Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2014 Volume 33 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2014 Volume 33 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review)

  • Authors:
    • Margherita Cerrone
    • Monica Cantile
    • Francesca Collina
    • Laura Marra
    • Giuseppina Liguori
    • Renato Franco
    • Annarosaria De Chiara
    • Gerardo Botti
  • View Affiliations / Copyright

    Affiliations: Pathology Unit, INT Pascale Foundation, I-80131 Naples, Italy
    Copyright: © Cerrone et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 1379-1391
    |
    Published online on: April 4, 2014
       https://doi.org/10.3892/ijmm.2014.1726
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Approximately one third of soft tissue tumors are characterized by chromosomal aberrations, in particular, translocations and amplifications, which appear to be highly specific. The identification of fusion transcripts not only supports the diagnosis, but provides the basis for the development of novel therapeutic strategies aimed at blocking the aberrant activity of chimeric proteins. Molecular biology, and in particular, cytogenetic and qualitative and quantitative polymerase chain reaction technologies, allow with high efficiency and specificity, the determination of specific fusion transcripts resulting from chromosomal translocations, as well as the analysis of gene amplifications. In this review, various molecular techniques that allow the identification of translocations and consequent fusion transcripts generated are discussed in the broad spectrum of soft tissue tumors.
View Figures

Figure 1

Figure 2

View References

1 

Dei Tos AP and Dal Cin P: The role of cytogenetics in the classification of soft tissue tumours. Virchows Arch. 431:83–94. 1997.PubMed/NCBI

2 

Bennicelli JL and Barr FG: Genetics and the biologic basis of sarcomas. Curr Opin Oncol. 11:267–274. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Fletcher Christopher DM, Unni K Krishnan and Mertens Fredrik: WHO: Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press; Lyon: 2002

4 

Gisselsson D, Hibbard MK, Dal Cin P, Sciot R, Hsi BL, Kozakewich HP and Fletcher JA: PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol. 159:955–962. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Martins C, Fonseca I, Roque L, Pereira T, Ribeiro C, Bullerdiek J and Soares J: PLAG1 gene alterations in salivary gland pleomorphic adenoma and carcinoma ex-pleomorphic adenoma: a combined study using chromosome banding, in situ hybridization and immunocytochemistry. Mod Pathol. 18:1048–1055. 2005. View Article : Google Scholar

6 

Turc-Carel C, Limon J, Dal Cin P, Rao U, Karakousis C and Sandberg AA: Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet. 23:291–309. 1986. View Article : Google Scholar : PubMed/NCBI

7 

Paulien S, Turc-Carel C, Dal Cin P, Jani-Sait S, Sreekantaiah C, Leong SP, Vogelstein B, Kinzler KW, Sandberg AA and Gemmill RM: Myxoid liposarcoma with t(12;16) (q13;p11) contains site-specific differences in methylation patterns surrounding a zinc-finger gene mapped to the breakpoint region on chromosome 12. Cancer Res. 50:7902–7907. 1990.

8 

Mezzelani A, Sozzi G, Pierotti MA and Pilotti S: Rapid differential diagnosis of myxoid liposarcoma by fluorescence in situ hybridisation on cytological preparations. Clin Mol Pathol. 49:308–309. 1996. View Article : Google Scholar : PubMed/NCBI

9 

Aoki T, Hisaoka M, Kouho H, Hashimoto H and Nakata H: Interphase cytogenetic analysis of myxoid soft tissue tumors by fluorescence in situ hybridization and DNA flow cytometry using paraffin-embedded tissue. Cancer. 79:284–293. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Sozzi G, Minoletti F, Miozzo M, Sard L, Musso K, Azzarelli A, Pierotti MA and Pilotti S: Relevance of cytogenetic and fluorescent in situ hybridization analyses in the clinical assessment of soft tissue sarcoma. Hum Pathol. 28:134–142. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Schoenmakers EF, Kools PF, Mols R, Kazmierczak B, Bartnitzke S, Bullerdiek J, Dal Cin P, De Jong PJ, Van den Berghe H and Van de Ven WJ: Physical mapping of chromosome 12q breakpoints in lipoma, pleomorphic salivary gland adenoma, uterine leiomyoma, and myxoid liposarcoma. Genomics. 20:210–222. 1994. View Article : Google Scholar

12 

Gisselsson D, Mandahl N, Pålsson E, Gorunova L and Höglund M: Locus-specific multifluor FISH analysis allows physical characterization of complex chromosome abnormalities in neoplasia. Genes Chromosomes Cancer. 28:347–352. 2000. View Article : Google Scholar

13 

Downs-Kelly E, Goldblum JR, Patel RM, Weiss SW, Folpe AL, Mertens F, Hartke M, Tubbs RR and Skacel M: The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 32:8–13. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Narendra S, Valente A, Tull J and Zhang S: DDIT3 gene break-apart as a molecular marker for diagnosis of myxoid liposarcoma - assay validation and clinical experience. Diagn Mol Pathol. 20:218–224. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Aman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, Willén H, Rydholm A and Mitelman F: Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 5:278–285. 1992. View Article : Google Scholar : PubMed/NCBI

16 

Crozat A, Aman P, Mandahl N and Ron D: Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 363:640–644. 1993. View Article : Google Scholar : PubMed/NCBI

17 

Knight JC, Renwick PJ, Dal Cin P, Van den Berghe H and Fletcher CD: Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res. 55:24–27. 1995.PubMed/NCBI

18 

Yang X, Nagasaki K, Egawa S, Maruyama K, Futami H, Tsukada T, Yokoyama R, Beppu Y, Fukuma H, Shimoda T, Mukai K, Yabe H, Hanaoka I, Yabe Y and Yamaguchi K: FUS/TLS-CHOP chimeric transcripts in liposarcoma tissues. Jpn J Clin Oncol. 25:234–239. 1995.PubMed/NCBI

19 

Panagopoulos I, Mandahl N, Mitelman F and Aman P: Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene. 11:1133–1137. 1995.

