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells

  • Authors:
    • Carmen Härdtner
    • Caroline Mörke
    • Reinhard Walther
    • Carmen Wolke
    • Uwe Lendeckel
  • View Affiliations / Copyright

    Affiliations: Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D‑17475 Greifswald, Germany
    Copyright: © Härdtner et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 795-804
    |
    Published online on: August 14, 2013
       https://doi.org/10.3892/ijmm.2013.1469
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The activation of the classical angiotensin (Ang)‑converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis of the renin‑angiotensin system (RAS) has been associated with islet dysfunction and insulin resistance. Hyperglycaemia, hypertension and obesity, major components of metabolic syndrome, are all associated with increased systemic and tissue levels of Ang II. Whereas it is well established that Ang II, by binding to AT1R, impairs glucose‑stimulated insulin secretion and insulin signaling, the contribution of alternative RAS axes to β‑cell function remains to be fully elucidated. In this study, using the BRIN‑BD11 rat insulinoma cell line, we i) examined the basal expression levels of components of classical and alternative RAS axes and ii) investigated the effects of normal (5.5 mM) and elevated (11, 15, 25 mM) glucose concentrations on their expression and/or enzymatic activity by means of reverse transcription quantitative PCR (RT-qPCR), immunoblot analysis and enzymatic activity assays. The results correlated with the insulin production and release. Essential components of all RAS axes were found to be expressed in the BRIN‑BD11 cells. Components of the alternative RAS axes, ACE2, neutral endopeptidase 24.11, Mas receptor (Mas), aminopeptidases A (APA) and N (APN) and insulin‑regulated aminopeptidase (IRAP) showed an increased expression/activity in response to high glucose. These alterations were paralleled by the glucose‑dependent increase in insulin production and release. By contrast, components of the classical RAS axis, ACE, AT1R and Ang II type 2 receptor (AT2R), remained largely unaffected under these conditions. Glucose induced the activation of the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes simultaneously with the stimulation of insulin production/release. Our data suggest the existence of a functional link between the local RAS axis and pancreatic β‑cell function; however, further studies are required to confirm this hypothesis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Ahmed AM: History of diabetes mellitus. Saudi Med J. 23:373–378. 2002.

2 

International Diabetes Federation. The Global Burden. IDR Diabetes Atlas. 5th edition. 2011, http://www.idf.org/diabetesatlas/5e/the-global-burden.

3 

Himsworth HP: Diatebetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Lancet. 127–130. 1936.

4 

Centers for Disease Control Prevention (CDC). 2011 National Diabetes Fact Sheet Publications Division of Diabetes Translation. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; Atlanta, GA: 2011, http://www.cdc.gov/diabetes/pubs/factsheet11.htm.

5 

Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 37:1595–1607. 1988. View Article : Google Scholar : PubMed/NCBI

6 

Ripsin CM, Kang H and Urban RJ: Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician. 79:29–36. 2009.PubMed/NCBI

7 

Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG and Willett WC: Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 345:790–797. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Centers for Disease Control and Prevention (CDC). Prevalence of Overweight and Obesity Among Adults with Diagnosed Diabetes - United States, 1988–1994 and 1999–2002. Morbidity and Mortality Weekly Report (MMWR). 53:pp. 1066–1068. 2004, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5345a2.htm.

9 

Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB and Melzer D: Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 300:1303–1310. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Tigerstedt R and Bergman PG: Niere und Kreislauf. Skand Arch Physiol. 8:223–271. 1898. View Article : Google Scholar

11 

Skeggs LT Jr, Kahn JR and Shumway NP: The preparation and function of the hypertension-converting enzyme. J Exp Med. 103:295–299. 1956. View Article : Google Scholar : PubMed/NCBI

12 

Touyz RM and Schiffrin EL: Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 52:639–672. 2000.PubMed/NCBI

13 

Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR and Davisson RL: Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 91:1038–1045. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G and Turner AJ: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 275:33238–33243. 2000. View Article : Google Scholar

15 

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE and Acton S: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 87:E1–E9. 2000.

