|
1
|
Benoit C and Mathis D: T-lymphocyte
differentiation and biology. Fundamental Immunology. Paul W: 4th
edition. Lippincott-Raven; Philadelphia, PA: pp. 367–409. 1999
|
|
2
|
Haks MC, Oostervegel MA, Blom B, Spits HM
and Kruisbeek A: Cell-fate decision in early T-cell development:
regulation by cytokine receptors and the pre-TCR. Semin Immunol.
11:23–37. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Werlen G, Hausmann B, Naeher D and Palmer
E: Signaling life and death in the thymus: timing is everything.
Science. 299:1859–1863. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kendall MD and Al-Shawaf AA: Innervation
of rat thymus gland. Brain Behav Immun. 5:9–28. 1991. View Article : Google Scholar
|
|
5
|
Boyd RL, Tucek CL, Godfrey DI, Izon DJ,
Wilson TJ, Davidson NJ, Bean AG, Ladyman HM, Ritter MA and Hugo P:
The thymic microenvironment. Immunol Today. 14:445–59. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Res P and Spits H: Developmental stages in
the human thymus. Semin Immunol. 11:39–46. 1999. View Article : Google Scholar
|
|
7
|
Anderson G, Harman BC, Hare KJ and
Jenkinson EJ: Microenvironmental regulation of T-cell development
in the thymus. Semin Immunol. 12:457–464. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Anderson G and Jenkinson EJ: Lymphostromal
interactions in thymic development and function. Nature Rev
Immunol. 1:31–40. 2001. View Article : Google Scholar
|
|
9
|
Savino W and Dardenne M: Neuroendocrine
control of thymus physiology. Endocr Rev. 21:412–443. 2000.
|
|
10
|
Rezzani R, Bonomini F and Rodella LF:
Histochemical and molecular overview of the thymus as site for
T-cells development. Prog Histochem Cytochem. 43:73–120. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mignini F, Streccioni V and Amenta F:
Autonomic innervation of immune organs and neuroimmune modulation.
Auton Autacoid Pharmacol. 23:1–25. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mignini F, Sabbatini M, D’Andrea V and
Cavallotti C: Intrinsic innervation and dopaminergic markers after
experimental denervation in rat thymus. Eur J Histochem.
54:e172010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bockman DE: Development of the thymus.
Microsc Res Tech. 38:209–215. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sultana DA, Tomita S, Hamada M, Iwanaga Y,
Kitahama Y, Khang NV, Hirai S, Ohigashi I, Nitta S, Amagai T,
Takahashi S and Takahama Y: Gene expression profile of the third
pharyngeal pouch reveals role of mesenchymal MafB in embryonic
thymus development. Blood. 113:2976–2987. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gordon J, Wilson VA, Blair NF, Sheridan J,
Farley A, Wilson L, Manley NR and Blackburn CC: Functional evidence
for a single endodermal origin for the thymic epithelium. Nat
Immunol. 5:546–53. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gordon J and Manley NR: Mechanisms of
thymus organogenesis and morphogenesis. Development. 138:3865–3878.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Taub DD and Longo DL: Insight into thymic
aging and regeneration. Immunol Rev. 205:72–93. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sutherland JS, Goldberg GL, Hammett MV,
Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA,
Chidgey AP and Boyd RL: Activation of thymic regeneration in mice
and humans following androgen blockade. J Immunol. 175:2741–2753.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cavallotti C, D’Andrea V, Tonnarini G,
Cavallotti C and Bruzzone P: Age-related changes in the human
thymus studied with scanning electron microscopy. Micros Res Tech.
71:573–578. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Petrie HT: Role of thymic organ structure
and stromal composition in steady-state postnatal T-cell
production. Immunol Rev. 189:8–19. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Germain RN: T-cell development and the
CD4-CD8 lineage decision. Nat Rev Immunol. 2:309–322. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Anderson M, Anderson SK and Farr AG:
Thymic vasculature: organizer of the medullary epithelial
compartment? Int Immunol. 12:1105–1110. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pearse G: Normal structure, function and
histology of the thymus. Toxicol Pathol. 34:504–514. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Petrie HT and Zúñiga-Pflücker JC: Zoned
out: functional mapping of stromal signaling microenvironments in
the thymus. Ann Rev Immunol. 25:649–679. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gray DH, Ueno T, Chidgey AP, Malin M,
Goldberg GL, Takahama Y and Boyd RL: Controlling the thymic
microenvironment. Curr Op Immunol. 17:137–143. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bodey B: Thymic reticulo-epithelial cells:
key cells of neuroendocrine regulation. Expert Opin Biol Ther.