20 

Willeke F, Ridder R, Mechtersheimer G, Schwarzbach M, Duwe A, Weitz J, Lehnert T, Herfarth C and von Knebel Doeberitz M: Analysis of FUS-CHOP fusion transcripts in different types of soft tissue liposarcoma and their diagnostic implications. Clin Cancer Res. 4:1779–1784. 1998.PubMed/NCBI

21 

Kanoe H, Nakayama T, Hosaka T, Murakami H, Yamamoto H, Nakashima Y, Tsuboyama T, Nakamura T, Ron D, Sasaki MS and Toguchida J: Characteristics of genomic breakpoints in TLS-CHOP translocations in liposarcomas suggest the involvement of Translin and topoisomerase II in the process of translocation. Oncogene. 18:721–729. 1999. View Article : Google Scholar : PubMed/NCBI

22 

Huang HY and Antonescu CR: Molecular variability of TLS-CHOP structure shows no significant impact on the level of adipogenesis: a comparative ultrastructural and RT-PCR analysis of 14 cases of myxoid/round cell liposarcomas. Ultrastruct Pathol. 27:217–226. 2003. View Article : Google Scholar

23 

Panagopoulos I, Aman P, Mertens F, Mandahl N, Rydholm A, Bauer HF and Mitelman F: Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Genes Chromosomes Cancer. 17:102–107. 1996. View Article : Google Scholar : PubMed/NCBI

24 

Rivero ER, Mesquita RA, de Sousa SC and Nunes FD: Detection of TLS/FUS-CHOP fusion transcripts in a case of oral liposarcoma. Ann Diagn Pathol. 10:36–38. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Panagopoulos I, Lassen C, Isaksson M, Mitelman F, Mandahl N and Aman P: Characteristic sequence motifs at the breakpoints of the hybrid genes FUS/CHOP, EWS/CHOP and FUS/ERG in myxoid liposarcoma and acute myeloid leukemia. Oncogene. 15:1357–1362. 1997. View Article : Google Scholar : PubMed/NCBI

26 

Hisaoka M, Tsuji S, Morimitsu Y, Hashimoto H, Shimajiri S, Komiya S and Ushijima M: Detection of TLS/FUS-CHOP fusion transcripts in myxoid and round cell liposarcomas by nested reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Diagn Mol Pathol. 7:96–101. 1998. View Article : Google Scholar

27 

Schwarzbach MH, Koesters R, Germann A, Mechtersheimer G, Geisbill J and Winkler S: Comparable transforming capacities and differential gene expression patterns of variant FUS/CHOP fusion transcripts derived from soft tissue liposarcomas. Oncogene. 23:6798–6805. 2004. View Article : Google Scholar

28 

Patil N, Abba M, Hödl P, Schwarzbach M and Allgayer H: A real time PCR based approach for the quantitative detection of FUS-CHOP fusion transcripts in human liposarcoma. Adv Med Sci. 57:37–45. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Borjigin N, Ohno S, Wu W, Tanaka M, Suzuki R, Fujita K, Takanashi M, Oikawa K, Goto T, Motoi T, Kosaka T, Yamamoto K and Kuroda M: TLS-CHOP represses miR-486 expression, inducing upregulation of a metastasis regulator PAI-1 in human myxoid liposarcoma. Biochem Biophys Res Commun. 427:355–360. 2012. View Article : Google Scholar

30 

Suzuki K, Matsui Y, Endo K, Kubo T, Hasegawa T, Kimura T, Ohtani O and Yasui N: Myxoid liposarcoma with EWS-CHOP type 1 fusion gene. Anticancer Res. 30:4679–4683. 2010.PubMed/NCBI

31 

Powers MP, Wang WL, Hernandez VS, Patel KS, Lev DC, Lazar AJ and López-Terrada DH: Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 23:1307–1315. 2010. View Article : Google Scholar

32 

Suzuki K, Matsui Y, Hashimoto N, et al: Variation in myxoid liposarcoma: Clinicopathological examination of four cases with detectable TLS-CHOP or EWS-CHOP fusion transcripts whose histopathological diagnosis was other than myxoid liposarcoma. Oncol Lett. 3:293–296. 2012.

33 

Bourgeois JM, Knezevich SR, Mathers JA and Sorensen PH: Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol. 24:937–246. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Knezevich SR, McFadden DE, Tao W, Lim JF and Sorensen PH: A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 18:184–187. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Adem C, Gisselsson D, Dal Cin P and Nascimento AG: ETV6 rearrangements in patients with infantile fibrosarcomas and congenital mesoblastic nephromas by fluorescence in situ hybridization. Mod Pathol. 14:1246–1251. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Morerio C, Rapella A, Rosanda C, Tassano E, Conte M, Gambini C and Panarello C: Differential diagnosis of congenital fibrosarcoma. Cancer Genet Cytogenet. 152:167–168. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Mariño-Enríquez A, Li P, Samuelson J, Rossi MR and Reyes-Múgica M: Congenital fibrosarcoma with a novel complex 3-way translocation t(12;15;19) and unusual histologic features. Hum Pathol. 39:1844–1848. 2008.PubMed/NCBI

38 

Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE and Sorensen PH: ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 58:5046–5048. 1998.PubMed/NCBI

39 

Sheng WQ, Hisaoka M, Okamoto S, Tanaka A, Meis-Kindblom JM, Kindblom LG, Ishida T, Nojima T and Hashimoto H: Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol. 115:348–355. 2001. View Article : Google Scholar

40 

Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, Perez-Atayde AR and Fletcher JA: Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 153:1451–1458. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Ramphal R, Manson D, Viero S, Zielenska M, Gerstle T and Pappo A: Retroperitoneal infantile fibrosarcoma: clinical, molecular, and therapeutic aspects of an unusual tumor. Pediatr Hematol Oncol. 20:635–642. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Rizkalla H, Wildgrove H, Quinn F, Capra M and O’Sullivan MJ: Congenital fibrosarcoma of the ileum: case report with molecular confirmation and literature review. Fetal Pediatr Pathol. 30:156–160. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O’Brien KP, Kedra D, Fransson I, Guilbaud C and Dumanski JP: Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 15:95–98. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Navarro M, Simon MP, Migeon C, Turc-Carel C and Pedeutour F: COL1A1-PDGFB fusion in a ring chromosome 4 found in a dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 23:263–266. 1998. View Article : Google Scholar : PubMed/NCBI

45 

Salgado R, Llombart B, M Pujol R, Fernández-Serra A, Sanmartín O, Toll A, Rubio L, Segura S, Barranco C, Serra-Guillén C, Yébenes M, Salido M, Traves V, Monteagudo C, Sáez E, Hernández T, de Álava E, Llombart-Bosch A, Solé F, Guillén C, Espinet B and López-Guerrero JA: Molecular diagnosis of dermatofibrosarcoma protuberans: a comparison between reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization methodologies. Genes Chromosomes Cancer. 50:510–517. 2011. View Article : Google Scholar

46 

Segura S, Salgado R, Toll A, Martín-Ezquerra G, Yébenes M, Sáez A, Solé F, Barranco C, Umbert P, Espinet B and Pujol RM: Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol. 42:176–184. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Walluks K, Chen Y, Woelfel C, Yang L, Cui T, Seliger C, Geier C, Knösel T, Hauke S and Petersen I: Molecular and clinicopathological analysis of dermatofibrosarcoma protuberans. Pathol Res Pract. 209:30–35. 2013. View Article : Google Scholar : PubMed/NCBI

48 

O’Brien KP, Seroussi E, Dal Cin P, Sciot R, Mandahl N, Fletcher JA, Turc-Carel C and Dumanski JP: Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer. 23:187–193. 1998.PubMed/NCBI

