You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Mauger DM, Siegfried NA and Weeks KM: The genetic code as expressed through relationships between mRNA structure and protein function. FEBS Lett. 587:1180–1188. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Thapar R and Denmon AP: Signaling pathways that control mRNA turnover. Cell Signal. 25:1699–1710. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Will CL and Lührmann R: Spliceosome structure and function. Cold Spring Harb Perspect Biol. 3:pii: a003707. 2011. | |
|
Chiou NT, Shankarling G and Lynch KW: hnRNP L and hnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly. Mol Cell. 49:972–982. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki H, Kameyama T, Ohe K, Tsukahara T and Mayeda A: Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA. FEBS Lett. 587:555–561. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki-Haraguchi N, Shimada MK, Taniguchi I, Ohno M and Mayeda A: Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: potential unusual mechanism identifies G-rich introns. Biochem Biophys Res Commun. 423:289–294. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto K, Wassarman KM and Wolffe AP: Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J. 17:2107–2121. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Stewart M: Nuclear export of mRNA. Trends Biochem Sci. 35:609–617. 2010. View Article : Google Scholar | |
|
Ramos A, Gubser CC and Varani G: Recent solution structures of RNA and its complexes with drugs, peptides and proteins. Curr Opin Struct Biol. 7:317–323. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Linder P and Tuite MF: The versatility of RNA structure and function. In: Jacques Monod Conference: New insights into the mechanism of mRNA translation: the significance of RNA structure; Aussois, France. 22–26 March 1999; Trends Genet. 15. pp. 302–303. 1999, View Article : Google Scholar : PubMed/NCBI | |
|
Caprara MG and Nilsen TW: RNA: versatility in form and function. Nat Struct Biol. 7:831–833. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Derrigo M, Cestelli A, Savettieri G and Di Liegro I: RNA-protein interactions in the control of stability and localization of messenger RNA (Review). Int J Mol Med. 5:111–123. 2000.PubMed/NCBI | |
|
Butcher SE and Pyle AM: The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res. 44:1302–1311. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH and Weeks KM: Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci USA. 110:5498–5503. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Doetsch M, Schroeder R and Fürtig B: Transient RNA-protein interactions in RNA folding. FEBS J. 278:1634–1642. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Weeks KM: Protein-facilitated RNA folding. Curr Opin Struct Biol. 7:336–342. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L and Chen SJ: Coarse-grained prediction of RNA loop structures. PLoS One. 7:e484602012. View Article : Google Scholar : PubMed/NCBI | |
|
Fuller-Pace FV: RNA helicases: modulators of RNA structure. Trends Cell Biol. 4:271–274. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
De la Cruz J, Kressler D and Linder P: Unwinding RNA in Saccharomyces cerevisiae: DEAD-box, proteins and related families. Trends Biochem Sci. 24:192–198. 1999. | |
|
Linder P: mRNA export: RNP remodeling by DEAD-box proteins. Curr Biol. 18:R297–R299. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Herschlag D: RNA chaperones and the RNA folding problem. J Biol Chem. 270:20871–20874. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Clodi E, Semrad K and Schroeder R: Assaying RNA chaperone activity in vivo using a novel folding trap. EMBO J. 18:3776–3782. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Grohman JK, Gorelick RJ, Lickwar CR, Lieb JD, Bower BD, Znosko BM and Weeks KM: A guanosine-centric mechanism for RNA chaperone function. Science. 340:190–195. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kislauskis EH and Singer RH: Determinants of mRNA localization. Curr Opin Cell Biol. 4:975–978. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Jambhekar A and Derisi JL: Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA. 13:625–642. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Lunde BM, Moore C and Varani G: RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 8:479–490. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Doyle M and Kiebler MA: A zipcode unzipped. Genes Dev. 26:110–113. 2012. View Article : Google Scholar | |
|
Dienstbier M, Boehl F, Li X and Bullock SL: Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev. 23:1546–1558. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Benowitz M, Girvin M, Levy M, Almo SC, Singer RH and Chao JA: Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26:43–53. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chao JA, Patskovsky Y, Patel V, Levy M, Almo SC and Singer RH: ZBP1 recognition of β-actin zipcode induces RNA looping. Genes Dev. 24:148–158. 2010. | |
|
Burd CG and Dreyfuss G: Conserved structures and diversity of functions of RNA-binding proteins. Science. 265:615–621. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Siomi H, Matunis MJ, Michael WM and Dreyfuss G: The pre-mRNA binding K protein contains a novel evolutionary conserved motif. Nucleic Acids Res. 21:1193–1198. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
