Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
2014-January Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
2014-January Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells

  • Authors:
    • Jens Stern-Straeter
    • Gabriel Alejandro Bonaterra
    • Stephanie Juritz
    • Richard Birk
    • Ulrich Reinhart Goessler
    • Karen Bieback
    • Peter Bugert
    • Johannes Schultz
    • Karl Hörmann
    • Ralf Kinscherf
    • Anne Faber
  • View Affiliations / Copyright

    Affiliations: Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany, Anatomy and Cell Biology, Department of Medical Cell Biology, 35032 Marburg, Germany, Department of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
  • Pages: 160-170
    |
    Published online on: November 13, 2013
       https://doi.org/10.3892/ijmm.2013.1555
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The creation of functional muscles/muscle tissue from human stem cells is a major goal of skeletal muscle tissue engineering. Mesenchymal stem cells (MSCs) from fat/adipose tissue (AT-MSCs), as well as bone marrow (BM-MSCs) have been shown to bear myogenic potential, which makes them candidate stem cells for skeletal muscle tissue engineering applications. The aim of this study was to analyse the myogenic differentiation potential of human AT-MSCs and BM-MSCs cultured in six different cell culture media containing different mixtures of growth factors. The following cell culture media were used in our experiments: mesenchymal stem cell growth medium (MSCGM)™ as growth medium, MSCGM + 5-azacytidine (5-Aza), skeletal muscle myoblast cell growth medium (SkGM)-2 BulletKit™, and 5, 30 and 50% conditioned cell culture media, i.e., supernatant of human satellite cell cultures after three days in cell culture mixed with MSCGM. Following the incubation of human AT-MSCs or BM-MSCs for 0, 4, 8, 11, 16 or 21 days with each of the cell culture media, cell proliferation was measured using the alamarBlue® assay. Myogenic differentiation was evaluated by quantitative gene expression analyses, using quantitative RT-PCR (qRT-PCR) and immunocytochemical staining (ICC), using well-defined skeletal markers, such as desmin (DES), myogenic factor 5 (MYF5), myosin, heavy chain 8, skeletal muscle, perinatal (MYH8), myosin, heavy chain 1, skeletal muscle, adult (MYH1) and skeletal muscle actin-α1 (ACTA1). The highest proliferation rates were observed in the AT-MSCs and BM-MSCs cultured with SkGM-2 BulletKit medium. The average proliferation rate was higher in the AT-MSCs than in the BM-MSCs, taking all six culture media into account. qRT-PCR revealed the expression levels of the myogenic markers, ACTA1, MYH1 and MYH8, in the AT-MSC cell cultures, but not in the BM-MSC cultures. The muscle-specific intermediate filament, DES, was only detected (by ICC) in the AT-MSCs, but not in the BM-MSCs. The strongest DES expression was observed using the 30% conditioned cell culture medium. The detection of myogenic markers using different cell culture media as stimuli was only achieved in the AT-MSCs, but not in the BM-MSCs. The strongest myogenic differentiation, in terms of the markers examined, was induced by the 30% conditioned cell culture medium.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Belema Bedada F, Technau A, Ebelt H, Schulze M and Braun T: Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol Cell Biol. 25:9509–9519. 2005.PubMed/NCBI

2 

Zuk PA, Zhu M, Mizuno H, et al: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Bieback K, Kern S, Kluter H and Eichler H: Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 22:625–634. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S and Takashi TA: Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 6:543–553. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Beier JP, Bitto FF, Lange C, et al: Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int. 35:397–406. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Garcia-Castro J, Trigueros C, Madrenas J, Perez-Simon JA, Rodriguez R and Menendez P: Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med. 12:2552–2565. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Pittenger MF and Martin BJ: Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 95:9–20. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Meligy FY, Shigemura K, Behnsawy HM, Fujisawa M, Kawabata M and Shirakawa T: The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell Dev Biol Anim. 48:203–215. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Vidane AS, Zomer HD, Oliveira BM, et al: Reproductive stem cell differentiation: extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment. Reprod Sci. 20:1137–1143. 2013. View Article : Google Scholar

10 

de la Garza-Rodea AS, van der Velde-van Dijke I, Boersma H, et al: Myogenic properties of human mesenchymal stem cells derived from three different sources. Cell Transplant. 21:153–173. 2012.PubMed/NCBI

11 

Sordella R, Jiang W, Chen GC, Curto M and Settleman J: Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell. 113:147–158. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Tapscott SJ and Weintraub H: MyoD and the regulation of myogenesis by helix-loop-helix proteins. J Clin Invest. 87:1133–1138. 1991. View Article : Google Scholar : PubMed/NCBI

13 

Christ B and Brand-Saberi B: Limb muscle development. Int J Dev Biol. 46:905–914. 2002.

14 

Stern-Straeter J, Bonaterra GA, Kassner SS, et al: Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. J Tissue Eng Regen Med. 5:e197–e206. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Wright C, Haddad F, Qin AX and Baldwin KM: Analysis of myosin heavy chain mRNA expression by RT-PCR. J Appl Physiol (1985). 83:1389–1396. 1997.PubMed/NCBI

16 

Wehrle U, Dusterhoft S and Pette D: Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation. 58:37–46. 1994. View Article : Google Scholar : PubMed/NCBI

17 

Goessler UR, Bugert P, Bieback K, et al: Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. Int J Mol Med. 21:271–279. 2008.PubMed/NCBI

18 

Stern-Straeter J, Bonaterra GA, Kassner SS, et al: Impact of static magnetic fields on human myoblast cell cultures. Int J Mol Med. 28:907–917. 2011.

