|
1
|
Funke-Kaiser H, Zollmann FS, Schefe JH and
Unger T: Signal transduction of the (pro)renin receptor as a novel
therapeutic target for preventing end-organ damage. Hypertens Res.
33:98–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nguyen G, Delarue F, Burckle C, Bouzhir L,
Giller T and Sraer JD: Pivotal role of the renin/prorenin receptor
in angiotensin II production and cellular responses to renin. J
Clin Invest. 109:1417–1427. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ichihara A, Hayashi M, Kaneshiro Y, et al:
Inhibition of diabetic nephropathy by a decoy peptide corresponding
to the ‘handle’ region for nonproteolytic activation of prorenin. J
Clin Invest. 114:1128–1135. 2004.PubMed/NCBI
|
|
4
|
Ichihara A, Kaneshiro Y, Takemitsu T, et
al: Nonproteolytic activation of prorenin contributes to
development of cardiac fibrosis in genetic hypertension.
Hypertension. 47:894–900. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kaneshiro Y, Ichihara A, Sakoda M, et al:
Slowly progressive, angiotensin II-independent glomerulosclerosis
in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol.
18:1789–1795. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Susic D, Zhou X, Frohlich ED, Lippton H
and Knight M: Cardiovascular effects of prorenin blockade in
genetically spontaneously hypertensive rats on normal and high-salt
diet. Am J Physiol Heart Circ Physiol. 295:H1117–H1121. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ichihara A, Suzuki F, Nakagawa T, et al:
Prorenin receptor blockade inhibits development of
glomerulosclerosis in diabetic angiotensin II type 1a
receptor-deficient mice. J Am Soc Nephrol. 17:1950–1961. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Takahashi H, Ichihara A, Kaneshiro Y, et
al: Regression of nephropathy developed in diabetes by (pro)renin
receptor blockade. J Am Soc Nephrol. 18:2054–2061. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Muller DN, Klanke B, Feldt S, et al:
(Pro)renin receptor peptide inhibitor ‘handle-region’ peptide does
not affect hypertensive nephrosclerosis in Goldblatt rats.
Hypertension. 51:676–681. 2008.
|
|
10
|
Feldt S, Maschke U, Dechend R, Luft FC and
Muller DN: The putative (pro)renin receptor blocker HRP fails to
prevent (pro)renin signaling. J Am Soc Nephrol. 19:743–748. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nguyen G and Muller DN: The biology of the
(pro)renin receptor. J Am Soc Nephrol. 21:18–23. 2010. View Article : Google Scholar
|
|
12
|
Ryuzaki M, Ichihara A, Ohshima Y, et al:
Involvement of activated prorenin in the pathogenesis of slowly
progressive nephropathy in the non-clipped kidney of two kidney,
one-clip hypertension. Hypertens Res. 34:301–307. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kiyomoto H and Moriwaki K: Chronic
blockade of the (pro)renin receptor ameliorates the kidney damage
in the non-clipped kidney of Goldblatt hypertension. Hypertens Res.
34:289–291. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nagai Y, Ichihara A, Nakano D, et al:
Possible contribution of the non-proteolytic activation of prorenin
to the development of insulin resistance in fructose-fed rats. Exp
Physiol. 94:1016–1023. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lavoi JL: Methods of treating or
preventing obesity and obesity-related hypertension.
Patentanmeldung WO 2009/143619 A1. 2009
|
|
16
|
Satofuka S, Ichihara A, Nagai N, et al:
Role of nonproteolytically activated prorenin in pathologic, but
not physiologic, retinal neovascularization. Invest Ophthalmol Vis
Sci. 48:422–429. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Satofuka S, Ichihara A, Nagai N, et al:
(Pro)renin receptor-mediated signal transduction and tissue
renin-angiotensin system contribute to diabetes-induced retinal
inflammation. Diabetes. 58:1625–1633. 2009. View Article : Google Scholar
|
|
18
|
Wilkinson-Berka JL, Heine R, Tan G,
Tikellis C, Cooper ME, Nguyen G and Miller AG: The role of the
(pro)renin receptor in developing ischaemic and diabetic retina. J
Renin Angiotensin Aldosterone Syst. 9(Suppl 1): S82008.