St Johnston D, Benchle D and Nusslein-Volhard C: Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell. 66:51–63. 1991.PubMed/NCBI | |
|
Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U, Broger C and Tully T: The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol. 13:286–296. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Hu JY, Wu F, Schwartz JH and Schacher S: Two mRNA-binding proteins regulate the distribution of syntaxin mRNA in Aplysia sensory neurons. J Neurosci. 26:5204–5214. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Furic L, Maher-Laporte M and DesGroseillers L: A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA. 14:324–335. 2008. View Article : Google Scholar | |
|
Lebeau G, DesGroseillers L, Sossin W and Lacaille JC: mRNA binding protein staufen 1-dependent regulation of pyramidal cell spine morphology via NMDA receptor-mediated synaptic plasticity. Mol Brain. 4:222011. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Fan D, Gui B, Shi L, Xuan C, Shan L, Wang Q, Shang Y and Wang Y: Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/Staufen (STAU1) and regulates SIRT1 expression in neuronal cells. J Biol Chem. 287:22560–22572. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ravasi T, Huber T, Zavolan M, Forrest A, Gaasterland T, Grimmond S and Hume DA; RIKEN GER Group. GSL Members: Systematic characterization of the zinc-finger-containing proteins in the mouse transcriptome. Genome Res. 13:1430–1442. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Brown RS: Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol. 15:94–98. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Xu B and Koenig RJ: An RNA-binding domain in the thyroid hormone receptor enhances transcriptional activation. J Biol Chem. 279:33051–33056. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Dominski Z, Erkmann JA, Yang X, Sanchez R and Marzluff WF: A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3′-end processing. Genes Dev. 16:58–71. 2002.PubMed/NCBI | |
|
Brewer BY, Malicka J, Blackshear PJ and Wilson GM: RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of AU-rich mRNA-destabilizing motifs. J Biol Chem. 279:27870–27877. 2004. View Article : Google Scholar | |
|
Sanduja S, Blanco FF and Dixon DA: The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2:42–57. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Carballo E, Lai WS and Blackshear PJ: Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science. 281:1001–1005. 1998. | |
|
Miroci H, Schob C, Kindler S, Ölschläger-Schütt J, Fehr S, Jungenitz T, Schwarzacher SW, Bagni C and Mohr E: Makorin ring zinc finger protein 1 (MKRN1), a novel poly(A)-binding protein-interacting protein, stimulates translation in nerve cells. J Biol Chem. 287:1322–1334. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Grauman PL and Marahiel MA: A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci. 23:286–290. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto K, Meric F and Wolffe AP: Translational repression dependent on the interaction of the Xenopus Y-box Protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem. 271:22706–22712. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Nastasi T, Scaturro M, Bellafiore M, Raimondi L, Beccari S, Cestelli A and Di Liegro I: PIPPin is a brain-specific protein that contains a cold-shock domain and binds specifically to H1 degrees and H3.3 mRNAs. J Biol Chem. 274:24087–24093. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Di Liegro CM, Schiera G, Proia P, Saladino P and Di Liegro I: Identification in the rat brain of a set of nuclear proteins interacting with H1° mRNA. Neuroscience. 229:71–76. 2013.PubMed/NCBI | |
|
Chu E and Allegra CJ: The role of thymidylate synthase as an RNA binding protein. Bioessays. 18:191–198. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Preiss T, Chrzanowska-Lightowlers ZM and Lightowlers RN: Glutamate dehydrogenase: an organelle-specific mRNA-binding protein. Trends Biochem Sci. 22:2901997. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Yi X, Stoffer JB, Bonafe N, Gilmore-Hebert M, McAlpine J and Chambers SK: The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res. 6:1375–1384. 2008. View Article : Google Scholar | |
|
Saladino P, Di Liegro CM, Proia P, Sala A, Schiera G, Lo Cicero A and Di Liegro I: RNA-binding activity of the rat calmodulin-binding PEP-19 protein and of the long PEP-19 isoform. Int J Mol Med. 29:141–145. 2012.PubMed/NCBI | |
|
He L and Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI | |
|
Bartel B: MicroRNAs: target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fabian MR and Sonenberg N: The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 19:586–593. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mendell JT: MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 4:1179–1184. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar | |
|
Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar | |
|
Ciafrè S and Galardi S: MicroRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol. 10:935–942. 2013.PubMed/NCBI | |
|