16 

Rice GI, Thomas DA, Grant PJ, Turner AJ and Hooper NM: Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 383:45–51. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Chappell MC, Modrall JG, Diz DI and Ferrario CM: Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib Nephrol. 143:77–89. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Santos RA and Ferreira AJ: Angiotensin-(1-7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens. 16:122–128. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Bank U, Tadje J, Täger M, Wolke C, Bukowska A, Ittenson A, Reinhold D, Helmuth M, Ansorge S, Shakespeare A, Vieth M, Malfertheiner P, Naumann M and Lendeckel U: Inhibition of alanyl-aminopeptidase on CD4+CD25+ regulatory T-cells enhances expression of FoxP3 and TGF-β1 and ameliorates acute colitis in mice. Int J Mol Med. 20:483–492. 2007.PubMed/NCBI

20 

Wolke C, Tadje J, Bukowska A, Täger M, Bank U, Ittenson A, Ansorge S and Lendeckel U: Assigning the phenotype of a natural regulatory T-cell to the human T-cell line, KARPAS-299. Int J Mol Med. 17:275–278. 2006.PubMed/NCBI

21 

Lendeckel U, Arndt M, Frank K, Wex T and Ansorge S: Role of alanyl aminopeptidase in growth and function of human T cells (Review). Int J Mol Med. 4:17–27. 1999.PubMed/NCBI

22 

Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM and Chai SY: Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 276:48623–48626. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Jordens I, Molle D, Xiong W, Keller SR and McGraw TE: Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles. Mol Biol Cell. 21:2034–2044. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Takeuchi M, Itakura A, Okada M, Mizutani S and Kikkawa F: Impaired insulin-regulated membrane aminopeptidase translocation to the plasma membrane in adipocytes of Otsuka Long Evans Tokushima Fatty rats. Nagoya J Med Sci. 68:155–163. 2006.PubMed/NCBI

25 

Keller SR, Davis AC and Clairmont KB: Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis. J Biol Chem. 277:17677–17686. 2002. View Article : Google Scholar

26 

Siebelmann M, Wensing J and Verspohl EJ: The impact of Ang II and IV on INS-1 cells and on blood glucose and plasma insulin. J Recept Signal Transduct Res. 30:234–245. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Wong YC, Sim MK and Lee KO: Des-aspartate-angiotensin-I and angiotensin IV improve glucose tolerance and insulin signalling in diet-induced hyperglycaemic mice. Biochem Pharmacol. 82:1198–1208. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Paul M, Poyan Mehr A and Kreutz R: Physiology of local renin-angiotensin systems. Physiol Rev. 86:747–803. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Leung PS: The physiology of a local renin-angiotensin system in the pancreas. J Physiol. 580:31–37. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Lavoie JL and Sigmund CD: Minireview: overview of the renin-angiotensin system - an endocrine and paracrine system. Endocrinology. 144:2179–2183. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, Boas WW, Dos Santos RA and Simões e Silva AC: The renin-angiotensin system and diabetes: an update. Vasc Health Risk Manag. 4:787–803. 2008.

32 

Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R and Genest J: Renin in dog brain. Am J Physiol. 221:1733–1737. 1971.PubMed/NCBI

33 

Yusuf S, Sleight P, Pogue J, Bosch J, Davies R and Dagenais G: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 342:145–153. 2000. View Article : Google Scholar

34 

Jarvis S: Angiotensin receptor blockers in clinical practice-implications of the ONTARGET study. J Int Med Res. 40:10–17. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Folli F, Saad MJ, Velloso L, Hansen H, Carandente O, Feener EP and Kahn CR: Crosstalk between insulin and angiotensin II signalling systems. Exp Clin Endocrinol Diabetes. 107:133–139. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Nakashima H, Suzuki H, Ohtsu H, Chao JY, Utsunomiya H, Frank GD and Eguchi S: Angiotensin II regulates vascular and endothelial dysfunction: recent topics of angiotensin II type-1 receptor signaling in the vasculature. Curr Vasc Pharmacol. 4:67–78. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Passos-Silva DG, Verano-Braga T and Santos RA: Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci (Lond). 124:443–456. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Santos SH, Fernandes LR, Mario EG, Ferreira AV, Pôrto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N and Santos RA: Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes. 57:340–347. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Giani JF, Mayer MA, Muñoz MC, Silberman EA, Höcht C, Taira CA, Gironacci MM, Turyn D and Dominici FP: Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab. 296:E262–E271. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Liu C, Lv XH, Li HX, Cao X, Zhang F, Wang L, Yu M and Yang JK: Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol. 49:291–299. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI

