|
1
|
Brenner S, Barnett L, Katz ER and Crick
FH: UGA: a third nonsense triplet in the genetic code. Nature.
213:449–450. 1967. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Brenner S, Stretton AO and Kaplan S:
Genetic code: the ‘nonsense’ triplets for chain termination and
their suppression. Nature. 206:994–998. 1965.
|
|
3
|
Dever TE and Green R: The elongation,
termination, and recycling phases of translation in eukaryotes.
Cold Spring Harb Perspect Biol. 4:a0137062012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bonetti B, Fu L, Moon J and Bedwell DM:
The efficiency of translation termination is determined by a
synergistic interplay between upstream and downstream sequences in
Saccharomyces cerevisiae. J Mol Biol. 251:334–345. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Manuvakhova M, Keeling K and Bedwell DM:
Aminoglycoside antibiotics mediate context-dependent suppression of
termination codons in a mammalian translation system. RNA.
6:1044–1055. 2000. View Article : Google Scholar
|
|
6
|
Peltz SW, Morsy M, Welch EM and Jacobson
A: Ataluren as an agent for therapeutic nonsense suppression. Annu
Rev Med. 64:407–425. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mort M, Ivanov D, Cooper DN and Chuzhanova
NA: A meta-analysis of nonsense mutations causing human genetic
disease. Hum Mutat. 29:1037–1047. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nagy E and Maquat LE: A rule for
termination-codon position within intron-containing genes: when
nonsense affects RNA abundance. Trends Biochem Sci. 23:198–199.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Keeling KM, Xue X, Gunn G and Bedwell DM:
Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum
Genet. 15:8.1–8.24. 2014. View Article : Google Scholar
|
|
10
|
Salas-Marco J and Bedwell DM: GTP
hydrolysis by eRF3 facilitates stop codon decoding during
eukaryotic translation termination. Mol Cell Biol. 24:7769–7778.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Alkalaeva EZ, Pisarev AV, Frolova LY,
Kisselev LL and Pestova TV: In vitro reconstitution of eukaryotic
translation reveals cooperativity between release factors eRF1 and
eRF3. Cell. 125:1125–1136. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pisareva VP, Pisarev AV, Hellen CU,
Rodnina MV and Pestova TV: Kinetic analysis of interaction of
eukaryotic release factor 3 with guanine nucleotides. J Biol Chem.
281:40224–40235. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mitkevich VA, Kononenko AV, Petrushanko
IY, Yanvarev DV, Makarov AA and Kisselev LL: Termination of
translation in eukaryotes is mediated by the quaternary
eRF1*eRF3*GTP*Mg2+complex.
The biological roles of eRF3 and prokaryotic RF3 are profoundly
distinct. Nucleic Acids Res. 34:3947–3954. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kong C, Ito K, Walsh MA, Wada M, Liu Y,
Kumar S, Barford D, Nakamura Y and Song H: Crystal structure and
functional analysis of the eukaryotic class II release factor eRF3
from S. pombe. Mol Cell. 14:233–245. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mantsyzov AB, Ivanova EV, Birdsall B,
Alkalaeva EZ, Kryuchkova PN, Kelly G, Frolova LY and Polshakov VI:
NMR solution structure and function of the C-terminal domain of
eukaryotic class 1 polypeptide chain release factor. FEBS J.
277:2611–2627. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Song H, Mugnier P, Das AK, Webb HM, Evans
DR, Tuite MF, Hemmings BA and Barford D: The crystal structure of
human eukaryotic release factor eRF1 - mechanism of stop codon
recognition and peptidyl-tRNA hydrolysis. Cell. 100:311–321. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bertram G, Bell HA, Ritchie DW, Fullerton
G and Stansfield I: Terminating eukaryote translation: domain 1 of
release factor eRF1 functions in stop codon recognition. RNA.
6:1236–1247. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chavatte L, Seit-Nebi A, Dubovaya V and
Favre A: The invariant uridine of stop codons contacts the
conserved NIKSR loop of human eRF1 in the ribosome. EMBO J.
21:5302–5311. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Frolova L, Seit-Nebi A and Kisselev L:
Highly conserved NIKS tetrapeptide is functionally essential in
eukaryotic translation termination factor eRF1. RNA. 8:129–136.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Seit-Nebi A, Frolova L and Kisselev L:
Conversion of omnipotent translation termination factor eRF1 into
ciliate-like UGA-only unipotent eRF1. EMBO Rep. 3:881–886. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ito K, Frolova L, Seit-Nebi A, Karamyshev
A, Kisselev L and Nakamura Y: Omnipotent decoding potential resides
in eukaryotic translation termination factor eRF1 of variant-code
organisms and is modulated by the interactions of amino acid
sequences within domain 1. Proc Natl Acad Sci USA. 99:8494–8499.