Kosik KS and Krichevsky AM: The elegance of the microRNAs: a neuronal perspective. Neuron. 47:779–782. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA regulates dendritic spine development. Nature. 439:283–289. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Im HI and Kenny PJ: MicroRNAs in neuronal function and disfunction. Trends Neurosci. 35:325–334. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SR and Lykke-Andersen J: Emerging roles for ribonucleoprotein modification and remodelling in controlling RNA fate. Trends Cell Biol. 23:504–510. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Paquin N and Chartrand P: Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol. 18:105–111. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Struhl K and Segal E: Determinants of nucleosome positioning. Nat Struct Mol Biol. 20:267–273. 2013. View Article : Google Scholar | |
|
Paul S and Knott JG: Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev. Jul 24–2013.(Epub ahead of print). | |
|
Szenker E, Ray-Gallet D and Almouzni G: The double face of the histone variant H3.3. Cell Res. 21:421–434. 2011. View Article : Google Scholar | |
|
Castiglia D, Cestelli A, Scaturro M, Nastasi T and Di Liegro I: H1(0) and H3.3B mRNA levels in developing rat brain. Neurochem Res. 19:1531–1537. 1994. View Article : Google Scholar | |
|
Scaturro M, Cestelli A, Castiglia D, Nastasi T and Di Liegro I: Posttranscriptional regulation of H1 zero and H3.3B histone genes in differentiating rat cortical neurons. Neurochem Res. 20:969–976. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Scaturro M, Nastasi T, Raimondi L, Bellafiore M, Cestelli A and Di Liegro I: H1(0) RNA-binding proteins specifically expressed in the rat brain. J Biol Chem. 273:22788–22791. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Castiglia D, Scaturro M, Nastasi T, Cestelli A and Di Liegro I: PIPPin, a putative RNA-binding protein specifically expressed in the rat brain. Biochem Biophys Res Commun. 218:390–394. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Sala A, Scaturro M, Proia P, Schiera G, Balistreri E, Aflalo-Rattenbach R, Créau N and Di Liegro I: Cloning of a rat-specific long PCP4/PEP19 isoform. Int J Mol Med. 19:501–509. 2007.PubMed/NCBI | |
|
Ziai R, Pan YC, Hulmes JD, Sangameswaran L and Morgan JI: Isolation, sequence, and developmental profile of a brain-specific polypeptide, PEP-19. Proc Natl Acad Sci USA. 83:8420–8423. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Slemmon JR, Morgan JI, Fullerton SM, Danho W, Hilbush BS and Wengenack TM: Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, and neuromodulin. J Biol Chem. 271:15911–15917. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Auld GC, Campbell DG, Morrice N and Cohen P: Identification of calcium-regulated heat-stable protein of 24 kDa (CRHSP24) as a physiological substrate for PKB and RSK using KESTREL. Biochem J. 389:775–783. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
St Johnston D: Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol. 6:363–375. 2005.PubMed/NCBI | |
|
Palacios IM: How does an mRNA find its way? Intracellular localisation of transcripts. Semin Cell Dev Biol. 18:163–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gonsalvez GB and Long RM: Spatial regulation of translation through RNA localization. F1000 Biol Rep. 4:162012. View Article : Google Scholar : PubMed/NCBI | |
|
St Johnston D: The intracellular localization of messenger RNAs. Cell. 81:161–170. 1995.PubMed/NCBI | |
|
Doyle M and Kiebler MA: Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30:3540–3552. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Andreassi C and Riccio A: To localize or not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol. 19:465–474. 2009. | |
|
Jung H, Yoon BC and Holt CE: Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci. 13:308–324. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Holt CE and Bullock SL: Subcellular mRNA localization in animal cells and why it matters. Science. 326:1212–1216. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Donnelly CJ, Fainzilber M and Twiss JL: Subcellular communication through RNA transport and localized protein synthesis. Traffic. 11:1498–1505. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Eberwine J, Miyashiro K, Kacharmina JE and Job C: Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc Natl Acad Sci USA. 98:7080–7085. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Grooms SY, Noh KM, Regis R, Bassell GJ, Bryan MK, Carroll RC and Zukin RS: Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J Neurosci. 26:8339–8351. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Rook MS, Lu M and Kosik KS: CaMKIIalpha 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J Neurosci. 20:6385–6393. 2000. | |
|
Tiruchinapalli DM, Oleynikov Y, Kelic S, Shenoy SM, Hartley A, Stanton PK, Singer RH and Bassell GJ: Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J Neurosci. 23:3251–3261. 2003.PubMed/NCBI | |
|
Muslimov IA, Santi E, Homel P, Perini S, Higgins D and Tiedge H: RNA transport in dendrites: a cis-acting targeting element is contained within neuronal BC1 RNA. J Neurosci. 17:4722–4733. 1997.PubMed/NCBI | |
|