|
|
19
|
Mahmud H, Sillje HH, Cannon MV, van Gilst
WH and de Boer RA: Regulation of the (pro)renin-renin receptor in
cardiac remodelling. J Cell Mol Med. 16:722–729. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Melnyk RA, Tam J, Boie Y, Kennedy BP and
Percival MD: Renin and prorenin activate pathways implicated in
organ damage in human mesangial cells independent of angiotensin II
production. Am J Nephrol. 30:232–243. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Connelly KA, Advani A, Kim S, et al: The
cardiac (pro)renin receptor is primarily expressed in myocyte
transverse tubules and is increased in experimental diabetic
cardiomyopathy. J Hypertens. 29:1175–1184. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Siragy HM and Huang J: Renal (pro)renin
receptor upregulation in diabetic rats through enhanced angiotensin
AT1 receptor and NADPH oxidase activity. Exp Physiol. 93:709–714.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Schefe JH, Menk M, Reinemund J, et al: A
novel signal transduction cascade involving direct physical
interaction of the renin/prorenin receptor with the transcription
factor promyelocytic zinc finger protein. Circ Res. 99:1355–1366.
2006. View Article : Google Scholar
|
|
24
|
Schefe JH, Neumann C, Goebel M, et al:
Prorenin engages the (pro)renin receptor like renin and both ligand
activities are unopposed by aliskiren. J Hypertens. 26:1787–1794.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Katz SA, Opsahl JA, Abraham PA and Gardner
MJ: The relationship between renin isoelectric forms and renin
glycoforms. Am J Physiol. 267:R244–R252. 1994.PubMed/NCBI
|
|
26
|
Cruciat CM, Ohkawara B, Acebron SP, et al:
Requirement of prorenin receptor and vacuolar
H+-ATPase-mediated acidification for Wnt signaling.
Science. 327:459–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bader M: The second life of the (pro)renin
receptor. J Renin Angiotensin Aldosterone Syst. 8:205–208. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ludwig J, Kerscher S, Brandt U, et al:
Identification and characterization of a novel 9.2-kDa membrane
sector-associated protein of vacuolar proton-ATPase from chromaffin
granules. J Biol Chem. 273:10939–10947. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Advani A, Kelly DJ, Cox AJ, et al: The
(pro)renin receptor: site-specific and functional linkage to the
vacuolar H+-ATPase in the kidney. Hypertension.
54:261–269. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sihn G, Rousselle A, Vilianovitch L,
Burckle C and Bader M: Physiology of the (pro)renin receptor: Wnt
of change? Kidney Int. 78:246–256. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cousin C, Bracquart D, Contrepas A, Corvol
P, Muller L and Nguyen G: Soluble form of the (pro)renin receptor
generated by intracellular cleavage by furin is secreted in plasma.
Hypertension. 53:1077–1082. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yoshikawa A, Aizaki Y, Kusano K, et al:
The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading
to its secretion into extracellular space. Hypertens Res.
34:599–605. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Senbonmatsu T, Saito T, Landon EJ, et al:
A novel angiotensin II type 2 receptor signaling pathway: possible
role in cardiac hypertrophy. EMBO J. 22:6471–6482. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Seifert R and Wenzel-Seifert K:
Constitutive activity of G-protein-coupled receptors: cause of
disease and common property of wild-type receptors. Naunyn
Schmiedebergs Arch Pharmacol. 366:381–416. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Funke-Kaiser H, Reichenberger F, Köpke K,
et al: Differential binding of transcription factor E2F-2 to the
endothelin-converting enzyme-1b promoter affects blood pressure
regulation. Hum Mol Genet. 12:423–433. 2003. View Article : Google Scholar
|
|
36
|
Seidel K, Kirsch S, Lucht K, et al: The
promyelocytic leukemia zinc finger (PLZF) protein exerts
neuroprotective effects in neuronal cells and is dysregulated in
experimental stroke. Brain Pathol. 21:31–43. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jansen EJ and Martens GJ: Novel insights
into V-ATPase functioning: distinct roles for its accessory
subunits ATP6AP1/Ac45 and ATP6AP2/(pro)renin receptor. Curr Protein
Pept Sci. 13:124–133. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Holzman TF, Chung CC, Edalji R, et al:
Recombinant human prorenin from CHO cells: expression and
purification. J Protein Chem. 9:663–672. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wautier JL and Schmidt AM: Protein
glycation: a firm link to endothelial cell dysfunction. Circ Res.
95:233–238. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Takahashi K, Yamamoto H, Hirose T, et al:
Expression of (pro)renin receptor in human kidneys with end-stage
kidney disease due to diabetic nephropathy. Peptides. 31:1405–1408.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huang J and Siragy HM: Glucose promotes
the production of interleukine-1beta and cyclooxygenase-2 in
mesangial cells via enhanced (Pro)renin receptor expression.