42 

Chen H, Roques BP and Fournié-Zaluski MC: Design of the first highly potent and selective aminopeptidase N (EC 3.4.11.2) inhibitor. Bioorg Med Chem Lett. 9:1511–1516. 1999. View Article : Google Scholar

43 

Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlöf B, Deanfield J, Diez J, Drexler H, Ferrari R, van Gilst W, Hansson L, Hornig B, Husain A, Johnston C, Lazar H, Lonn E, Lüscher T, Mancini J, Mimran A, Pepine C, Rabelink T, Remme W, Ruilope L, Ruzicka M, Schunkert H, Swedberg K, Unger T, Vaughan D and Weber M; Working Group on Tissue Angiotensin-converting enzyme, International Society of Cardiovascular Pharmacotherapy. The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am J Cardiol. 88:1L–20L. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Goossens GH, Blaak EE and van Baak MA: Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. Obes Rev. 4:43–55. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Prasannarong M, Santos FR and Henriksen EJ: ANG-(1-7) reduces ANG II-induced insulin resistance by enhancing Akt phosphorylation via a Mas receptor-dependent mechanism in rat skeletal muscle. Biochem Biophys Res Commun. 426:369–373. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Tikellis C, Cooper ME and Thomas MC: Role of the renin-angiotensin system in the endocrine pancreas: implications for the development of diabetes. Int J Biochem Cell Biol. 38:737–751. 2006. View Article : Google Scholar : PubMed/NCBI

47 

McClenaghan NH, Barnett CR, Ah-Sing E, Abdel-Wahab YH, O’Harte FP, Yoon TW, Swanston-Flatt SK and Flatt PR: Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes. 45:1132–1140. 1996. View Article : Google Scholar : PubMed/NCBI

48 

Tahmasebi M, Puddefoot JR, Inwang ER and Vinson GP: The tissue renin-angiotensin system in human pancreas. J Endocrinol. 161:317–322. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC and Cooper ME: Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat. Diabetes. 53:989–997. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Lau T, Carlsson PO and Leung PS: Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 47:240–248. 2004. View Article : Google Scholar

51 

Chu KY, Lau T, Carlsson PO and Leung PS: Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes. Diabetes. 55:367–374. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Regoli M, Bendayan M, Fonzi L, Sernia C and Bertelli E: Angiotensinogen localization and secretion in the rat pancreas. J Endocrinol. 179:81–89. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Chu KY, Cheng Q, Chen C, Au LS, Seto SW, Tuo Y, Motin L, Kwan YW and Leung PS: Angiotensin II exerts glucose-dependent effects on Kv currents in mouse pancreatic beta-cells via angiotensin II type 2 receptors. Am J Physiol Cell Physiol. 298:C313–C323. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Wong PF, Lee SS and Cheung WT: Immunohistochemical colocalization of type II angiotensin receptors with somatostatin in rat pancreas. Regul Pept. 117:195–205. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Bindom SM and Lazartigues E: The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 302:193–202. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Kobayashi H, Mitsui T, Nomura S, Ohno Y, Kadomatsu K, Muramatsu T, Nagasaka T and Mizutani S: Expression of glucose transporter 4 in the human pancreatic islet of Langerhans. Biochem Biophys Res Commun. 314:1121–1125. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Kobayashi H, Nomura S, Mitsui T, Ito T, Kuno N, Ohno Y, Kadomatsu K, Muramatsu T, Nagasaka T and Mizutani S: Tissue distribution of placental leucine aminopeptidase/oxytocinase during mouse pregnancy. J Histochem Cytochem. 52:113–121. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Lupi R, Del Guerra S, Bugliani M, Boggi U, Mosca F, Torri S, Del Prato S and Marchetti P: The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur J Endocrinol. 154:355–361. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Leung KK and Leung PS: Effects of hyperglycemia on angiotensin II receptor type 1 expression and insulin secretion in an INS-1E pancreatic beta-cell line. JOP. 9:290–299. 2008.PubMed/NCBI