Rozhdestvensky TS, Kopylov AM, Brosius J and Hüttenhofer A: Neuronal BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended stem-loop structure. RNA. 7:722–730. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Cristofanilli M, Iacoangeli A, Muslimov IA and Tiedge H: Neuronal BC1 RNA: microtubule-dependent dendritic delivery. J Mol Biol. 356:1118–1123. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Blichenberg A, Schwanke B, Rehbein M, Garner CC, Richter D and Kindler S: Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J Neurosci. 19:8818–8829. 1999.PubMed/NCBI | |
|
Ainger K, Avossa D, Diana AS, Barry C, Barbarese E and Carson JH: Transport and localization elements in myelin basic protein mRNA. J Cell Biol. 138:1077–1087. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Hoek KS, Kidd GJ, Carson JH and Smith R: hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry. 37:7021–7029. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Munro TP, Magee RJ, Kidd GJ, Carson JH, Barbarese E, Smith LM and Smith R: Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem. 274:34389–34395. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Tatavarty V, Korza G, Levin MK and Carson JH: Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell. 19:2311–2327. 2008. View Article : Google Scholar | |
|
Mikl M, Vendra G and Kiebler MA: Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers. EMBO Rep. 12:1077–1084. 2011.PubMed/NCBI | |
|
Tübing F, Vendra G, Mikl M, Macchi P, Thomas S and Kiebler MA: Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J Neurosci. 30:4160–4170. 2010. | |
|
Mayford M, Baranes D, Podsypanina K and Kandel ER: The 3′-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci USA. 93:13250–13255. 1996. | |
|
Blichenberg A, Rehbein M, Muller R, Garner CC, Richter D and Kindler S: Identification of a cis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. Eur J Neurosci. 13:1881–1888. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YS, Carson JH, Barbarese E and Richter JD: Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17:638–653. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Mori Y, Imaizumi K, Katayama T, Yoneda T and Tohyama M: Two cis-acting elements in the 3′ untranslated region of alpha-CaMKII regulate its dendritic targeting. Nat Neurosci. 3:1079–1084. 2000. | |
|
Zeitelhofer M, Macchi P and Dahm R: Perplexing bodies: the putative roles of P-bodies in neurons. RNA Biol. 5:244–248. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Miller LC, Blandford V, McAdam R, Sanchez-Carbente MR, Badeaux F, DesGroseillers L and Sossin WS: Combinations of DEAD box proteins distinguish distinct types of RNA: protein complexes in neurons. Mol Cell Neurosci. 40:485–495. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ma B, Savas JN, Yu MS, Culver BP, Chao MV and Tanese N: Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons. Sci Rep. 1:1402011. | |
|
Batista PJ and Chang HY: Cytotopic localization by long noncoding RNAs. Curr Opin Cell Biol. 25:195–199. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lloyd RE: Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA. 4:317–331. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Oh JY, Kwon A, Jo A, Kim H, Goo YS, Lee JA and Kim HK: Activity-dependent synaptic localization of processing bodies and their role in dendritic structural plasticity. J Cell Sci. 126:2114–2123. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Keene JD and Tenenbaum SA: Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell. 9:1161–1167. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Bassell GJ and Sasaki Y: Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by semaphorin-3A. Front Neural Circuits. 3:112009.PubMed/NCBI | |
|
An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B and Xu B: Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 134:175–187. 2008. | |
|
Lau AG, Irier HA, Gu J, Tian D, Ku L, Liu G, Xia M, Fritsch B, Zheng JQ, Dingledine R, Xu B, Lu B and Feng Y: Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci USA. 107:15945–15950. 2010. | |
|
Allen M, Bird C, Feng W, Liu G, Li W and Perrone-Bizzozero NI: HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3′UTR mRNA. PLoS One. 8:e557182013.PubMed/NCBI | |
|
Ratti A, Fallini C, Cova L, Fantozzi R, Calzarossa C, Zennaro E, Pascale A, Quattrone A and Silani V: A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J Cell Sci. 119:1442–1452. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Martin KC and Ephrussi A: mRNA localization: gene expression in the spatial dimension. Cell. 136:719–730. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Eom T, Antar LN, Singer RH and Bassell GJ: Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J Neurosci. 23:10433–10444. 2003.PubMed/NCBI | |
|
Perycz M, Urbanska AS, Krawczyk PS, Parobczak K and Jaworski J: Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci. 31:5271–5285. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Klein ME, Younts TJ, Castillo PE and Jordan BA: RNA-binding protein Sam68 controls synapse number and local β-actin mRNA metabolism in dendrites. Proc Natl Acad Sci USA. 110:3125–3130. 2013.PubMed/NCBI | |
|