Endocrinology. 150:5557–5565. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang J and Siragy HM: Regulation of
(pro)renin receptor expression by glucose-induced mitogen-activated
protein kinase, nuclear factor-kappaB, and activator protein-1
signaling pathways. Endocrinology. 151:3317–3325. 2010. View Article : Google Scholar
|
|
43
|
Sennoune SR and Martinez-Zaguilan R:
Vacuolar H+-ATPase signaling pathway in cancer. Curr
Protein Pept Sci. 13:152–163. 2012.
|
|
44
|
Krop M, Lu X, Danser AH and Meima ME: The
(pro)renin receptor. A decade of research: what have we learned?
Pflugers Arch. 465:87–97. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fukushima A, Kinugawa S, Homma T, et al:
Increased plasma soluble (pro)renin receptor levels are correlated
with renal dysfunction in patients with heart failure. Int J
Cardiol. 168:4313–4314. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Batenburg WW, Lu X, Leijten F, Maschke U,
Muller DN and Danser AH: Renin- and prorenin-induced effects in rat
vascular smooth muscle cells overexpressing the human (pro)renin
receptor: does (pro)renin-(pro)renin receptor interaction actually
occur? Hypertension. 58:1111–1119. 2011. View Article : Google Scholar
|
|
47
|
Sakoda M, Ichihara A, Kaneshiro Y, et al:
(Pro)renin receptor-mediated activation of mitogen-activated
protein kinases in human vascular smooth muscle cells. Hypertens
Res. 30:1139–1146. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Saris JJ, van den Eijnden MM, Lamers JM,
Saxena PR, Schalekamp MA and Danser AH: Prorenin-induced myocyte
proliferation: no role for intracellular angiotensin II.
Hypertension. 39:573–577. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Uraoka M, Ikeda K, Nakagawa Y, et al:
Prorenin induces ERK activation in endothelial cells to enhance
neovascularization independently of the renin-angiotensin system.
Biochem Biophys Res Commun. 390:1202–1207. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kinouchi K, Ichihara A, Sano M, et al: The
(pro)renin receptor/ATP6AP2 is essential for vacuolar
H+-ATPase assembly in murine cardiomyocytes. Circ Res.
107:30–34. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Riediger F, Quack I, Qadri F, et al:
Prorenin receptor is essential for podocyte autophagy and survival.
J Am Soc Nephrol. 22:2193–2202. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Amsterdam A, Nissen RM, Sun Z, Swindell
EC, Farrington S and Hopkins N: Identification of 315 genes
essential for early zebrafish development. Proc Natl Acad Sci USA.
101:12792–12797. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liang P, Jones CA, Bisgrove BW, et al:
Genomic characterization and expression analysis of the first
nonmammalian renin genes from zebrafish and pufferfish. Physiol
Genomics. 16:314–322. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Reudelhuber TL: The interaction between
prorenin, renin and the (pro)renin receptor: time to rethink the
role in hypertension. Curr Opin Nephrol Hypertens. 21:137–141.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bader M: The (pro)renin receptor,
(P)RR/ATP6AP2, a bifunctional protein? J Renin Angiotensin
Aldosterone Syst. 9(Suppl 1): S52008.
|
|
56
|
Juillerat-Jeanneret L, Celerier J, Chapuis
Bernasconi C, et al: Renin and angiotensinogen expression and
functions in growth and apoptosis of human glioblastoma. Br J
Cancer. 90:1059–1068. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rusin A, Krawczyk Z, Grynkiewicz G, Gogler
A, Zawisza-Puchalka J and Szeja W: Synthetic derivatives of
genistein, their properties and possible applications. Acta Biochim
Pol. 57:23–34. 2010.PubMed/NCBI
|
|
58
|
Soucy NV, Parkinson HD, Sochaski MA and
Borghoff SJ: Kinetics of genistein and its conjugated metabolites
in pregnant Sprague-Dawley rats following single and repeated
genistein administration. Toxicol Sci. 90:230–240. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Spinozzi F, Pagliacci MC, Migliorati G, et
al: The natural tyrosine kinase inhibitor genistein produces cell
cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res.
18:431–439. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Su Y, Simmen FA, Xiao R and Simmen RC:
Expression profiling of rat mammary epithelial cells reveals
candidate signaling pathways in dietary protection from mammary
tumors. Physiol Genomics. 30:8–16. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang Y and Chen H: Genistein, an
epigenome modifier during cancer prevention. Epigenetics.