2002. View Article : Google Scholar
|
|
22
|
Fan-Minogue H, Du M, Pisarev AV, Kallmeyer
AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV and Bedwell
DM: Distinct eRF3 requirements suggest alternate eRF1 conformations
mediate peptide release during eukaryotic translation termination.
Mol Cell. 30:599–609. 2008. View Article : Google Scholar
|
|
23
|
Cheng Z, Saito K, Pisarev AV, Wada M,
Pisareva VP, Pestova TV, Gajda M, Round A, Kong C, Lim M, Nakamura
Y, Svergun DI, Ito K and Song H: Structural insights into eRF3 and
stop codon recognition by eRF1. Genes Dev. 23:1106–1118. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Conard SE, Buckley J, Dang M, Bedwell GJ,
Carter RL, Khass M and Bedwell DM: Identification of eRF1 residues
that play critical and complementary roles in stop codon
recognition. RNA. 18:1210–1221. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kryuchkova P, Grishin A, Eliseev B,
Karyagina A, Frolova L and Alkalaeva E: Two-step model of stop
codon recognition by eukaryotic release factor eRF1. Nucleic Acids
Res. 41:4573–4586. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Merritt GH, Naemi WR, Mugnier P, Webb HM,
Tuite MF and von der Haar T: Decoding accuracy in eRF1 mutants and
its correlation with pleiotropic quantitative traits in yeast.
Nucleic Acids Res. 38:5479–5492. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Frolova LY, Tsivkovskii RY, Sivolobova GF,
Oparina NY, Serpinsky OI, Blinov VM, Tatkov SI and Kisselev LL:
Mutations in the highly conserved GGQ motif of class 1 polypeptide
release factors abolish ability of human eRF1 to trigger
peptidyl-tRNA hydrolysis. RNA. 5:1014–1020. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Laurberg M, Asahara H, Korostelev A, Zhu
J, Trakhanov S and Noller HF: Structural basis for translation
termination on the 70S ribosome. Nature. 454:852–857. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Weixlbaumer A, Jin H, Neubauer C, Voorhees
RM, Petry S, Kelley AC and Ramakrishnan V: Insights into
translational termination from the structure of RF2 bound to the
ribosome. Science. 322:953–956. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Santos N, Zhu J, Donohue JP, Korostelev AA
and Noller HF: Crystal structure of the 70S ribosome bound with the
Q253P mutant form of release factor RF2. Structure. 21:1258–1263.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kapp LD and Lorsch JR: The molecular
mechanics of eukaryotic translation. Ann Rev Biochem. 73:657–704.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ter-Avanesyan MD, Kushnirov VV,
Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG
and Smirnov VN: Deletion analysis of the SUP35 gene of the yeast
Saccharomyces cerevisiae reveals two non-overlapping
functional regions in the encoded protein. Mol Microbiol.
7:683–692. 1993.PubMed/NCBI
|
|
33
|
Kononenko AV, Mitkevich VA, Dubovaya VI,
Kolosov PM, Makarov AA and Kisselev LL: Role of the individual
domains of translation termination factor eRF1 in GTP binding to
eRF3. Proteins. 70:388–393. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Frolova L, Le Goff X, Zhouravleva G,
Davydova E, Philippe M and Kisselev L: Eukaryotic polypeptide chain
release factor eRF3 is an eRF1- and ribosome-dependent guanosine
triphosphatase. RNA. 2:334–341. 1996.PubMed/NCBI
|
|
35
|
Jones D, Metzger HJ, Schatz A and Waksman
SA: Control of gram-negative bacteria in experimental animals by
streptomycin. Science. 100:103–105. 1944. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schatz A, Bugie E and Waksman SA:
Streptomycin, a substance exhibiting antibiotic activity against
gram-positive and gram-negative bacteria. 1944. Clin Orthop Relat
Res. 437:3–6. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hermann T: Drugs targeting the ribosome.
Curr Opin Struct Biol. 15:355–366. 2005. View Article : Google Scholar
|
|
38
|
Hermann T: Aminoglycoside antibiotics: old
drugs and new therapeutic approaches. Cell Mol Life Sci.
64:1841–1852. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Moazed D and Noller HF: Interaction of
antibiotics with functional sites in 16S ribosomal RNA. Nature.