Cooper MW and Smith SJ: A real time analysis of growth cone target cell interactions during the formation of stable contacts between hippocampal neurons in culture. J Neurobiol. 23:814–828. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Ziv NE and Smith SJ: Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron. 17:91–102. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Fiala JC, Feinberg M, Popov V and Harris KM: Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci. 18:8900–8911. 1998.PubMed/NCBI | |
|
Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J and Singer RH: Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature. 438:512–515. 2005.PubMed/NCBI | |
|
Giorgi C and Moore MJ: The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin Cell Dev Biol. 18:186–193. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki Y, Welshhans K, Wen Z, Yao J, Xu M, Goshima Y, Zheng JQ and Bassell GJ: Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci. 30:9349–9358. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Brouwer JR, Willemsen R and Oostra BA: The FMR1 gene and fragile X-associated tremor/ataxia syndrome. Am J Med Genet B Neuropsychiatr Genet. 150B:782–798. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, Willemsen R, Elliott DJ, Hagerman PJ and Charlet-Berguerand N: Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J. 29:1248–1261. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gu W, Pan F, Zhang H, Bassell GJ and Singer RH: A predominantly nuclear protein affecting cytoplasmic localization of beta-actin mRNA in fibroblasts and neurons. J Cell Biol. 156:41–51. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Min H, Turck CW, Nikolic JM and Black DL: A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11:1023–1036. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Rehbein M, Kindler S, Horke S and Richter D: Two trans-acting rat-brain proteins, MARTA1 and MARTA2, interact specifically with the dendritic targeting element in MAP2 mRNAs. Brain Res Mol Brain Res. 79:192–201. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Rehbein M, Wege K, Buck F, Schweizer M, Richter D and Kindler S: Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs. J Neurochem. 82:1039–1046. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pan F, Huttelmaier S, Singer RH and Gu W: ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell Biol. 27:8340–8351. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
White R, Gonsior C, Bauer NM, Krämer-Albers EM, Luhmann HJ and Trotter J: Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis. J Biol Chem. 287:1742–1754. 2012. View Article : Google Scholar | |
|
Kiebler MA and Bassell GJ: Neuronal RNA granules: movers and makers. Neuron. 51:685–690. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly RB and Grote E: Protein targeting in the neuron. Annu Rev Neurosci. 16:95–127. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Alvarez J, Giuditta A and Koenig E: Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog Neurobiol. 62:1–62. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Satkauskas S and Bagnard D: Local protein synthesis in axonal growth cones: what is next? Cell Adh Migr. 1:179–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Giuditta A, Chun JT, Eyman M, Cefaliello C, Bruno AP and Crispino M: Local gene expression in axons and nerve endings: the glia-neuron unit. Physiol Rev. 88:515–555. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Twiss JL and Fainzilber M: Ribosomes in axons - scrounging from the neighbors? Trends Cell Biol. 19:236–243. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Perry RB and Fainzilber M: Local translation in neuronal processes-in vivo tests of a ‘heretical hypothesis’. Dev Neurobiol. Aug 8–2013.(Epub ahead of print). | |
|
Gumy LF, Katrukha EA, Kapitein LC and Hoogenraad CC: New insights into mRNA trafficking in axons. Dev Neurobiol. Aug 19–2013.(Epub ahead of print). | |
|
Willis DE, Xu M, Donnelly CJ, Tep C, Kendall M, Erenstheyn M, English AW, Schanen NC, Kirn-Safran CB, Yoon SO, Bassell GJ and Twiss JL: Axonal localization of transgene mRNA in mature PNS and CNS neurons. J Neurosci. 31:14481–14487. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Donnelly CJ, Willis DE, Xu M, Tep C, Jiang C, Yoo S, Schanen NC, Kirn-Safran CB, van Minnen J, English A, Yoon SO, Bassell GJ and Twiss JL: Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J. 30:4665–4677. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, Vuppalanchi D, McDonald M, Kim HH, Merianda TT, Gallo G and Twiss JL: Axonally synthesized beta-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci. 33:3311–3322. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Welshhans K and Bassell GJ: Netrin-1-induced local beta-actin synthesis and growth cone guidance requires zipcode binding protein 1. J Neurosci. 31:9800–9813. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jirikowski GF, Sanna PP and Bloom FE: mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc Natl Acad Sci USA. 87:7400–7404. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Trembleau A, Morales M and Bloom FE: Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo-neurohypophysial axonal tracts: light and electron microscopic evidence. Neuroscience. 70:113–125. 1996. View Article : Google Scholar | |
|
Eng H, Lund K and Campenot RB: Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J Neurosci. 19:1–9. 1999.PubMed/NCBI | |
|