7:939–949. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Patel DD and Haynes BF: Cell adhesion
molecules involved in intrathymic T-cell development. Semin
Immunol. 5:282–292. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Van de Wijngaert FP, Kendall MD, Schuurman
HJ, Rademakers LH and Kater L: Heterogeneity of epithelial cells in
the human thymus. An ultrastructural study. Cell Tissue Res.
237:227–237. 1984.PubMed/NCBI
|
|
29
|
Le PT and Singer KH: Human thymic
epithelial cells: adhesion molecules and cytokine production. Int J
Clin Lab Res. 23:56–60. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Prockop SE and Petrie HT: Regulation of
thymus size by competition for stromal niches among early T-cell
progenitors. J Immunol. 173:1604–1611. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Savino W, Mendes-da-Cruz DA, Smaniotto S,
Silva-Monteiro E and Villa-Verde DM: Molecular mechanisms governing
thymocyte migration: combined role of chemokines and extracellular
matrix. J Leukoc Biol. 75:951–961. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Savino W, Dalmau SR and Dealmeida VC: Role
of extracellular matrix-mediated interactions in thymocyte
migration. Dev Immunol. 7:279–291. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Villa-Verde DM, Silva-Monteiro E,
Jasiulionis M, Farias-de-Oliveira DA, Brentani RR, Savino W and
Chammas R: Galectin-3 modulates carbohydrate-dependent thymocyte
interactions with the thymic microenvironment. Eur J Immunol.
32:1434–1444. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Aoudjit F, Masure S, Opdenakker G,
Potworoski EF and St-Pierre Y: Gelatinase B (MMP-9), but not its
inhibitor (TIMP-1), dictates the growth rate of experimental thymic
lymphoma. Int J Cancer. 82:743–747. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wilkinson B, Owen JJ and Jenkinson EJ:
Factors regulating stem cell recruitment to the fetal thymus. J
Immunol. 162:3873–3881. 1999.PubMed/NCBI
|
|
36
|
Lannes-Vieira J, Dardenne M and Savino W:
Extracellular matrix components of the mouse thymus
micrenvironment: ontogenetic studies and modulation by
glucocorticoid hormones. J Histochem Cytochem. 39:1539–1546. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Siemion I, Kluczyk A and Cebrat M: The
peptide molecular links between the central nervous and the immune
systems. Amino Acids. 29:161–176. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lunin SM and Novoselova EG: Thymus
hormones as prospective anti-inflammatory agents. Exper Opin Ther
Targets. 14:775–786. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Leposavić G, Pilipović I and Perišić M:
Cellular and nerve fibre catecholaminergic thymic network: steroid
hormone dependent activity. Physiol Res. 60(Suppl 1): S71–S82.
2011.PubMed/NCBI
|
|
40
|
Artico M, Cavallotti C, Cameroni M and
Cavallotti D: Interleukin 1β as simulator of the rat thymus.
Cytokine. 15:261–265. 2001.
|
|
41
|
Berczi I, Quintanar-Stephano A and Kovacs
K: Neuroimmune regulation in immunecompetence, acute illness and
healing. Ann NY Acad Sci. 1153:220–239. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tollefson L and Bulloch K: Dual-label
retrograde transport: CNS innervation of the mouse thymus distinct
from other mediastinum viscera. J Neurosci Res. 25:20–28. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mićić M, Leposavić G, Ugresić N, Bogojević
M and Isaković K: Parasympathetic innervation of the rat thymus
during first life period: histochemical and biochemical study.