49 

Macarenco RS, Zamolyi R, Franco MF, Nascimento AG, Abott JJ, Wang X, Erickson-Johnson MR and Oliveira AM: Genomic gains of COL1A1-PDFGB occur in the histologic evolution of giant cell fibroblastoma into dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 47:260–265. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Nishio J, Iwasaki H, Ohjimi Y, Ishiguro M, Isayama T, Naito M, Kaneko Y and Kikuchi M: Supernumerary ring chromosomes in dermatofibrosarcoma protuberans may contain sequences from 8q11.2-qter and 17q21-qter: a combined cytogenetic and comparative genomic hybridization study. Cancer Genet Cytogenet. 129:102–106. 2001. View Article : Google Scholar

51 

Kaur S, Vauhkonen H, Böhling T, Mertens F, Mandahl N and Knuutila S: Gene copy number changes in dermatofibrosarcoma protuberans - a fine-resolution study using array comparative genomic hybridization. Cytogenet Genome Res. 115:283–288. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Wang J, Hisaoka M, Shimajiri S, Morimitsu Y and Hashimoto H: Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol. 8:113–119. 1999. View Article : Google Scholar

53 

Szollosi Z, Scholtz B, Egervari K and Nemes Z: Transformed dermatofibrosarcoma protuberans: real time polymerase chain reaction detection of COL1A1-PDGFB fusion transcripts in sarcomatous areas. J Clin Pathol. 60:190–194. 2007. View Article : Google Scholar

54 

Craver R, Dewenter T, Ebran N and Pedeutour F: COL1A1-PDGFB fusion in a pediatric Bednar tumor with 2 copies of a der(22)t(17;22). Cancer Genet Cytogenet. 168:155–157. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Patel KU, Szabo SS, Hernandez VS, Prieto VG, Abruzzo LV, Lazar AJ and López-Terrada D: Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol. 39:184–193. 2008.

56 

Gibson S, Sebire NJ and Anderson J: Platelet-derived growth factor receptors and ligands are up-regulated in paediatric fibromatoses. Histopathology. 51:752–757. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Takahira T, Oda Y, Tamiya S, Higaki K, Yamamoto H, Kobayashi C, Izumi T, Tateishi N, Iwamoto Y and Tsuneyoshi M: Detection of COL1A1-PDGFB fusion transcripts and PDGFB/PDGFRB mRNA expression in dermatofibrosarcoma protuberans. Mod Pathol. 20:668–675. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Muchemwa FC, Wakasugi S, Honda Y and Ihn H: PDGFB quantification is a useful tool in the diagnosis of dermatofibrosarcoma protuberans: a study of 10 cases. Clin Exp Dermatol. 35:295–299. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Engel R, Ritterbach J, Schwabe D and Lampert F: Chromosome translocation (2;13)(q37;q14) in a disseminated alveolar rhabdomyosarcoma. Eur J Pediatr. 148:69–71. 1988. View Article : Google Scholar : PubMed/NCBI

60 

Mehra S, de la Roza G, Tull J, Shrimpton A, Valente A and Zhang S: Detection of FOXO1 (FKHR) gene break-apart by fluorescence in situ hybridization in formalin-fixed, paraffin-embedded alveolar rhabdomyosarcomas and its clinicopathologic correlation. Diagn Mol Pathol. 17:14–20. 2008.

61 

Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, Halligan GE and de Chadarévian JP: FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol. 24:1327–1335. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Biegel JA, Nycum LM, Valentine V, Barr FG and Shapiro DN: Detection of the t(2;13)(q35;q14) and PAX3-FKHR fusion in alveolar rhabdomyosarcoma by fluorescence in situ hybridization. Genes Chromosomes Cancer. 12:186–192. 1995. View Article : Google Scholar : PubMed/NCBI

63 

McManus AP, O’Reilly MA, Jones KP, Gusterson BA, Mitchell CD, Pinkerton CR and Shipley JM: Interphase fluorescence in situ hybridization detection of t(2;13)(q35;q14) in alveolar rhabdomyosarcoma - a diagnostic tool in minimally invasive biopsies. J Pathol. 178:410–414. 1996. View Article : Google Scholar : PubMed/NCBI

64 

Matsumura T, Yamaguchi T, Seki K, Shimoda T, Wada T, Yamashita T and Hasegawa T: Advantage of FISH analysis using FKHR probes for an adjunct to diagnosis of rhabdomyosarcomas. Virchows Arch. 452:251–258. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Miura Y, Keira Y, Ogino J, Nakanishi K, Noguchi H, Inoue T and Hasegawa T: Detection of specific genetic abnormalities by fluorescence in situ hybridization in soft tissue tumors. Pathol Int. 62:16–27. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Barr FG, Chatten J, D’Cruz CM, Wilson AE, Nauta LE, Nycum LM, Biegel JA and Womer RB: Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 273:553–557. 1995. View Article : Google Scholar : PubMed/NCBI

67 

Arden KC, Anderson MJ, Finckenstein FG, Czekay S and Cavenee WK: Detection of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma using the reverse transcriptase-polymerase chain reaction. Genes Chromosomes Cancer. 16:254–260. 1996. View Article : Google Scholar

68 

Kelly KM, Womer RB and Barr FG: Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer. 78:1320–1327. 1996. View Article : Google Scholar

69 

Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, Bridge JA, Crist WM, Triche TJ and Barr FG: PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 20:2672–2679. 2002.PubMed/NCBI

70 

Thway K, Rockcliffe S, Gonzalez D, Swansbury J, Min T, Thompson L and Fisher C: Utility of sarcoma-specific fusion gene analysis in paraffin-embedded material for routine diagnosis at a specialist centre. J Clin Pathol. 63:508–512. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Eguía-Aguilar P, Ponce-Castañeda V, Nájera-García N, Nieto-Martínez K, Kofman-Alfaro S, Sadowinski-Pine S, Valencia-Mayoral P, Arenas-Huertero F and Perezpeña-Diazconti M: Detection of fusion genes in formalin-fixed paraffin-embedded tissue sections of rhabdomyosarcoma by RT-PCR and fluorescence in situ hybridization in Mexican patients. Arch Med Res. 41:119–124. 2010.PubMed/NCBI

72 

Downing JR, Khandekar A, Shurtleff SA, Head DR, Parham DM, Webber BL, Pappo AS, Hulshof MG, Conn WP and Shapiro DN: Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol. 146:626–634. 1995.

73 

Anderson J, Renshaw J, McManus A, Carter R, Mitchell C, Adams S and Pritchard-Jones K: Amplification of the t(2;13) and t(1;13) translocations of alveolar rhabdomyosarcoma in small formalin-fixed biopsies using a modified reverse transcriptase polymerase chain reaction. Am J Pathol. 150:477–482. 1997.