Lee SK and Hollenbeck PJ: Organization and translation of mRNA in sympathetic axons. J Cell Sci. 116:4467–4478. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Antar LN, Li C, Zhang H, Carroll RC and Bassell GJ: Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci. 32:37–48. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Litman P, Barg J, Rindzoonski L and Ginzburg I: Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron. 10:627–638. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER and Jaffrey SR: Local translation of RhoA regulates growth cone collapse. Nature. 436:1020–1024. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bi J, Tsai NP, Lin YP, Loh HH and Wei LN: Axonal mRNA transport and localized translational regulation of kappa-opioid receptor in primary neurons of dorsal root ganglia. Proc Natl Acad Sci USA. 103:19919–19924. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T, Merianda TT, Sylvester J, van Minnen J and Twiss JL: Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci. 25:778–791. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA and Jaffrey SR: Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol. 10:149–159. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG, Kendall M, Smith DS, Bassell GJ and Twiss JL: Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol. 178:965–980. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon BC, Zivraj KH and Holt CE: Local translation and mRNA trafficking in axon pathfinding. Results Probl Cell Differ. 48:269–288. 2009.PubMed/NCBI | |
|
Gumy LF, Yeo GS, Tung YC, Zivraj KH, Willis D, Coppola G, Lam BY, Twiss JL, Holt CE and Fawcett JW: Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA. 17:85–98. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Koenig E: Organized ribosome-containing structural domains in axons. Results Probl Cell Differ. 48:173–191. 2009.PubMed/NCBI | |
|
Tcherkezian J, Brittis PA, Thomas F, Roux PP and Flanagan JG: Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell. 141:632–644. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Court FA, Hendriks WT, Macgillavry HD, Alvarez J and van Minnen J: Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci. 28:11024–11029. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sotelo JR, Canclini L, Kun A, Sotelo-Silveira JR, Xu L, Wallrabe H, Calliari A, Rosso G, Cal K and Mercer JA: Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons. PLoS One. 8:e619052013. View Article : Google Scholar : PubMed/NCBI | |
|
Kapitein LC and Hoogenraad CC: Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci. 46:9–20. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Franco SJ and Müller U: Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron. 77:19–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Douen AG, Dong L, Vanance S, Munger R, Hogan MJ, Thompson CS and Hakim AM: Regulation of nestin expression after cortical ablation in adult rat brain. Brain Res. 1008:139–146. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Brus M, Keller M and Lévy F: Temporal features of adult neurogenesis: differences and similarities across mammalian species. Front Neurosci. 7:1352013. View Article : Google Scholar : PubMed/NCBI | |
|
Kempermann G, Jessberger S, Steiner B and Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27:447–452. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Pan YW, Storm DR and Xia Z: Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem. 105:81–92. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC and Poo MM: Adaptation in the chemotactic guidance of nerve growth cones. Nature. 417:411–418. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Piper M, Salih S, Weinl C, Holt CE and Harris WA: Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci. 8:179–186. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hörnberg H and Holt C: RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci. 7:812013.PubMed/NCBI | |
|
Charlesworth A, Meijer HA and de Moor CH: Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip Rev RNA. 4:437–461. 2013. View Article : Google Scholar | |
|
Richter JD: CPEB: a life in translation. Trends Biochem Sci. 32:279–285. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kundel M, Jones KJ, Shin CY and Wells DG: Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J Neurosci. 29:13630–13639. 2009. View Article : Google Scholar | |
|
Michlewski G, Guil S, Semple CA and Cáceres JF: Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell. 32:383–393. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA and Sheng M: Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 65:373–384. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xu XL, Zong R, Li Z, Biswas MH, Fang Z, Nelson DL and Gao FB: FXR1P but not FMRP regulates the levels of mammalian brain-specific microRNA-9 and microRNA-124. J Neurosci. 31:13705–13709. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hengst U, Cox LJ, Macosko EZ and Jaffrey SR: Functional and selective RNA interference in developing axons and growth cones. J Neurosci. 26:5727–5732. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE and Kaplan BB: microRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 28:12581–12590. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