60 

Ko SH, Hong OK, Kim JW, Ahn YB, Song KH, Cha BY, Son HY, Kim MJ, Jeong IK and Yoon KH: High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J Cell Biochem. 98:343–355. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Muangman P, Tamura RN and Gibran NS: Antioxidants inhibit fatty acid and glucose-mediated induction of neutral endopeptidase gene expression in human microvascular endothelial cells. J Am Coll Surg. 200:208–215. 2005. View Article : Google Scholar

62 

Muangman P, Spenny ML, Tamura RN and Gibran NS: Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells. Shock. 19:508–512. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Coelho MS, Lopes KL, Freitas Rde A, de Oliveira-Sales EB, Bergasmaschi CT, Campos RR, Casarini DE, Carmona AK, Araújo Mda S, Heimann JC and Dolnikoff MS: High sucrose intake in rats is associated with increased ACE2 and angiotensin-(1-7) levels in the adipose tissue. Regul Pept. 162:61–67. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Mohammed AM, Syeda K, Hadden T and Kowluru A: Upregulation of phagocyte-like NADPH oxidase by cytokines in pancreatic beta-cells: attenuation of oxidative and nitrosative stress by 2-bromopalmitate. Biochem Pharmacol. 85:109–114. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Syed I, Kyathanahalli CN, Jayaram B, Govind S, Rhodes CJ, Kowluru RA and Kowluru A: Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes. 60:2843–2852. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Michalska M, Wolf G, Walther R and Newsholme P: Effects of pharmacological inhibition of NADPH oxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2-induced mouse islet or clonal pancreatic β-cell dysfunction. Biosci Rep. 30:445–453. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Abdel-Rahman EM, Abadir PM and Siragy HM: Regulation of renal 12(S)-hydroxyeicosatetraenoic acid in diabetes by angiotensin AT1 and AT2 receptors. Am J Physiol Regul Integr Comp Physiol. 295:R1473–R1478. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Carlsson PO, Berne C and Jansson L: Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia. 41:127–133. 1998. View Article : Google Scholar : PubMed/NCBI

69 

Giani JF, Gironacci MM, Muñoz MC, Peña C, Turyn D and Dominici FP: Angiotensin-(1-7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol. 293:H1154–1163. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Härdtner C, Mörke C, Walther R, Wolke C and Lendeckel U: High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells. Int J Mol Med 32: 795-804, 2013.
APA
Härdtner, C., Mörke, C., Walther, R., Wolke, C., & Lendeckel, U. (2013). High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells. International Journal of Molecular Medicine, 32, 795-804. https://doi.org/10.3892/ijmm.2013.1469
MLA
Härdtner, C., Mörke, C., Walther, R., Wolke, C., Lendeckel, U."High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells". International Journal of Molecular Medicine 32.4 (2013): 795-804.
Chicago
Härdtner, C., Mörke, C., Walther, R., Wolke, C., Lendeckel, U."High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells". International Journal of Molecular Medicine 32, no. 4 (2013): 795-804. https://doi.org/10.3892/ijmm.2013.1469
Copy and paste a formatted citation
x
Spandidos Publications style
Härdtner C, Mörke C, Walther R, Wolke C and Lendeckel U: High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells. Int J Mol Med 32: 795-804, 2013.
APA
Härdtner, C., Mörke, C., Walther, R., Wolke, C., & Lendeckel, U. (2013). High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells. International Journal of Molecular Medicine, 32, 795-804. https://doi.org/10.3892/ijmm.2013.1469
MLA
Härdtner, C., Mörke, C., Walther, R., Wolke, C., Lendeckel, U."High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells". International Journal of Molecular Medicine 32.4 (2013): 795-804.
Chicago
Härdtner, C., Mörke, C., Walther, R., Wolke, C., Lendeckel, U."High glucose activates the alternative ACE2/Ang‑(1‑7)/Mas and APN/Ang IV/IRAP RAS axes in pancreatic β‑cells". International Journal of Molecular Medicine 32, no. 4 (2013): 795-804. https://doi.org/10.3892/ijmm.2013.1469
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team