74 

Athale UH, Shurtleff SA, Jenkins JJ, Poquette CA, Tan M, Downing JR and Pappo AS: Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol. 23:99–104. 2001. View Article : Google Scholar

75 

Edwards RH, Chatten J, Xiong QB and Barr FG: Detection of gene fusions in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction assay of archival samples. Diagn Mol Pathol. 6:91–97. 1997. View Article : Google Scholar : PubMed/NCBI

76 

Chen BF, Chen ML, Liang DC, Huang YW, Liu HC and Chen SH: Detection of PAX3-FKHR and PAX7-FKHR fusion transcripts in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction using paraffin-embedded tissue. Zhonghua Yi Xue Za Zhi (Taipei). 62:86–91. 1999.PubMed/NCBI

77 

Jin L, Majerus J, Oliveira A, Inwards CY, Nascimento AG, Burgart LJ and Lloyd RV: Detection of fusion gene transcripts in fresh-frozen and formalin-fixed paraffin-embedded tissue sections of soft-tissue sarcomas after laser capture microdissection and rt-PCR. Diagn Mol Pathol. 12:224–230. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Fritsch MK, Bridge JA, Schuster AE, Perlman EJ and Argani P: Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol. 6:43–53. 2003. View Article : Google Scholar

79 

Peter M, Gilbert E and Delattre O: A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest. 81:905–912. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Krsková L, Mrhalová M, Hilská I, Sumerauer D, Drahokoupilová E, Múdry P and Kodet R: Detection and clinical significance of bone marrow involvement in patients with rhabdomyosarcoma. Virchows Arch. 456:463–472. 2010.PubMed/NCBI

81 

Hostein I, Andraud-Fregeville M, Guillou L, Terrier-Lacombe MJ, Deminière C, Ranchère D, Lussan C, Longavenne E, Bui NB, Delattre O and Coindre JM: Rhabdomyosarcoma: value of myogenin expression analysis and molecular testing in diagnosing the alveolar subtype: an analysis of 109 paraffin-embedded specimens. Cancer. 101:2817–2824. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Turc-Carel C, Dal Cin P, Limon J, Rao U, Li FP, Corson JM, Zimmerman R, Parry DM, Cowan JM and Sandberg AA: Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci USA. 84:1981–1985. 1987. View Article : Google Scholar : PubMed/NCBI

83 

Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA and Cooper CS: Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 7:502–508. 1994. View Article : Google Scholar : PubMed/NCBI

84 

de Leeuw B, Balemans M, Olde Weghuis D and Geurts van Kessel A: Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 4:1097–1099. 1995.PubMed/NCBI

85 

Lee W, Han K, Harris CP, Shim S, Kim S and Meisner LF: Use of FISH to detect chromosomal translocations and deletions. Analysis of chromosome rearrangement in synovial sarcoma cells from paraffin-embedded specimens. Am J Pathol. 143:15–19. 1993.

86 

Knight JC, Reeves BR, Kearney L, Monaco AP, Lehrach H and Cooper CS: Localization of the synovial sarcoma t(X;18)(p11.2;q11.2) breakpoint by fluorescence in situ hybridization. Hum Mol Genet. 1:633–637. 1992. View Article : Google Scholar : PubMed/NCBI

87 

de Leeuw B, Suijkerbuijk RF, Balemans M, Sinke RJ, de Jong B, Molenaar WM, Meloni AM, Sandberg AA, Geraghty M and Hofker M: Sublocalization of the synovial sarcoma-associated t(X;18) chromosomal breakpoint in Xp11.2 using cosmid cloning and fluorescence in situ hybridization. Oncogene. 8:1457–1463. 1993.

88 

Motoi T, Kumagai A, Tsuji K, Imamura T and Fukusato T: Diagnostic utility of dual-color break-apart chromogenic in situ hybridization for the detection of rearranged SS18 in formalin-fixed, paraffin-embedded synovial sarcoma. Hum Pathol. 41:1397–1404. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Terry J, Barry TS, Horsman DE, Hsu FD, Gown AM, Huntsman DG and Nielsen TO: Fluorescence in situ hybridization for the detection of t(X;18)(p11.2;q11.2) in a synovial sarcoma tissue microarray using a breakapart-style probe. Diagn Mol Pathol. 14:77–82. 2005. View Article : Google Scholar : PubMed/NCBI

90 

Geiersbach K, Rector LS, Sederberg M, Hooker A, Randall RL, Schiffman JD and South ST: Unknown partner for USP6 and unusual SS18 rearrangement detected by fluorescence in situ hybridization in a solid aneurysmal bone cyst. Cancer Genet. 204:195–202. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Kanemitsu S, Hisaoka M, Shimajiri S, Matsuyama A and Hashimoto H: Molecular detection of SS18-SSX fusion gene transcripts by cRNA in situ hybridization in synovial sarcoma using formalin-fixed, paraffin-embedded tumor tissue specimens. Diagn Mol Pathol. 16:9–17. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Argani P, Zakowski MF, Klimstra DS, Rosai J and Ladanyi M: Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod Pathol. 11:65–71. 1998.PubMed/NCBI

93 

Guillou L, Coindre J, Gallagher G, Terrier P, Gebhard S, de Saint Aubain Somerhausen N, Michels J, Jundt G, Vince DR, Collin F, Trassard M, Le Doussal V and Benhattar J: Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 32:105–112. 2001.

94 

Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J and Ladanyi M: Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol. 147:1592–1599. 1995.PubMed/NCBI

95 

Safar A, Wickert R, Nelson M, Neff JR and Bridge JA: Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol. 7:283–287. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Tsuji S, Hisaoka M, Morimitsu Y, Hashimoto H, Shimajiri S, Komiya S, Ushijima M and Nakamura T: Detection of SYT-SSX fusion transcripts in synovial sarcoma by reverse transcription-polymerase chain reaction using archival paraffin-embedded tissues. Am J Pathol. 153:1807–1812. 1998. View Article : Google Scholar

97 

Sanders ME, van de Rijn M and Barr FG: Detection of a variant SYT-SSX1 fusion in a case of predominantly epithelioid synovial sarcoma. Mol Diagn. 4:65–70. 1999. View Article : Google Scholar : PubMed/NCBI

98 

Katenkamp K, Richter P, Slatosch T, Katenkamp D and Berndt A: Simultaneous analysis of t(X;18) by FISH- und SYT/SSX-RT-PCR in synovial sarcoma. Pathologe. 26:111–116. 2005.(In German).

99 

Cummings TJ, Brown NM and Stenzel TT: TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Ann Clin Lab Sci. 32:219–224. 2002.