McKee AE, Minet E, Stern C, Riahi S, Stiles CD and Silver PA: A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol. 5:14–22. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH, Shiue L, Ares M Jr, Mody I and Black DL: The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet. 43:706–711. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hamada N, Ito H, Iwamoto I, Mizuno M, Morishita R, Inaguma Y, Kawamoto S, Tabata H and Nagata KI: Biochemical and morphological characterization of A2BP1 in neuronal tissue. J Neurosci Res. 91:1303–1311. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kusek G, Campbell M, Doyle F, Tenenbaum SA, Kiebler M and Temple S: Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression. Cell Stem Cell. 11:505–516. 2012. View Article : Google Scholar | |
|
Vessey JP, Amadei G, Burns SE, Kiebler MA, Kaplan DR and Miller FD: An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance of mammalian neural stem cells. Cell Stem Cell. 11:517–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura M, Okano H, Blendy JA and Montell C: Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron. 13:67–81. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T and Okano H: Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci. 22:139–153. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Maslov AY, Barone TA, Plunkett RJ and Pruitt SC: Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci. 24:1726–1733. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Okano H, Kawahara H, Toriya M, Nakao K, Shibata S and Imai T: Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 306:349–356. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Okamoto K, Nakatsukasa M, Alié A, Masuda Y, Agata K and Funayama N: The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state. Mech Dev. 129:24–37. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sutherland JM, McLaughlin EA, Hime GR and Siddall NA: The musashi family of RNA binding proteins: master regulators of multiple stem cell populations. Adv Exp Med Biol. 786:233–245. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M and Okano H: The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol. 21:3888–3900. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Perez-Asensio FJ, Perpiñá U, Planas AM and Pozas E: Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J Cell Sci. 126:4208–4219. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Battelli C, Nikopoulos GN, Mitchell JG and Verdi JM: The RNA binding protein Musashi-1 regulates neural development through the translational repression of p21(WAF-1). Mol Cell Neurosci. 31:85–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Akamatsu W, Okano HJ, Osumi N, Inoue T, Nakamura S, Sakakibara S, Miura M, Matsuo N, Darnell RB and Okano H: Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc Natl Acad Sci USA. 96:9885–9890. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Akamatsu W, Fujihara H, Mitsuhashi T, Yano M, Shibata S, Hayakawa Y, Okano HJ, Sakakibara S, Takano H, Takano T, Takahashi T, Noda T and Okano H: The RNA binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci USA. 102:4625–4630. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kasashima K, Terashima K, Yamamoto K, Sakashita E and Sakamoto H: Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells. 4:667–683. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Okano HJ and Darnell RB: A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci. 17:3024–3037. 1997.PubMed/NCBI | |
|
Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, Henson J, Posner JB and Furneaux HM: HuD, a paraneoplastic encephalomyelitis antigen, contains RNA binding domains and is homologous to Elav and Sex-lethal. Cell. 67:325–333. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Darnell RB: RNA protein interaction in neurons. Annu Rev Neurosci. 36:243–270. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bolognani F, Merhege MA, Twiss J and Perrone-Bizzozero NI: Dendritic localization of the RNA-binding protein HuD in hippocampal neurons: association with polysomes and upregulation during contextual learning. Neurosci Lett. 371:152–157. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Pascale A, Gusev PA, Amadio M, Dottorini T, Govoni S, Alkon DL and Quattrone A: Increase of the RNA-binding protein HuD and post-transcriptional upregulation of the GAP-43 gene during spatial memory. Proc Natl Acad Sci USA. 101:1217–1222. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Clayton GH, Perez GM, Smith RL and Owens GC: Expression of mRNA for the elav-like neural-specific RNA binding protein, HuD, during nervous system development. Brain Res Dev Brain Res. 109:271–280. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Pascale A, Amadio M and Quattrone A: Defining a neuron: neuronal ELAV proteins. Cell Mol Life Sci. 65:128–140. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ratti A, Fallini C, Colombrita C, Pascale A, Laforenza U, Quattrone A and Silani V: Post-transcriptional regulation of neuro-oncological ventral antigen 1 by the neuronal RNA-binding proteins ELAV. J Biol Chem. 283:7531–7541. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J and Darnell RB: Nova regulates brain-specific splicing to shape the synapse. Nat Genet. 37:844–852. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ule J and Darnell RB: RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol. 16:102–110. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wakamatsu Y and Weston JA: Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development. 124:3449–3460. 1997.PubMed/NCBI | |