327:389–394. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moazed D and Noller HF: Binding of tRNA to
the ribosomal A and P sites protects two distinct sets of
nucleotides in 16 S rRNA. J Mol Biol. 211:135–145. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yoshizawa S, Fourmy D and Puglisi JD:
Recognition of the codon-anticodon helix by ribosomal RNA. Science.
285:1722–1725. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
François B, Russell RJ, Murray JB,
Aboul-ela F, Masquida B, Vicens Q and Westhof E: Crystal structures
of complexes between aminoglycosides and decoding A site
oligonucleotides: role of the number of rings and positive charges
in the specific binding leading to miscoding. Nucleic Acids Res.
33:5677–5690. 2005.
|
|
43
|
Fan-Minogue H and Bedwell DM: Eukaryotic
ribosomal RNA determinants of aminoglycoside resistance and their
role in translational fidelity. RNA. 14:148–157. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gorini L and Kataja E: Phenotypic repair
by streptomycin of defective genotypes in E. coli. Proc Natl
Acad Sci USA. 51:487–493. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lai CH, Chun HH, Nahas SA, Mitui M, Gamo
KM, Du L and Gatti RA: Correction of ATM gene function by
aminoglycoside-induced read-through of premature termination
codons. Proc Natl Acad Sci USA. 101:15676–15681. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Keeling KM and Bedwell DM: Clinically
relevant aminoglycosides can suppress disease-associated premature
stop mutations in the IDUA and P53 cDNAs in a mammalian translation
system. J Mol Med (Berl). 80:367–376. 2002. View Article : Google Scholar
|
|
47
|
Sleat DE, Sohar I, Gin RM and Lobel P:
Aminoglycoside-mediated suppression of nonsense mutations in late
infantile neuronal ceroid lipofuscinosis. Eur J Paediatr Neurol.
5(Suppl A): 57–62. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Howard M, Frizzell RA and Bedwell DM:
Aminoglycoside antibiotics restore CFTR function by overcoming
premature stop mutations. Nat Med. 2:467–469. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bedwell DM, Kaenjak A, Benos DJ, Bebok Z,
Bubien JK, Hong J, Tousson A, Clancy JP and Sorscher EJ:
Suppression of a CFTR premature stop mutation in a bronchial
epithelial cell line. Nat Med. 3:1280–1284. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bidou L, Hatin I, Perez N, Allamand V,
Panthier JJ and Rousset JP: Premature stop codons involved in
muscular dystrophies show a broad spectrum of readthrough
efficiencies in response to gentamicin treatment. Gene Ther.
11:619–627. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wilschanski M, Yahav Y, Yaacov Y, Blau H,
Bentur L, Rivlin J, Aviram M, Bdolah-Abram T, Bebok Z, Shushi L,
Kerem B and Kerem E: Gentamicin-induced correction of CFTR function
in patients with cystic fibrosis and CFTR stop mutations. N Engl J
Med. 349:1433–1441. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Politano L, Nigro G, Nigro V, Piluso G,
Papparella S, Paciello O and Comi LI: Gentamicin administration in
Duchenne patients with premature stop codon. Preliminary results.
Acta Myol. 22:15–21. 2003.PubMed/NCBI
|
|
53
|
James PD, Raut S, Rivard GE, Poon MC,
Warner M, McKenna S, Leggo J and Lillicrap D: Aminoglycoside
suppression of nonsense mutations in severe hemophilia. Blood.
106:3043–3048. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kellermayer R, Szigeti R, Keeling KM,
Bedekovics T and Bedwell DM: Aminoglycosides as potential
pharmacogenetic agents in the treatment of Hailey-Hailey disease. J
Invest Dermatol. 126:229–231. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Floquet C, Hatin I, Rousset JP and Bidou
L: Statistical analysis of readthrough levels for nonsense
mutations in mammalian cells reveals a major determinant of
response to gentamicin. PLoS Genet. 8:e10026082012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Turnidge J: Pharmacodynamics and dosing of
aminoglycosides. Infect Dis Clin North Am. 17:503–528. 2003.
View Article : Google Scholar
|
|
57
|
Fischel-Ghodsian N: Genetic factors in
aminoglycoside toxicity. Pharmacogenomics. 6:27–36. 2005.
View Article : Google Scholar
|
|
58
|
Moestrup SK, Cui S, Vorum H, Bregengard C,
Bjørn SE, Norris K, Gliemann J and Christensen EI: Evidence that
epithelial glycoprotein 330/megalin mediates uptake of polybasic
drugs. J Clin Invest. 96:1404–1413. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Guthrie OW: Aminoglycoside induced
ototoxicity. Toxicology. 249:91–96. 2008. View Article : Google Scholar
|
|
60
|
Mingeot-Leclercq MP and Tulkens PM:
Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother.