Thymus. 19:173–182. 1992.PubMed/NCBI
|
|
44
|
Cavallotti D, Artico M, Iannetti G and
Cavallotti C: Quantification of acetylcholinesterase-positive
structures in human thymus during development and aging. Neurochem
Int. 36:75–82. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Artico M, Cavallotti C, Tranquilli Leali
FM, Falconi M and Cavallotti D: Effect of interferon on human
thymus microenvironment. Immunol Lett. 85:19–27. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zimring JC, Kapp LM, Yamada M, Wess J and
Kapp JA: Regulation of CD8+ cytolytic T lymphocyte
differentiation by a cholinergic pathway. J Neuroimmunol.
164:66–75. 2005.
|
|
47
|
Nance DM and Sanders VM: Autonomic
innervation and regulation of the immune system (1987–2007). Brain
Behav Immun. 21:736–745. 2007.
|
|
48
|
Trotter RN, Stornetta RL, Guyenet PG and
Roberts MR: Transneuronal mapping of the CNS network controlling
sympathetic outflow to the rat thymus. Auton Neurosci. 131:9–20.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Besedovsky HO and del Rey A:
Immune-neuro-endocrine interactions: facts and hypotheses. Endocr
Rev. 17:64–102. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Al-Shawaf AA, Kendal MD and Cowen T:
Identification of neural profiles containing vasoactive intestinal
polypeptide, acetylcholinesterase and catecholamines in the rat
thymus. J Anat. 174:131–143. 1991.PubMed/NCBI
|
|
51
|
Vizi ES and Elenkov IJ: Nonsynaptic
noradrenaline release in neuro-immune responses. Acta Biol Hung.
53:229–244. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cavallotti C, Artico N and Cavallotti D:
Occurrence of adrenergic nerve fibers and noradrenaline in thymus
gland of juvenile and aged rats. Immunol Lett. 70:53–62. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Müller S and Weihe E: Interrelation of
peptidergic innervation with mast cells and ED1-positive cells in
rat thymus. Brain Behav Immun. 5:55–72. 1991.PubMed/NCBI
|
|
54
|
Artico M, Cavallotti C and Cavallotti D:
Adrenergic nerve and mast cells: correlation in rat thymus. Immunol
Lett. 84:69–76. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Leposavić G, Mićić M, Ugresić N, Bogojević
M and Isaković K: Components of sympathetic innervation of the rat
thymus during late fetal and postnatal development:
histofluorescence and biochemical study. Sympathetic innervation of
the rat thymus. Thymus. 19:77–87. 1992.
|
|
56
|
Vizi ES, Orsó E, Osipenko ON, Hasko G and
Elenkov IJ: Neurochemical, electrophysiological and
immunocytochemical evidence for a noradrenergic link between the
sympathetic nervous system and thymocytes. Neuroscience.
68:1263–1276. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Leposavić G, Pilipović I, Radojević K,
Pešić V, Perišić M and Kosec D: Cathecolamines as immunomodulators:
a role for adrenoceptor-mediated mechanisms in fine tuning of
T-cell development. Autonom Neurosci. 144:1–12. 2008.PubMed/NCBI
|
|
58
|
Elenkov IJ, Wilder RL, Chrousos GP and
Vizi ES: The sympathetic nerve-an integrative interface between two
supersystems: the brain and the immune system. Pharmacol Rev.
52:595–638. 2000.PubMed/NCBI
|
|
59
|
Madden KS and Felten DL: β-adrenoceptor
blockade alters thymocyte differentiation in aged mice. Cell Mol
Biol. 47:189–196. 2001.
|
|
60
|
Kavelaars A: Regulated expression of α-1
adrenergic receptors in the immune system. Brain Behav Immun.
16:799–807. 2002.
|
|
61
|
Pešić V, Kosec D, Radojević K, Pilipović
I, Perišić M, Vidić-Danković B and Leposavić G: Expression of
α1-adrenoceptors on thymic cells and their role in fine tuning of
thymopoiesis. J Neuroimmunol. 214:55–66. 2009.
