Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
2014-March Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
2014-March Volume 33 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner

  • Authors:
    • Jun Yokota
    • Naoyuki Chosa
    • Shunsuke Sawada
    • Naoto Okubo
    • Noriko Takahashi
    • Tomokazu Hasegawa
    • Hisatomo Kondo
    • Akira Ishisaki
  • View Affiliations / Copyright

    Affiliations: Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028‑3694, Japan, Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan, Department of Pediatric Dentistry, Tokushima University Hospital, Tokushima 770-8504, Japan, Department of Prosthodontics and Oral Implantology, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
    Copyright: © Yokota et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 534-542
    |
    Published online on: December 27, 2013
       https://doi.org/10.3892/ijmm.2013.1606
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Transforming growth factor-β (TGF-β) is a critical regulator of osteogenic differentiation and the platelet-derived growth factor (PDGF) is a chemoattractant or mitogen of osteogenic mesenchymal cells. However, the combined effects of these regulators on the osteogenic differentiation of mesenchymal cells remains unknown. In this study, we investigated the effects of TGF-β and/or PDGF on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). The TGF-β-induced osteogenic differentiation of UE7T-13 cells, a bone marrow-derived hMSC line, was markedly enhanced by PDGF, although PDGF alone did not induce differentiation. TGF-β induced extracellular signal-regulated kinase (ERK) phosphorylation and PDGF induced Akt phosphorylation. In addition, the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor, U0126, suppressed the osteogenic differentiation induced by TGF-β alone. Moreover, U0126 completely suppressed the osteogenic differentiation synergistically induced by TGF-β and PDGF, whereas the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002, only partially suppressed this effect. These results suggest that the enhancement of TGF-β-induced osteogenic differentiation by PDGF-induced PI3K/Akt-mediated signaling depends on TGF-β-induced MEK activity. Thus, PDGF positively modulates the TGF-β-induced osteogenic differentiation of hMSCs through synergistic crosstalk between MEK- and PI3K/Akt-mediated signaling.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Karsenty G and Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2:389–406. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 276:71–74. 1997. View Article : Google Scholar : PubMed/NCBI

3 

Pittenger MF, Mackay AM, Beck SC, et al: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Docheva D, Popov C, Mutschler W and Schieker M: Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 11:21–38. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Baksh D, Song L and Tuan RS: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 8:301–316. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Kassem M, Abdallah BM and Saeed H: Osteoblastic cells: differentiation and trans-differentiation. Arch Biochem Biophys. 473:183–187. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Jones E and Yang X: Mesenchymal stem cells and bone regeneration: current status. Injury. 42:562–568. 2011. View Article : Google Scholar

8 

Proff P and Römer P: The molecular mechanism behind bone remodelling: a review. Clin Oral Investig. 13:355–362. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Lazar-Karsten P, Dorn I, Meyer G, et al: The influence of extracellular matrix proteins and mesenchymal stem cells on erythropoietic cell maturation. Vox Sang. 101:65–76. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Vidane AS, Zomer HD, Oliveira BM, et al: Reproductive stem cell differentiation: extracellular matrix, tissue microenvironment, and growth factors direct the mesenchymal stem cell lineage commitment. Reprod Sci. 20:1137–1143. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Chen BY, Wang X, Chen LW and Luo ZJ: Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells. Curr Drug Targets. 13:561–571. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Soleymaninejadian E, Pramanik K and Samadian E: Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol. 67:1–8. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Chau JF, Leong WF and Li B: Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol. 24:1593–1606. 2009.PubMed/NCBI

14 

Pountos I, Georgouli T, Henshaw K, et al: The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. J Orthop Trauma. 24:552–556. 2010. View Article : Google Scholar

15 

Bonewald LF and Mundy GR: Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res. 250:261–276. 1990.PubMed/NCBI

16 

Bonewald LF and Dallas SL: Role of active and latent transforming growth factor beta in bone formation. J Cell Biochem. 55:350–357. 1994. View Article : Google Scholar : PubMed/NCBI

17 

Tang Y, Wu X, Lei W, et al: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 15:757–765. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI

19 

He S, Liu X, Yang Y, et al: Mechanisms of transforming growth factor beta (1)/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts. Br J Dermatol. 162:538–546. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012.