19 

Vandesompele J, De Preter K, Pattyn F, et al: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH00342002. View Article : Google Scholar : PubMed/NCBI

20 

Stern-Straeter J, Bonaterra GA, Hormann K, Kinscherf R and Goessler UR: Identification of valid reference genes during the differentiation of human myoblasts. BMC Mol Biol. 10:662009. View Article : Google Scholar : PubMed/NCBI

21 

Dezawa M, Ishikawa H, Itokazu Y, et al: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 309:314–317. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Corti S, Strazzer S, Del Bo R, et al: A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse. Exp Cell Res. 277:74–85. 2002. View Article : Google Scholar : PubMed/NCBI

23 

LaBarge MA and Blau HM: Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 111:589–601. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Ferrari G and Mavilio F: Myogenic stem cells from the bone marrow: a therapeutic alternative for muscular dystrophy? Neuromuscul Disord. 12(Suppl 1): S7–S10. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Ferrari G, Cusella-De Angelis G, Coletta M, et al: Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 279:1528–1530. 1998. View Article : Google Scholar : PubMed/NCBI

26 

Di Rocco G, Iachininoto MG, Tritarelli A, et al: Myogenic potential of adipose-tissue-derived cells. J Cell Sci. 119:2945–2952. 2006.PubMed/NCBI

27 

Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R and Bouloumie A: Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 110:349–355. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Gang EJ, Jeong JA, Hong SH, et al: Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 22:617–624. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Wakitani S, Saito T and Caplan AI: Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 18:1417–1426. 1995. View Article : Google Scholar : PubMed/NCBI

30 

Chan J, O’Donoghue K, Gavina M, et al: Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells. 24:1879–1891. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Cui CH, Uyama T, Miyado K, et al: Menstrual blood-derived cells confer human dystrophin expression in the murine model of Duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 18:1586–1594. 2007. View Article : Google Scholar

32 

De Bari C, Dell’Accio F, Tylzanowski P and Luyten FP: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44:1928–1942. 2001.

33 

Lee JH, Kosinski PA and Kemp DM: Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation. Exp Cell Res. 307:174–182. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Tamama K, Kawasaki H and Wells A: Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol. 2010:7953852010. View Article : Google Scholar

35 

Nakanishi C, Nagaya N, Ohnishi S, et al: Gene and protein expression analysis of mesenchymal stem cells derived from rat adipose tissue and bone marrow. Circ J. 75:2260–2268. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Yang J, Song T, Wu P, et al: Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Mol Med Rep. 5:108–113. 2012.PubMed/NCBI

37 

Rangappa S, Fen C, Lee EH, Bongso A and Sim EK: Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 75:775–779. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Schulze M, Belema-Bedada F, Technau A and Braun T: Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes Dev. 19:1787–1798. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Stern-Straeter J, Bonaterra GA, Juritz S, Birk R, Goessler UR, Bieback K, Bugert P, Schultz J, Hörmann K, Kinscherf R, Kinscherf R, et al: Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Int J Mol Med 33: 160-170, 2014.
APA
Stern-Straeter, J., Bonaterra, G.A., Juritz, S., Birk, R., Goessler, U.R., Bieback, K. ... Faber, A. (2014). Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. International Journal of Molecular Medicine, 33, 160-170. https://doi.org/10.3892/ijmm.2013.1555
MLA
Stern-Straeter, J., Bonaterra, G. A., Juritz, S., Birk, R., Goessler, U. R., Bieback, K., Bugert, P., Schultz, J., Hörmann, K., Kinscherf, R., Faber, A."Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells". International Journal of Molecular Medicine 33.1 (2014): 160-170.
Chicago
Stern-Straeter, J., Bonaterra, G. A., Juritz, S., Birk, R., Goessler, U. R., Bieback, K., Bugert, P., Schultz, J., Hörmann, K., Kinscherf, R., Faber, A."Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells". International Journal of Molecular Medicine 33, no. 1 (2014): 160-170. https://doi.org/10.3892/ijmm.2013.1555
Copy and paste a formatted citation
x
Spandidos Publications style
Stern-Straeter J, Bonaterra GA, Juritz S, Birk R, Goessler UR, Bieback K, Bugert P, Schultz J, Hörmann K, Kinscherf R, Kinscherf R, et al: Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Int J Mol Med 33: 160-170, 2014.
APA
Stern-Straeter, J., Bonaterra, G.A., Juritz, S., Birk, R., Goessler, U.R., Bieback, K. ... Faber, A. (2014). Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. International Journal of Molecular Medicine, 33, 160-170. https://doi.org/10.3892/ijmm.2013.1555
MLA
Stern-Straeter, J., Bonaterra, G. A., Juritz, S., Birk, R., Goessler, U. R., Bieback, K., Bugert, P., Schultz, J., Hörmann, K., Kinscherf, R., Faber, A."Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells". International Journal of Molecular Medicine 33.1 (2014): 160-170.
Chicago
Stern-Straeter, J., Bonaterra, G. A., Juritz, S., Birk, R., Goessler, U. R., Bieback, K., Bugert, P., Schultz, J., Hörmann, K., Kinscherf, R., Faber, A."Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells". International Journal of Molecular Medicine 33, no. 1 (2014): 160-170. https://doi.org/10.3892/ijmm.2013.1555
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team