|
|
62
|
Cavallotti D, Artico M, Iannetti G and
Cavallotti C: Occurrence of adrenergic nerve fibers in human thymus
during immune response. Neurochem Int. 40:211–221. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wrona D: Neural-immune interactions: an
integrative view of the bidirectional relationship between the
brain and the immune systems. J Neuroimmunol. 172:38–58. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Leposavić G, Radojević K, Vidić-Danković
B, Kosec D, Pilipović I and Perišić M: Early postnatal castration
affects thymic and thymocyte noradrenaline levels and
β-adrenoceptor-mediated influence on the thymopoiesis in adult
rats. J Neuroimmunol. 182:100–115. 2007.PubMed/NCBI
|
|
65
|
Nakano K, Higashi T, Takagi R, Hashimoto
K, Tanaka Y and Matsushita S: Dopamine released by dendritic cells
polarizes Th2 differentiation. Int Immunol. 21:645–654. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mignini F, Tomassoni D, Traini E and
Amenta F: Dopamine, vesicular transporters and dopamine receptor
expression and localization in rat thymus and spleen. J
Neuroimmunol. 206:5–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nijima A, Hori T, Katafuchi T and Ichijo
T: The effect of interleukin-1β on the efferent activity of the
vagus nerve to the thymus. J Auton Nerv Syst. 54:137–144. 1995.
|
|
68
|
Dovas A, Lucchi ML, Bortoloami R, Grandis
A, Palladino AR, Banelli E, Caretta M, Magni F and Paolocci N:
Collaterals of recurrent laringeal nerve fibres innervate the
thymus: a fluorescent tracer and HRP investigation of efferent
vagal neurons in the rat brainstem. Brain Res. 809:141–148. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mitchell B, Kendall M, Adam E and
Schumacher U: Innervation of the thymus in normal and bone marrow
reconstituted severe combined immunodeficient (SCID) mice. J
Neuroimmunol. 75:19–27. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Antonica A, Ayroldi E, Magni F and
Paolocci N: Lymphocyte traffic changes induced by monolateral vagal
denervation in mouse thymus and peripheral lymphoid organs. J
Neuroimmunol. 64:115–122. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rinner I, Kawashima K and Schauenstein K:
Rat lymphocytes produce and secrete acetylcholine in dependence of
differentiation and activation. J Neuroimmunol. 81:31–37. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rinner I, Globerson A, Kawashima K,
Korsatko W and Schauenstein K: A possible role for acetylcholine in
the dialogue between thymocytes and thymic stroma.
Neuroimmunomodulation. 6:51–55. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yamada T, Murayama T and Nomura Y:
Muscarinic acetylcholine receptors on rat thymocytes: their
possible involvement in DNA fragmentation. Jpn J Pharmacol.
73:311–316. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kendall MD: Functional anatomy of the
thymic microenvironment. J Anat. 177:1–29. 1991.PubMed/NCBI
|
|
75
|
Kohm AP and Sanders VM: Norepinephrine and
β2-adrenergic receptor stimulation regulate CD4+ T and B
lymphocytes function in vitro and in vivo. Pharmacol Rev.
53:487–525. 2001.
|
|
76
|
Sarkar C, Basu B, Chakroborty D, Dasgupta
PS and Basu S: The immunoregulatory role of dopamine: an update.
Brain Behav Immun. 24:525–528. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mignini F, Sabbatini M, Capacchietti M,
Amantini C, Bianchi E, Artico M and Tammaro A: T-cell
subpopulations express a different pattern of dopaminergic markers
in intra- and extra- thymic compartments. J Biol Regul Homeost
Agents. 27:463–475. 2013.PubMed/NCBI
|
|
78
|
Mignini F, Traini E, Tomassoni D and
Amenta F: Dopamine plasma membrane transporter (DAT) in rat thymus
and spleen: an an immunochemical and immunohistochemical study.
Autonom Autocoid Pharmacol. 26:183–189. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cosentino M, Fietta AM, Ferrari M, Rasini
E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F and
Lecchini S: Human CD4+ CD25+ regulatory
T-cells selectively express tyrosine hydroxylase and contain
endogeneous catecholamines subserving an autocrine/paracrine
inhibitory functional loop. Blood. 109:632–642. 2007.
|
|
80
|
Oberbek R: Catecholamines: physiological
immunomodulators during health and illness. Curr Med Chem.