|
Quattrone A, Pascale A, Nogues X, Zhao W, Gusev P, Pacini A and Alkon DL: Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc Natl Acad Sci USA. 98:11668–11673. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Bolognani F, Qiu S, Tanner DC, Paik J, Perrone-Bizzozero NI and Weeber EJ: Associative and spatial learning and memory deficits in transgenic mice overexpressing the RNA-binding protein HuD. Neurobiol Learn Mem. 87:635–643. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI and Burry RW: GAP-43 mRNA in growth cones is associated with HuD and ribosomes. J Neurobiol. 61:222–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Lim CS and Alkon DL: Protein kinase C stimulates HuD-mediated mRNA stability and protein expression of neurotrophic factors and enhances dendritic maturation of hippocampal neurons in culture. Hippocampus. 22:2303–2319. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Iijima T, Imai T, Kimura Y, Bernstein A, Okano HJ, Yuzaki M and Okano H: Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5 trisphosphate receptor mRNA. Proc Natl Acad Sci USA. 102:17190–17195. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Iijima T, Ogura H, Takatsuki K, Kawahara S, Wakabayashi K, Nakayama D, Fujioka M, Kimura Y, Bernstein A, Okano HJ, Kirino Y and Okano H: Impaired motor functions in mice lacking the RNA-binding protein Hzf. Neurosci Res. 58:183–189. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Miller S, Yasuda M, Coats JK, Jones Y, Martone ME and Mayford M: Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron. 36:507–519. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bassell GJ and Warren ST: Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 60:201–214. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Pfeiffer BE and Huber KM: The state of synapses in fragile X syndrome. Neuroscientist. 15:549–567. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sidorov MS, Auerbach BD and Bear MF: Fragile X mental retardation protein and synaptic plasticity. Mol Brain. 6:152013. View Article : Google Scholar : PubMed/NCBI | |
|
Westmark CJ and Malter JS: FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5:e522007. View Article : Google Scholar : PubMed/NCBI | |
|
Ascano M Jr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, Langlois C, Munschauer M, Dewell S, Hafner M, Williams Z, Ohler U and Tuschl T: FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 492:382–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Dictenberg JB, Swanger SA, Antar LN, Singer RH and Bassell GJ: A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell. 14:926–939. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ and Zhuo M: Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci. 25:7385–7392. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S and Bear MF: Correction of fragile X syndrome in mice. Neuron. 56:955–962. 2007.PubMed/NCBI | |
|
Iacoangeli A and Tiedge H: Translational control at the synapse: role of RNA regulators. Trends Biochem Sci. 38:47–55. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, Pfeiffer RL, Szulwach KE, Duan R, Barkho BZ, Li W, Liu C, Jin P and Zhao X: Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 6:e10008982010. View Article : Google Scholar : PubMed/NCBI | |
|
Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, Murthy AC, Goggin SL, Eisch AJ, Oostra BA, Nelson DL, Jin P and Zhao X: Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med. 17:559–565. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Krueger DD, Osterweil EK, Chen SP, Tye LD and Bear MF: Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA. 108:2587–2592. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Stein JM, Bergman W, Fang Y, Davison L, Brensinger C, Robinson MB, Hecht NB and Abel T: Behavioral and neurochemical alterations in mice lacking the RNA-binding protein translin. J Neurosci. 26:2184–2196. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chen-Plotkin AS, Lee VM and Trojanowski JQ: TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol. 6:211–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kwong LK, Uryu K, Trojanowski JQ and Lee VM: TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals. 16:41–51. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Aparicio-Erriu IM and Prehn JH: Molecular mechanisms in amyotrophic lateral sclerosis: the role of angiogenin, a secreted RNase. Front Neurosci. 6:1672012.PubMed/NCBI | |
|
Ivanov P, Emara MM, Villen J, Gygi SP and Anderson P: Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 43:613–623. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tadesse H, Deschênes-Furry J, Boisvenue S and Côté J: KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum Mol Genet. 17:506–524. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Glinka M, Herrmann T, Funk N, Havlicek S, Rossoll W, Winkler C and Sendtner M: The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons. Hum Mol Genet. 19:1951–1966. 2010. View Article : Google Scholar : PubMed/NCBI |