100 

Coindre JM, Hostein I, Benhattar J, Lussan C, Rivel J and Guillou L: Malignant peripheral nerve sheath tumors are t(X;18)-negative sarcomas. Molecular analysis of 25 cases occurring in neurofibromatosis type 1 patients, using two different RT-PCR-based methods of detection. Mod Pathol. 15:589–592. 2002. View Article : Google Scholar

101 

Hostein I, Menard A, Bui BN, Lussan C, Wafflart J, Delattre O, Peter M, Benhattar J, Guillou L and Coindre JM: Molecular detection of the synovial sarcoma translocation t(X;18) by real-time polymerase chain reaction in paraffin-embedded material. Diagn Mol Pathol. 11:16–21. 2002. View Article : Google Scholar : PubMed/NCBI

102 

Bijwaard KE, Fetsch JF, Przygodzki R, Taubenberger JK and Lichy JH: Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real-time reverse transcriptase-polymerase chain reaction. J Mol Diagn. 4:59–64. 2002. View Article : Google Scholar : PubMed/NCBI

103 

Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L, Lev DC, Lazar AJ and López-Terrada D: Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 22:1201–1209. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Hiraga H, Nojima T, Abe S, Yamashiro K, Yamawaki S, Kaneda K and Nagashima K: Establishment of a new continuous clear cell sarcoma cell line. Morphological and cytogenetic characterization and detection of chimaeric EWS/ATF-1 transcripts. Virchows Arch. 431:45–51. 1997. View Article : Google Scholar : PubMed/NCBI

105 

Yamaguchi U, Hasegawa T, Morimoto Y, Tateishi U, Endo M, Nakatani F, Kawai A, Chuman H, Beppu Y, Endo M, Kurotaki H and Furuta K: A practical approach to the clinical diagnosis of Ewing’s sarcoma/primitive neuroectodermal tumour and other small round cell tumours sharing EWS rearrangement using new fluorescence in situ hybridisation probes for EWSR1 on formalin fixed, paraffin wax embedded tissue. J Clin Pathol. 58:1051–1056. 2005.

106 

Song JS, Choi J, Kim JH, Jang SJ and Cho KJ: Diagnostic utility of EWS break-apart fluorescence in situ hybridization in distinguishing between non-cutaneous melanoma and clear cell sarcoma. Pathol Int. 60:608–613. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Patel RM, Downs-Kelly E, Weiss SW, Folpe AL, Tubbs RR, Tuthill RJ, Goldblum JR and Skacel M: Dual-color, break-apart fluorescence in situ hybridization for EWS gene rearrangement distinguishes clear cell sarcoma of soft tissue from malignant melanoma. Mod Pathol. 18:1585–1590. 2005.PubMed/NCBI

108 

Speleman F, Delattre O, Peter M, Hauben E, Van Roy N and Van Marck E: Malignant melanoma of the soft parts (clear-cell sarcoma): confirmation of EWS and ATF-1 gene fusion caused by a t(12;22) translocation. Mod Pathol. 10:496–499. 1997.PubMed/NCBI

109 

Panagopoulos I, Mertens F, Dêbiec-Rychter M, Isaksson M, Limon J, Kardas I, Domanski HA, Sciot R, Perek D, Crnalic S, Larsson O and Mandahl N: Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer. 99:560–567. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Antonescu CR, Tschernyavsky SJ, Woodruff JM, Jungbluth AA, Brennan MF and Ladanyi M: Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn. 4:44–52. 2002. View Article : Google Scholar : PubMed/NCBI

111 

Coindre JM, Hostein I, Terrier P, Bouvier-Labit C, Collin F, Michels JJ, Trassard M, Marques B, Ranchere D and Guillou L: Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues: clinicopathologic and molecular analysis of 44 patients from the French sarcoma group. Cancer. 107:1055–1064. 2006. View Article : Google Scholar

112 

Ladanyi M and Gerald W: Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 54:2837–2840. 1994.PubMed/NCBI

113 

Karnieli E, Werner H, Rauscher FJ III, Benjamin LE and LeRoith D: The IGF-I receptor gene promoter is a molecular target for the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein. J Biol Chem. 271:19304–19309. 1996.

114 

Benjamin LE, Fredericks WJ, Barr FG and Rauscher FJ III: Fusion of the EWS1 and WT1 genes as a result of the t(11;22)(p13;q12) translocation in desmoplastic small round cell tumors. Med Pediatr Oncol. 27:434–439. 1996. View Article : Google Scholar : PubMed/NCBI

115 

Barnoud R, Delattre O, Péoc’h M, Pasquier D, Plantaz D, Leroux D and Pasquier B: Desmoplastic small round cell tumor: RT-PCR analysis and immunohistochemical detection of the Wilm’s tumor gene WT1. Pathol Res Pract. 194:693–700. 1998.PubMed/NCBI

116 

Gerald WL, Rosai J and Ladanyi M: Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci USA. 92:1028–1032. 1995. View Article : Google Scholar : PubMed/NCBI

117 

Rauscher FJ III, Benjamin LE, Fredericks WJ and Morris JF: Novel oncogenic mutations in the WT1 Wilms’ tumor suppressor gene: a t(11;22) fuses the Ewing’s sarcoma gene, EWS1, to WT1 in desmoplastic small round cell tumor. Cold Spring Harb Symp Quant Biol. 59:137–146. 1994.

118 

Antonescu CR, Gerald WL, Magid MS and Ladanyi M: Molecular variants of the EWS-WT1 gene fusion in desmoplastic small round cell tumor. Diagn Mol Pathol. 7:24–28. 1998. View Article : Google Scholar : PubMed/NCBI

119 

Hill DA, Pfeifer JD, Marley EF, Dehner LP, Humphrey PA, Zhu X and Swanson PE: WT1 staining reliably differentiates desmoplastic small round cell tumor from Ewing sarcoma/primitive neuroectodermal tumor. An immunohistochemical and molecular diagnostic study. Am J Clin Pathol. 114:345–353. 2000.

120 

Brodie SG, Stocker SJ, Wardlaw JC, Duncan MH, McConnell TS, Feddersen RM and Williams TM: EWS and WT-1 gene fusion in desmoplastic small round cell tumor of the abdomen. Hum Pathol. 26:1370–1374. 1995. View Article : Google Scholar : PubMed/NCBI

121 

Liu J, Nau MM, Yeh JC, Allegra CJ, Chu E and Wright JJ: Molecular heterogeneity and function of EWS-WT1 fusion transcripts in desmoplastic small round cell tumors. Clin Cancer Res. 6:3522–3529. 2000.PubMed/NCBI

122 

Su LD, Atayde-Perez A, Sheldon S, Fletcher JA and Weiss SW: Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol. 11:364–368. 1998.PubMed/NCBI

123 

Souid AK, Ziemba MC, Dubansky AS, Mazur M, Oliphant M, Thomas FD, Ratner M and Sadowitz PD: Inflammatory myofibroblastic tumor in children. Cancer. 72:2042–2048. 1993. View Article : Google Scholar : PubMed/NCBI

124 

Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T and Perlman EJ: Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59:2776–2780. 1999.PubMed/NCBI

125 

Tan LH, Do E, Tan SY, Chong SM and Koay ES: Multi-lineage interrogation of the performance characteristics of a split-signal fluorescence in situ hybridization probe for anaplastic lymphoma kinase gene rearrangements: a study of 101 cases characterized by immunohistomorphology on fixed archival tissue. Mol Diagn. 8:213–229. 2004.