13:1979–1989. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Caronti B, Calderaro C, Passarelli F,
Palladini G and Pontieri FE: Dopamine receptor mRNAs in the rat
lymphocytes. Life Sci. 62:1919–1925. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kavelaars A, Cobelens PM, Teunis MA and
Heijnen CJ: Changes in innate and acquired immuno response in mice
with targeted deletion of the dopamine transporter gene. J
Neuroimmunol. 161:162–168. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Olanow CW: The pathogenesis of cell death
in Parkinson’s disease-2007. Mov Disord. 17(Suppl): S335–S342.
2007.
|
|
84
|
Cook-Mills JM, Cohen RL, Perlman RL and
Chambers DA: Inhibition of lymphocyte activation by catecholamines:
evidence for a non-classical mechanism of catecholamine action.
Immunology. 85:544–549. 1995.PubMed/NCBI
|
|
85
|
Tsao CW, Lin YS and Cheng JT: Effect of
dopamine on immune cell proliferation in mice. Life Sci.
61:PL361–PL371. 1997.PubMed/NCBI
|
|
86
|
Ilani T, Strous RD and Fuchs S:
Dopaminergic regulation of immune cells via D3 dopamine receptor: a
pathway mediated by activated T-cells. FASEB J. 18:1600–1602.
2004.PubMed/NCBI
|
|
87
|
Sarkar C, Das S, Chakroborty D, Chowdhury
UR, Basu B, Dasgupta PS and Basu S: Cutting Edge: stimulation of
dopamine D4 receptors induce T-cell quiescence by upregulating
Kruppel-like factor-2 expression through inhibition of ERK1/ERK2
phosphorylation. J Immunol. 177:7525–7529. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Trejter M, Warchol JB, De Caro R,
Brelinska R, Nussdorfer GG and Malendowcz LK: Studies on the
involvement of endogenous neuropeptides in the control of thymocyte
proliferation in the rat. Histol Histopathol. 16:155–158.
2001.PubMed/NCBI
|
|
89
|
Silva AB and Palmer DB: Evidence of
conserved neuroendocrine interactions in the thymus: intrathymic
expression of neuropeptides in mammalian and non-mammalian
vertebrates. Neuroimmunomodulation. 18:264–270. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mignini F, Sabbatini M, D’Andrea V and
Cavallotti C: Neuropeptides of human thymus in normal and
pathological conditions. Peptides. 32:920–928. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bellinger DL, Lorton D, Romano TD,
Olschowka JA, Felten SY and Felten DL: Neuropeptide innervation of
lymphoid organs. Ann NY Acad Sci. 594:17–33. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Krantz A, Kendall MD and von Gaudecker B:
Studies on rat and human thymus to demonstrate immunoreactivity of
calcitonin gene-related peptide, tyrosine hydroxylase and
neuropeptide Y. J Anat. 191:441–450. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Weihe E, Nohr D, Michel S, Müller S,
Zentel HJ, Fink T and Krekel J: Molecular anatomy of the
neuro-immune connection. Int J Neurosci. 59:1–23. 1991. View Article : Google Scholar
|
|
94
|
De la Fuente M, Del Rio M, Victor VM and
Medina S: Neuropeptide Y effects on murine natural killer activity:
changes with ageing and cAMP involvement. Regul Pept. 101:73–79.
2001.PubMed/NCBI
|
|
95
|
Bedoui S, Kawamura N, Straub RH, Pabst R,
Yamamura T and von Hörsten S: Relevance of neuropeptide Y for the
neuroimmune crosstalk. J Neuroimmunol. 134:1–11. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Delgado M, Martinez C, Leceta J and
Gomariz RP: Vasoactive intestinal peptide in thymus: synthesis,
receptors and biological actions. Neuroimmunomodulation. 6:97–107.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bellinger DL, Lorton D, Horn L, Brouxhon
S, Felten SY and Felten DL: Vasoactive intestinal polypeptide (VIP)
innervation of rat spleen, thymus and lymph nodes. Peptides.
18:1139–1149. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Delgado M, Garrido E, Martinez C, Leceta J
and Gomariz RP: Vasoactive intestinal peptide and pituitary
adenylate cyclase-activating polypeptides (PACAP27 and PACAP38)
protect CD4+CD8+ thymocytes from
glucocorticoid-induced apoptosis. Blood. 87:5152–5161.