6:888–891. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gullett NP, Ruhul Amin AR, Bayraktar S, et
al: Cancer prevention with natural compounds. Semin Oncol.
37:258–281. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pavese JM, Farmer RL and Bergan RC:
Inhibition of cancer cell invasion and metastasis by genistein.
Cancer Metastasis Rev. 29:465–482. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rusin A, Zawisza-Puchalka J, Kujawa K, et
al: Synthetic conjugates of genistein affecting proliferation and
mitosis of cancer cells. Bioorg Med Chem. 19:295–305. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
El-Rayes BF, Philip PA, Sarkar FH, et al:
A phase II study of isoflavones, erlotinib, and gemcitabine in
advanced pancreatic cancer. Invest New Drugs. 29:694–699. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
McSheehy PM, Troy H, Kelland LR, Judson
IR, Leach MO and Griffiths JR: Increased tumour extracellular pH
induced by Bafilomycin A1 inhibits tumour growth and mitosis in
vivo and alters 5-fluorouracil pharmacokinetics. Eur J Cancer.
39:532–540. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kinoshita K, Waritani T, Noto M, et al:
Bafilomycin A1 induces apoptosis in PC12 cells independently of
intracellular pH. FEBS Lett. 398:61–66. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ohta T, Arakawa H, Futagami F, et al:
Bafilomycin A1 induces apoptosis in the human pancreatic cancer
cell line Capan-1. J Pathol. 185:324–330. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee CM and Tannock IF: Inhibition of
endosomal sequestration of basic anticancer drugs: influence on
cytotoxicity and tissue penetration. Br J Cancer. 94:863–869. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
http://www.clinicaltrials.gov/ct2/results?term=bafilomycin&Search=Search.
accessed 19/12/2013
|
|
71
|
Elmarakby AA, Ibrahim AS, Faulkner J,
Mozaffari MS, Liou GI and Abdelsayed R: Tyrosine kinase inhibitor,
genistein, reduces renal inflammation and injury in
streptozotocin-induced diabetic mice. Vascul Pharmacol. 55:149–156.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhong WW, Liu Y and Li CL: Mechanisms of
genistein protection on pancreas cell damage in high glucose
condition. Intern Med. 50:2129–2134. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hettiarachchi KD, Zimmet PZ and Myers MA:
The effects of repeated exposure to sub-toxic doses of
plecomacrolide antibiotics on the endocrine pancreas. Food Chem
Toxicol. 44:1966–1977. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Myers MA, Hettiarachchi KD, Ludeman JP,
Wilson AJ, Wilson CR and Zimmet PZ: Dietary microbial toxins and
type 1 diabetes. Ann NY Acad Sci. 1005:418–422. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lammi N, Karvonen M and Tuomilehto J: Do
microbes have a causal role in type 1 diabetes? Med Sci Monit.
11:RA63–RA69. 2005.PubMed/NCBI
|
|
76
|
Klein CB and King AA: Genistein
genotoxicity: critical considerations of in vitro exposure dose.
Toxicol Appl Pharmacol. 224:1–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Labbaye C, Spinello I, Quaranta MT, et al:
A three-step pathway comprising PLZF/miR-146a/CXCR4 controls
megakaryopoiesis. Nat Cell Biol. 10:788–801. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang W and Liu HT: MAPK signal pathways
in the regulation of cell proliferation in mammalian cells. Cell
Res. 12:9–18. 2002. View Article : Google Scholar
|
|
79
|
Barker N and Clevers H: Mining the Wnt
pathway for cancer therapeutics. Nat Rev Drug Discov. 5:997–1014.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sennoune SR, Luo D and Martinez-Zaguilan
R: Plasmalemmal vacuolar-type H+-ATPase in cancer
biology. Cell Biochem Biophys. 40:185–206. 2004. View Article : Google Scholar
|
|
81
|
Huang Y, Noble NA, Zhang J, Xu C and
Border WA: Renin-stimulated TGF-beta1 expression is regulated by a
mitogen-activated protein kinase in mesangial cells. Kidney Int.
72:45–52. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Balakumar P and Jagadeesh G: Potential
cross-talk between (pro)renin receptors and Wnt/frizzled receptors
in cardiovascular and renal disorders. Hypertens Res. 34:1161–1170.
2011. View Article : Google Scholar : PubMed/NCBI
|