126 

Sirvent N, Hawkins AL, Moeglin D, Coindre JM, Kurzenne JY, Michiels JF, Barcelo G, Turc-Carel C, Griffin CA and Pedeutour F: ALK probe rearrangement in a t(2;11;2)(p23;p15;q31) translocation found in a prenatal myofibroblastic fibrous lesion: toward a molecular definition of an inflammatory myofibroblastic tumor family? Genes Chromosomes Cancer. 31:85–90. 2001. View Article : Google Scholar

127 

Stoll LM and Li QK: Cytology of fine-needle aspiration of inflammatory myofibroblastic tumor. Diagn Cytopathol. 39:663–672. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Borak S, Siegal GP, Reddy V, Jhala N and Jhala D: Metastatic inflammatory myofibroblastic tumor identified by EUS-FNA in mediastinal lymph nodes with ancillary FISH studies for ALK rearrangement. Diagn Cytopathol. 40(Suppl 2): S118–S125. 2012. View Article : Google Scholar

129 

Li XQ, Hisaoka M, Shi DR, Zhu XZ and Hashimoto H: Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum Pathol. 35:711–721. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Alaggio R, Barisani D, Ninfo V, Rosolen A and Coffin CM: Morphologic overlap between infantile myofibromatosis and infantile fibrosarcoma: A pitfall in diagnosis. Pediatr Dev Pathol. 11:355–362. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CD and Fletcher JA: TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 157:377–384. 2000. View Article : Google Scholar : PubMed/NCBI

132 

Cools J, Wlodarska I, Somers R, Mentens N, Pedeutour F, Maes B, De Wolf-Peeters C, Pauwels P, Hagemeijer A and Marynen P: Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 34:354–362. 2002. View Article : Google Scholar : PubMed/NCBI

133 

Lamant L, Dastugue N, Pulford K, Delsol G and Mariamé B: A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 93:3088–3095. 1999.PubMed/NCBI

134 

Drexler HG, Gignac SM, von Wasielewski R, Werner M and Dirks WG: Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia. 14:1533–1559. 2000. View Article : Google Scholar : PubMed/NCBI

135 

Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W, Lui MY, Colleoni GW, Antonescu CR, Ladanyi M and Morris SW: Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 159:411–415. 2001. View Article : Google Scholar : PubMed/NCBI

136 

Wang X, Krishnan C, Nguyen EP, Meyer KJ, Oliveira JL, Yang P, Yi ES, Erickson-Johnson MR, Yaszemski MJ, Maran A and Oliveira AM: Fusion of dynactin 1 to anaplastic lymphoma kinase in inflammatory myofibroblastic tumor. Hum Pathol. 43:2047–2052. 2012. View Article : Google Scholar : PubMed/NCBI

137 

Panagopoulos I, Nilsson T, Domanski HA, Isaksson M, Lindblom P, Mertens F and Mandahl N: Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer. 118:1181–1186. 2006. View Article : Google Scholar : PubMed/NCBI

138 

Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, Ladanyi M, Capelletti M, Rodig SJ, Ramaiya N, Kwak EL, Clark JW, Wilner KD, Christensen JG, Jänne PA, Maki RG, Demetri GD and Shapiro GI: Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 363:1727–1733. 2010. View Article : Google Scholar : PubMed/NCBI

139 

Tothova Z and Wagner AJ: Anaplastic lymphoma kinase-directed therapy in inflammatory myofibroblastic tumors. Curr Opin Oncol. 24:409–413. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Lieberman PH, Brennan MF, Kimmel M, Erlandson RA, Garin-Chesa P and Flehinger BY: Alveolar soft-part sarcoma. A clinico-pathologic study of half a century. Cancer. 63:1–13. 1989. View Article : Google Scholar : PubMed/NCBI

141 

Ordonez NG: Alveolar soft part sarcoma: a review and update. Adv Anat Pathol. 6:125–139. 1999. View Article : Google Scholar : PubMed/NCBI

142 

Joyama S, Ueda T, Shimizu K, Kudawara I, Mano M, Funai H, Takemura K and Yoshikawa H: Chromosome rearrangement at 17q25 and xp11.2 in alveolar soft-part sarcoma: A case report and review of the literature. Cancer. 86:1246–1250. 1999. View Article : Google Scholar : PubMed/NCBI

143 

Uppal S, Aviv H, Patterson F, Cohen S, Benevenia J, Aisner S and Hameed M: Alveolar soft part sarcoma - reciprocal translocation between chromosome 17q25 and Xp11. Report of a case with metastases at presentation and review of the literature. Acta Orthop Belg. 69:182–187. 2003.PubMed/NCBI

144 

Amin MB, Patel RM, Oliveira P, Cabrera R, Carneiro V, Preto M, Balzer B and Folpe AL: Alveolar soft-part sarcoma of the urinary bladder with urethral recurrence: a unique case with emphasis on differential diagnoses and diagnostic utility of an immunohistochemical panel including TFE3. Am J Surg Pathol. 30:1322–1325. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Heimann P, Devalck C, Debusscher C, Sariban E and Vamos E: Alveolar soft-part sarcoma: further evidence by FISH for the involvement of chromosome band 17q25. Genes Chromosomes Cancer. 23:194–197. 1998. View Article : Google Scholar : PubMed/NCBI

146 

Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P and Bridge J: The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 20:48–57. 2001. View Article : Google Scholar : PubMed/NCBI

147 

Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, Reuter VE, Garvin AJ, Perez-Atayde AR, Fletcher JA, Beckwith JB, Bridge JA and Ladanyi M: Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 159:179–192. 2001. View Article : Google Scholar

148 

Aulmann S, Longerich T, Schirmacher P, Mechtersheimer G and Penzel R: Detection of the ASPSCR1-TFE3 gene fusion in paraffin-embedded alveolar soft part sarcomas. Histopathology. 50:881–886. 2007. View Article : Google Scholar : PubMed/NCBI

149 

Hoshino M, Ogose A, Kawashima H, Izumi T, Hotta T, Hatano H, Morita T, Otsuka H, Umezu H, Yanoma S, Tsukuda M and Endo N: Molecular analyses of cell origin and detection of circulating tumor cells in the peripheral blood in alveolar soft part sarcoma. Cancer Genet Cytogenet. 190:75–80. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Pink D, Bertz-Lepel J, Busemann C, Bitz U and Reichardt P: Efficacy of trabectedin in patients with advanced or metastatic alveolar soft-part sarcoma. Onkologie. 35:249–252. 2012. View Article : Google Scholar : PubMed/NCBI

151 

Tsuneyoshi M, Enjoji M, Iwasaki H and Shinohara N: Extraskeletal myxoid chondrosarcoma - a clinicopathologic and electron microscopic study. Acta Pathol Jpn. 31:439–447. 1981.PubMed/NCBI

152 

Saleh G, Evans HL, Ro JY and Ayala AG: Extraskeletal myxoid chondrosarcoma. A clinicopathologic study of ten patients with long-term follow-up. Cancer. 70:2827–2830. 1992. View Article : Google Scholar : PubMed/NCBI

153 

Gebhardt MC, Parekh SG, Rosenberg AE and Rosenthal DI: Extraskeletal myxoid chondrosarcoma of the knee. Skeletal Radiol. 28:354–358. 1999. View Article : Google Scholar : PubMed/NCBI