1996.PubMed/NCBI
|
|
99
|
Ganea D, Gonzales-Rey E and Delgado M: A
novel mechanism for immunosuppression: from neuropeptides to
regulatory T cells. J Neuroimmune Pharmacol. 1:400–409. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lorton D, Bellinger DL, Felten SY and
Felten DL: Substance P innervation of the rat thymus. Peptides.
11:1269–1275. 1990. View Article : Google Scholar
|
|
101
|
Jurjus AR, More N and Walsh RJ:
Distribution of substance P positive cells and nerve fibers in the
rat thymus. J Neuroimmunol. 90:143–148. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Piantelli M, Maggiano N, Larocca LM, Ricci
R, Ranelletti FO, Lauriola L and Capelli A:
Neuropeptide-immunoreactive cells in human thymus. Brain Behav
Immun. 4:189–197. 1990. View Article : Google Scholar
|
|
103
|
Bulloch K, Radojcic T, Yu R, Hausman J,
Lenhard L and Baird S: The distribution and function of calcitonin
gene-related peptide in the mouse thymus and spleen. Psycho Neuro
Endocrin Immunol. 4:186–194. 1991.
|
|
104
|
Bulloch K, McEwen BS, Diwa A, Radojcic T,
Hausman J and Baird S: The role of calcitonin gene-related peptide
in the mouse thymus revisited. Ann NY Acad Sci. 25:129–136. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Xing L, Guo J and Wang X: Induction and
expression of β-calcitonin gene-related peptide in rat T
lymphocytes and its significance. J Immunol. 165:4359–4366.
2000.
|
|
106
|
Bulloch K, McEwen BS, Diwa A and Baird S:
Relationship between dehydroepiandrosterone and calcitonin
gene-related peptide in the mouse thymus. Am J Physiol.
268:E168–E173. 1995.PubMed/NCBI
|
|
107
|
Bulloch K, McEwen BS, Nordberg J, Diwa A
and Baird S: Selective regulation of T-cell development and
function by calcitonin gene-related peptide in thymus and spleen.
An example of differential regional regulation of immunity by the
neuroendocrine system. Ann NY Acad Sci. 840:551–562. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sakuta H, Inaba K and Muramatsu S:
Calcitonin gene-related peptide enhances apoptosis of thymocytes. J
Neuroimmunol. 67:103–109. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Polak JM and Bloom SR: The central and
peripheral distribution of neurotensin. Ann NY Acad Sci. 400:75–93.
1982. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Katsanos GS, Anogianaki A, Castellani ML,
Ciampoli C, De Amicis D, Orso C, Pollice R, Vecchiet J, Tetè S,
Salini V, Caraffa A, Patruno A, Shaik YB, Kempuraj D, Doyle R,
Antinolfi PL, Cerulli G, Conti CM, Fulcheri M, Neri G and Sabatino
G: Biology of neurotensin: revisited study. Int J Immunopathol
Pharmacol. 21:255–259. 2008.PubMed/NCBI
|
|
111
|
Vanneste Y, Thome AN, Vandersmissen E,
Charlet C, Franchimont D, Martens H, Lhiaubet AM, Schimpff RM,
Rostène W and Geenen V: Identification of neurotensin-related
peptides in human thymic epithelial cell membranes and relationship
with major histocompatibility complex class I molecules. J
Neuroimmunol. 76:161–166. 1997. View Article : Google Scholar
|
|
112
|
Lhiaubet AM, Avard C and Schimpff RM:
Apparent functionality but impractical quantification of
neurotensin receptors on human peripheral lymphocytes. Hormone Res.
49:233–239. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ramez M, Bagot M, Nikolova M, Boumsell L,
Vita N, Chalon P, Caput D, Ferrara P and Bensussan A: Functional
characterization of neurotensin receptors in human cutaneous T cell
lymphoma malignant lymphocytes. J Invest Dermatol. 117:687–693.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Hannestad J, Monjil DF, Díaz-Esnal B, Cobo
J and Vega JA: Age-dependent changes in the nervous and endocrine
control of the thymus. Micros Res Tech. 63:94–101. 2004. View Article : Google Scholar : PubMed/NCBI
|