21 

Mbalaviele G, Abu-Amer Y, Meng A, et al: Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem. 275:14388–14393. 2000. View Article : Google Scholar

22 

Chaudhary LR and Avioli LV: Identification and activation of mitogen-activated protein (MAP) kinase in normal human osteoblastic and bone marrow stromal cells: attenuation of MAP kinase activation by cAMP, parathyroid hormone and forskolin. Mol Cell Biochem. 178:59–68. 1998. View Article : Google Scholar

23 

Hu Y, Chan E, Wang SX and Li B: Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology. 144:2068–2074. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Einhorn TA and Trippel SB: Growth factor treatment of fractures. Instr Course Lect. 46:483–486. 1997.PubMed/NCBI

25 

Hart CE, Bailey M, Curtis DA, et al: Purification of PDGF-AB and PDGF-BB from human platelet extracts and identification of all three PDGF dimers in human platelets. Biochemistry. 29:166–172. 1990. View Article : Google Scholar : PubMed/NCBI

26 

Hollinger JO, Hart CE, Hirsch SN, et al: Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 90:48–54. 2008. View Article : Google Scholar

27 

Jayakumar A, Rajababu P, Rohini S, et al: Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with β-tricalcium phosphate in human intra-osseous periodontal defects. J Clin Periodontol. 38:163–172. 2011.PubMed/NCBI

28 

Ridgway HK, Mellonig JT and Cochran DL: Human histologic and clinical evaluation of recombinant human platelet-derived growth factor and beta-tricalcium phosphate for the treatment of periodontal intraosseous defects. Int J Periodontics Restorative Dent. 28:171–179. 2008.

29 

Nevins M, Giannobile WV, McGuire MK, et al: Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol. 76:2205–2215. 2005. View Article : Google Scholar

30 

McGuire MK, Kao RT, Nevins M and Lynch SE: rhPDGF-BB promotes healing of periodontal defects: 24-month clinical and radiographic observations. Int J Periodontics Restorative Dent. 26:223–231. 2006.PubMed/NCBI

31 

Distler JH, Hirth A, Kurowska-Stolarska M, et al: Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med. 47:149–161. 2003.PubMed/NCBI

32 

Bouletreau PJ, Warren SM, Spector JA, et al: Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg. 109:2384–2397. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Blanquaert F, Pereira RC and Canalis E: Cortisol inhibits hepatocyte growth factor/scatter factor expression and induces c-met transcripts in osteoblasts. Am J Physiol Endocrinol Metab. 278:E509–E515. 2000.PubMed/NCBI

34 

Franchimont N, Durant D, Rydziel S and Canalis E: Platelet-derived growth factor induces interleukin-6 transcription in osteoblasts through the activator protein-1 complex and activating transcription factor-2. J Biol Chem. 274:6783–6789. 1999. View Article : Google Scholar : PubMed/NCBI

35 

Carano RA and Filvaroff EH: Angiogenesis and bone repair. Drug Discov Today. 8:980–989. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Andrae J, Gallini R and Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22:1276–1312. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Wu E, Palmer N, Tian Z, et al: Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells. PLoS One. 3:e37942008. View Article : Google Scholar : PubMed/NCBI

38 

Missbach M, Jeschke M, Feyen J, et al: A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone. 24:437–449. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Martelli AM, Borgatti P, Bortul R, et al: Phosphatidylinositol 3-kinase translocates to the nucleus of osteoblast-like MC3T3-E1 cells in response to insulin-like growth factor I and platelet-derived growth factor but not to the proapoptotic cytokine tumor necrosis factor alpha. J Bone Miner Res. 15:1716–1730. 2000. View Article : Google Scholar

40 

Chaudhary LR and Hruska KA: The cell survival signal Akt is differentially activated by PDGF-BB, EGF, and FGF-2 in osteoblastic cells. J Cell Biochem. 81:304–311. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Antoniades HN: PDGF: a multifunctional growth factor. Baillieres Clin Endocrinol Metab. 5:595–613. 1991. View Article : Google Scholar : PubMed/NCBI

42 

Zhou B, Hao Y, Wang C, et al: Conversion of natively unstructured α-synuclein to its α-helical conformation significantly attenuates production of reactive oxygen species. J Inorg Biochem. 118:68–73. 2013.

43 

Mori T, Kiyono T, Imabayashi H, et al: Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol. 25:5183–5195. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Shimomura T, Yoshida Y, Sakabe T, et al: Hepatic differentiation of human bone marrow-derived UE7T-13 cells: effects of cytokines and CCN family gene expression. Hepatol Res. 37:1068–1079. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Huang H, Hu ZZ, Arighi CN and Wu CH: Integration of bioinformatics resources for functional analysis of gene expression and proteomic data. Front Biosci. 12:5071–5088. 2007.PubMed/NCBI

46 

Dalle Carbonare L, Innamorati G and Valenti MT: Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev. 8:891–897. 2012.PubMed/NCBI

47 

Neve A, Corrado A and Cantatore FP: Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 343:289–302. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Gharibi B, Ghuman MS and Hughes FJ: Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal. J Cell Mol Med. 16:2789–2801. 2012.PubMed/NCBI

49 

Chen JF, Mandel EM, Thomson JM, et al: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Conti L, Sipione S, Magrassi L, et al: Shc signaling in differentiating neural progenitor cells. Nat Neurosci. 4:579–586. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Dugan LL, Kim JS, Zhang Y, et al: Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 274:25842–25848. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Sottile V, Halleux C, Bassilana F, et al: Stem cell characteristics of human trabecular bone-derived cells. Bone. 30:699–704. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Pereira RC, Delany AM and Canalis E: Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAAT-enhancer binding protein expression. Bone. 30:685–691. 2002. View Article : Google Scholar

54 

Lecka-Czernik B, Moerman EJ, Grant DF, et al: Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 143:2376–2384. 2002.