154 

Meis-Kindblom JM, Bergh P, Gunterberg B and Kindblom LG: Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol. 23:636–650. 1999. View Article : Google Scholar : PubMed/NCBI

155 

Sciot R, Dal Cin P, Fletcher C, Samson I, Smith M, De Vos R, Van Damme B and Van den Berghe H: t(9;22)(q22-31;q11-12) is a consistent marker of extraskeletal myxoid chondrosarcoma: evaluation of three cases. Mod Pathol. 8:765–768. 1995.PubMed/NCBI

156 

Rao UN, Surti U, Hoffner L, Howard T, Leger W, Contis L and Yaw K: Extraskeletal and skeletal myxoid chondrosarcoma: A multiparameter analysis of three cases including cytogenetic analysis and fluorescence in situ hybridization. Mol Diagn. 1:99–107. 1996. View Article : Google Scholar

157 

Harris M, Coyne J, Tariq M, Eyden BP, Atkinson M, Freemont AJ, Varley J, Attwooll C and Telford N: Extraskeletal myxoid chondrosarcoma with neuroendocrine differentiation: a pathologic, cytogenetic, and molecular study of a case with a novel translocation t(9;17)(q22;q11.2). Am J Surg Pathol. 24:1020–1026. 2000. View Article : Google Scholar : PubMed/NCBI

158 

Sjögren H, Wedell B, Meis-Kindblom JM, Kindblom LG and Stenman G: Fusion of the NH2-terminal domain of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res. 60:6832–6835. 2000.PubMed/NCBI

159 

Gan TI, Rowen L, Nesbitt R, Roe BA, Wu H, Hu P, Yao Z, Kim UJ, O’Sickey T and Bina M: Genomic organization of human TCF12 gene and spliced mRNA variants producing isoforms of transcription factor HTF4. Cytogenet Genome Res. 98:245–248. 2002. View Article : Google Scholar : PubMed/NCBI

160 

Attwooll C, Tariq M, Harris M, Coyne JD, Telford N and Varley JM: Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene. 18:7599–7601. 1999. View Article : Google Scholar : PubMed/NCBI

161 

Lim B, Jun HJ, Kim AY, Kim S, Choi J, Kim J, et al: The TFG-TEC fusion gene created by the t(3;9) translocation in human extraskeletal myxoid chondrosarcomas encodes a more potent transcriptional activator than TEC. Carcinogenesis. 33:1450–1458. 2012.

162 

Brody RI, Ueda T, Hamelin A, Jhanwar SC, Bridge JA, Healey JH, Huvos AG, Gerald WL and Ladanyi M: Molecular analysis of the fusion of EWS to an orphan nuclear receptor gene in extraskeletal myxoid chondrosarcoma. Am J Pathol. 150:1049–1058. 1997.PubMed/NCBI

163 

Panagopoulos I, Mertens F, Isaksson M, Domanski HA, Brosjö O, Heim S, Bjerkehagen B, Sciot R, Dal Cin P, Fletcher JA, Fletcher CD and Mandahl N: Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 35:340–352. 2002. View Article : Google Scholar : PubMed/NCBI

164 

Jakowski JD and Wakely PE Jr: Cytopathology of extraskeletal myxoid chondrosarcoma: report of 8 cases. Cancer. 111:298–305. 2007. View Article : Google Scholar : PubMed/NCBI

165 

Wang WL, Mayordomo E, Czerniak BA, Abruzzo LV, Dal Cin P, Araujo DM, Lev DC, López-Terrada D and Lazar AJ: Fluorescence in situ hybridization is a useful ancillary diagnostic tool for extraskeletal myxoid chondrosarcoma. Mod Pathol. 21:1303–1310. 2008. View Article : Google Scholar : PubMed/NCBI

166 

Noguchi H, Mitsuhashi T, Seki K, Tochigi N, Tsuji M, Shimoda T and Hasegawa T: Fluorescence in situ hybridization analysis of extraskeletal myxoid chondrosarcomas using EWSR1 and NR4A3 probes. Hum Pathol. 41:336–342. 2010. View Article : Google Scholar : PubMed/NCBI

167 

Sjögren H, Meis-Kindblom JM, Orndal C, Bergh P, Ptaszynski K, Aman P, Kindblom LG and Stenman G: Studies on the molecular pathogenesis of extraskeletal myxoid chondrosarcoma-cytogenetic, molecular genetic, and cDNA microarray analyses. Am J Pathol. 162:781–792. 2003.PubMed/NCBI

168 

Okamoto S, Hisaoka M, Ishida T, Imamura T, Kanda H, Shimajiri S and Hashimoto H: Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 18 cases. Hum Pathol. 32:1116–1124. 2001. View Article : Google Scholar : PubMed/NCBI

169 

Matsukuma S, Hisaoka M, Obara K, Kono T, Takeo H, Sato K and Hata Y: Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion, resembling extraskeletal myxoid chondrosarcoma: Case report with a review of Literature. Pathol Int. 62:817–822. 2012. View Article : Google Scholar : PubMed/NCBI

170 

Aurias A, Rimbaut C, Buffe D, Zucker JM and Mazabraud A: Translocation involving chromosome 22 in Ewing’s sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet Cytogenet. 12:21–25. 1984.

171 

Whang-Peng J, Triche TJ, Knutsen T, Miser J, Kao-Shan S, Tsai S and Israel MA: Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 21:185–208. 1986. View Article : Google Scholar : PubMed/NCBI

172 

Burchill SA: Ewing’s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J Clin Pathol. 56:96–102. 2003.

173 

Gamberi G, Cocchi S, Benini S, Magagnoli G, Morandi L, Kreshak J, Gambarotti M, Picci P, Zanella L and Alberghini M: Molecular diagnosis in Ewing family tumors: the Rizzoli experience-222 consecutive cases in four years. J Mol Diagn. 13:313–324. 2011.PubMed/NCBI

174 

Kojima T, Asami S, Chin M, Yoshida Y, Mugishima H and Suzuki T: Detection of chimeric genes in Ewing’s sarcoma and its clinical applications. Biol Pharm Bull. 25:991–994. 2002.

175 

Davison JM, Morgan TW, Hsi BL, Xiao S and Fletcher JA: Subtracted, unique-sequence, in situ hybridization: experimental and diagnostic applications. Am J Pathol. 153:1401–1409. 1998. View Article : Google Scholar : PubMed/NCBI

176 

Cantile M, Marra L, Franco R, Ascierto P, Liguori G, De Chiara A and Botti G: Molecular detection and targeting of EWSR1 fusion transcripts in soft tissue tumors. Med Oncol. 30:4122013. View Article : Google Scholar : PubMed/NCBI

177 

Kumar S, Pack S, Kumar D, Walker R, Quezado M, Zhuang Z, Meltzer P and Tsokos M: Detection of EWS-FLI-1 fusion in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor by fluorescence in situ hybridization using formalin-fixed paraffin-embedded tissue. Hum Pathol. 30:324–330. 1999.