55 

Janssens K, ten Dijke P, Janssens S and Van Hul W: Transforming growth factor-beta1 to the bone. Endocr Rev. 26:743–774. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Lee JY, Kim KH, Shin, et al: Enhanced bone formation by transforming growth factor-beta1-releasing collagen/chitosan microgranules. J Biomed Mater Res A. 76:530–539. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Zhao L, Jiang S and Hantash BM: Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A. 16:725–733. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Lee KS, Hong SH and Bae SC: Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 21:7156–7163. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Ripamonti U, Ferretti C, Teare J and Blann L: Transforming growth factor-beta isoforms and the induction of bone formation: implications for reconstructive craniofacial surgery. J Craniofac Surg. 20:1544–1555. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Quarles LD, Yohay DA, Lever LW, et al: Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 7:683–692. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Luo X, Chen J, Song WX, et al: Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest. 88:1264–1277. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Chen J, Shapiro HS and Sodek J: Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res. 7:987–997. 1992. View Article : Google Scholar : PubMed/NCBI

63 

Fisher LW, McBride OW, Termine JD and Young MF: Human bone sialoprotein: deduced protein sequence and chromosomal localization. J Biol Chem. 265:2347–2351. 1990.PubMed/NCBI

64 

Ganss B, Kim RH and Sodek J: Bone sialoprotein. Crit Rev Oral Biol Med. 10:79–98. 1999. View Article : Google Scholar : PubMed/NCBI

65 

Ogata Y: Bone sialoprotein and its transcriptional regulatory mechanism. J Periodontal Res. 43:127–135. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Bianco P, Fisher LW, Young MF, et al: Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int. 49:421–426. 1991. View Article : Google Scholar : PubMed/NCBI

67 

Chosa N, Taira M, Saitoh S, et al: Characterization of apatite formed on alkaline-heat-treated Ti. J Dent Res. 83:465–469. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Id Boufker H, Lagneaux L, Fayyad-Kazan H, et al: Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone. 49:1219–1231. 2011.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yokota J, Chosa N, Sawada S, Okubo N, Takahashi N, Hasegawa T, Kondo H and Ishisaki A: PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. Int J Mol Med 33: 534-542, 2014.
APA
Yokota, J., Chosa, N., Sawada, S., Okubo, N., Takahashi, N., Hasegawa, T. ... Ishisaki, A. (2014). PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. International Journal of Molecular Medicine, 33, 534-542. https://doi.org/10.3892/ijmm.2013.1606
MLA
Yokota, J., Chosa, N., Sawada, S., Okubo, N., Takahashi, N., Hasegawa, T., Kondo, H., Ishisaki, A."PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner". International Journal of Molecular Medicine 33.3 (2014): 534-542.
Chicago
Yokota, J., Chosa, N., Sawada, S., Okubo, N., Takahashi, N., Hasegawa, T., Kondo, H., Ishisaki, A."PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner". International Journal of Molecular Medicine 33, no. 3 (2014): 534-542. https://doi.org/10.3892/ijmm.2013.1606
Copy and paste a formatted citation
x
Spandidos Publications style
Yokota J, Chosa N, Sawada S, Okubo N, Takahashi N, Hasegawa T, Kondo H and Ishisaki A: PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. Int J Mol Med 33: 534-542, 2014.
APA
Yokota, J., Chosa, N., Sawada, S., Okubo, N., Takahashi, N., Hasegawa, T. ... Ishisaki, A. (2014). PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner. International Journal of Molecular Medicine, 33, 534-542. https://doi.org/10.3892/ijmm.2013.1606
MLA
Yokota, J., Chosa, N., Sawada, S., Okubo, N., Takahashi, N., Hasegawa, T., Kondo, H., Ishisaki, A."PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner". International Journal of Molecular Medicine 33.3 (2014): 534-542.
Chicago
Yokota, J., Chosa, N., Sawada, S., Okubo, N., Takahashi, N., Hasegawa, T., Kondo, H., Ishisaki, A."PDGF-induced PI3K-mediated signaling enhances the TGF‑β‑induced osteogenic differentiation of human mesenchymal stem cells in a TGF-β-activated MEK-dependent manner". International Journal of Molecular Medicine 33, no. 3 (2014): 534-542. https://doi.org/10.3892/ijmm.2013.1606
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team