178 

Hattinger CM, Rumpler S, Kovar H and Ambros PF: Fine-mapping of cytogenetically undetectable EWS/ERG fusions on DNA fibers of Ewing tumors. Cytogenet Cell Genet. 93:29–35. 2001. View Article : Google Scholar : PubMed/NCBI

179 

Newby R, Rowe D, Paterson L, Farquharson MA, MacDuff E, Coupe A, Hale J, Dildey P and Bown N: Cryptic EWSR1-FLI1 fusions in Ewing sarcoma: potential pitfalls in the diagnostic use of fluorescence in situ hybridization probes. Cancer Genet Cytogenet. 200:60–64. 2010. View Article : Google Scholar : PubMed/NCBI

180 

Mangham DC, Williams A, McMullan DJ, McClure J, Sumathi VP, Grimer RJ and Davies AM: Ewing’s sarcoma of bone: the detection of specific transcripts in a large, consecutive series of formalin-fixed, decalcified, paraffin-embedded tissue samples using the reverse transcriptase-polymerase chain reaction. Histopathology. 48:363–376. 2006.

181 

Park YK, Chi SG, Park HR, Yang MH and Unni KK: Detection of t(11;22)(q24;q12) translocation of Ewing’s sarcoma in paraffin embedded tissue by nested reverse transcription-polymerase chain reaction. J Korean Med Sci. 13:395–399. 1998.PubMed/NCBI

182 

Stegmaier S, Leuschner I, Aakcha-Rudel E, Münch P, Kazanowska B, Bekassy A, Treuner J and Koscielniak E: Identification of various exon combinations of the ews/fli1 translocation: an optimized RT-PCR method for paraffin embedded tissue - a report by the CWS-study group. Klin Padiatr. 216:315–322. 2004. View Article : Google Scholar : PubMed/NCBI

183 

Hisaoka M, Tsuji S, Morimitsu Y, Hashimoto H, Shimajiri S, Komiya S and Ushijima M: Molecular detection of EWS-FLI1 chimeric transcripts in Ewing family tumors by nested reverse transcription-polymerase chain reaction: application to archival paraffin-embedded tumor tissues. APMIS. 107:577–584. 1999. View Article : Google Scholar

184 

Montanaro L, Pession A, Trerè D, Vici M, Prete A, Paolucci G and Derenzini M: Detection of EWS chimeric transcripts by nested RT-PCR to allow reinfusion of uncontaminated peripheral blood stem cells in high-risk Ewing’s tumor in childhood. Haematologica. 84:1012–1015. 1999.PubMed/NCBI

185 

Yang Y, Zhang L, Wei Y, Wang H, Xiong W, Chen Z, Hes O and Zheng J: Detection of EWSR1 translocation with nuclear extraction-based fluorescence in situ hybridization for diagnosis of Ewing’s sarcoma/primitive neuroectodermal tumor. Anal Quant Cytol Histol. 29:221–230. 2007.PubMed/NCBI

186 

Meier VS, Kühne T, Jundt G and Gudat F: Molecular diagnosis of Ewing tumors: improved detection of EWS-FLI-1 and EWS-ERG chimeric transcripts and rapid determination of exon combinations. Diagn Mol Pathol. 7:29–35. 1998. View Article : Google Scholar : PubMed/NCBI

187 

Wang M, Nilsson G, Carlberg M, Dricu A, Wejde J, Kreicbergs A and Larsson O: Specific and sensitive detection of the EWS/FLI1 fusion protein in Ewing’s sarcoma by western blotting. Virchows Arch. 432:131–134. 1998.

188 

Silva DS, Sawitzki FR, De Toni EC, Graebin P, Picanco JB, Abujamra AL, de Farias CB, Roesler R, Brunetto AL and Alho CS: Ewing’s sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene. 509:263–266. 2012.

189 

Lewis TB, Coffin CM and Bernard PS: Differentiating Ewing’s sarcoma from other round blue cell tumors using a RT-PCR translocation panel on formalin-fixed paraffin-embedded tissues. Mod Pathol. 20:397–404. 2007.

190 

Angervall L and Kindblom LG: Principles for pathologic-anatomic diagnosis and classification of soft-tissue sarcomas. Clin Orthop Relat Res. 289:9–18. 1993.PubMed/NCBI

191 

Sreekantaiah C, Ladanyi M, Rodriguez E and Chaganti RS: Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms. Am J Pathol. 144:1121–1134. 1994.PubMed/NCBI

192 

Ladanyi M and Bridge JA: Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol. 31:532–538. 2000. View Article : Google Scholar : PubMed/NCBI

193 

Bridge JA and Sandberg AA: Cytogenetic and molecular genetic techniques as adjunctive approaches in the diagnosis of bone and soft tissue tumors. Skeletal Radiol. 29:249–258. 2000. View Article : Google Scholar : PubMed/NCBI

194 

Singer S: New diagnostic modalities in soft tissue sarcoma. Semin Surg Oncol. 17:11–22. 1999. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cerrone M, Cantile M, Collina F, Marra L, Liguori G, Franco R, De Chiara A and Botti G: Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review). Int J Mol Med 33: 1379-1391, 2014.
APA
Cerrone, M., Cantile, M., Collina, F., Marra, L., Liguori, G., Franco, R. ... Botti, G. (2014). Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review). International Journal of Molecular Medicine, 33, 1379-1391. https://doi.org/10.3892/ijmm.2014.1726
MLA
Cerrone, M., Cantile, M., Collina, F., Marra, L., Liguori, G., Franco, R., De Chiara, A., Botti, G."Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review)". International Journal of Molecular Medicine 33.6 (2014): 1379-1391.
Chicago
Cerrone, M., Cantile, M., Collina, F., Marra, L., Liguori, G., Franco, R., De Chiara, A., Botti, G."Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review)". International Journal of Molecular Medicine 33, no. 6 (2014): 1379-1391. https://doi.org/10.3892/ijmm.2014.1726
Copy and paste a formatted citation
x
Spandidos Publications style
Cerrone M, Cantile M, Collina F, Marra L, Liguori G, Franco R, De Chiara A and Botti G: Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review). Int J Mol Med 33: 1379-1391, 2014.
APA
Cerrone, M., Cantile, M., Collina, F., Marra, L., Liguori, G., Franco, R. ... Botti, G. (2014). Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review). International Journal of Molecular Medicine, 33, 1379-1391. https://doi.org/10.3892/ijmm.2014.1726
MLA
Cerrone, M., Cantile, M., Collina, F., Marra, L., Liguori, G., Franco, R., De Chiara, A., Botti, G."Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review)". International Journal of Molecular Medicine 33.6 (2014): 1379-1391.
Chicago
Cerrone, M., Cantile, M., Collina, F., Marra, L., Liguori, G., Franco, R., De Chiara, A., Botti, G."Molecular strategies for detecting chromosomal translocations in soft tissue tumors (Review)". International Journal of Molecular Medicine 33, no. 6 (2014): 1379-1391. https://doi.org/10.3892/ijmm.2014.1726
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team