43:1003–1012. 1999.PubMed/NCBI
|
|
61
|
Avent ML, Rogers BA, Cheng AC and Paterson
DL: Current use of aminoglycosides: indications, pharmacokinetics
and monitoring for toxicity. Intern Med J. 41:441–449. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Laurent G, Carlier MB, Rollman B, Van Hoof
F and Tulkens P: Mechanism of aminoglycoside-induced lysosomal
phospholipidosis: in vitro and in vivo studies with gentamicin and
amikacin. Biochem Pharmacol. 31:3861–3870. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sha SH and Schacht J: Stimulation of free
radical formation by aminoglycoside antibiotics. Hear Res.
128:112–118. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hobbie SN, Akshay S, Kalapala SK, Bruell
CM, Shcherbakov D and Böttger EC: Genetic analysis of interactions
with eukaryotic rRNA identify the mitoribosome as target in
aminoglycoside ototoxicity. Proc Natl Acad Sci USA.
105:20888–20893. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Welch EM, Barton ER, Zhuo J, Tomizawa Y,
Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S,
Wilde RG, Karp G, Takasugi J, Chen G, Jones S, Ren H, Moon YC,
Corson D, Turpoff AA, Campbell JA, Conn MM, Khan A, Almstead NG,
Hedrick J, Mollin A, Risher N, Weetall M, Yeh S, Branstrom AA,
Colacino JM, Babiak J, Ju WD, Hirawat S, Northcutt VJ, Miller LL,
Spatrick P, He F, Kawana M, Feng H, Jacobson A, Peltz SW and
Sweeney HL: PTC124 targets genetic disorders caused by nonsense
mutations. Nature. 447:87–91. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Du M, Liu X, Welch EM, Hirawat S, Peltz SW
and Bedwell DM: PTC124 is an orally bioavailable compound that
promotes suppression of the human CFTR-G542X nonsense allele in a
CF mouse model. Proc Natl Acad Sci USA. 105:2064–2069. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang B, Yang Z, Brisson BK, Feng H, Zhang
Z, Welch EM, Peltz SW, Barton ER, Brown RH Jr and Sweeney HL:
Membrane blebbing as an assessment of functional rescue of
dysferlin-deficient human myotubes via nonsense suppression. J Appl
Physiol. 1985. 109:901–905. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tan L, Narayan SB, Chen J, Meyers GD and
Bennett MJ: PTC124 improves readthrough and increases enzymatic
activity of the CPT1A R160X nonsense mutation. J Inherit Metab Dis.
34:443–447. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Goldmann T, Overlack N, Wolfrum U and
Nagel-Wolfrum K: PTC124-mediated translational readthrough of a
nonsense mutation causing Usher syndrome type 1C. Hum Gene Ther.
22:537–547. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sarkar C, Zhang Z and Mukherjee AB: Stop
codon read-through with PTC124 induces palmitoyl-protein
thioesterase-1 activity, reduces thioester load and suppresses
apoptosis in cultured cells from INCL patients. Mol Genet Metab.
104:338–345. 2011. View Article : Google Scholar
|
|
71
|
Hirawat S, Welch EM, Elfring GL, Northcutt
VJ, Paushkin S, Hwang S, Leonard EM, Almstead NG, Ju W, Peltz SW
and Miller LL: Safety, tolerability, and pharmacokinetics of
PTC124, a nonaminoglycoside nonsense mutation suppressor, following
single- and multiple-dose administration to healthy male and female
adult volunteers. J Clin Pharmacol. 47:430–444. 2007. View Article : Google Scholar
|
|
72
|
Sermet-Gaudelus I, Boeck KD, Casimir GJ,
Vermeulen F, Leal T, Mogenet A, Roussel D, Fritsch J, Hanssens L,
Hirawat S, Miller NL, Constantine S, Reha A, Ajayi T, Elfring GL
and Miller LL: Ataluren (PTC124) induces cystic fibrosis
transmembrane conductance regulator protein expression and activity
in children with nonsense mutation cystic fibrosis. Am J Respir
Crit Care Med. 182:1262–1272. 2010. View Article : Google Scholar
|
|
73
|
Wilschanski M, Miller LL, Shoseyov D, Blau
H, Rivlin J, Aviram M, Cohen M, Armoni S, Yaakov Y, Pugatsch T,
Cohen-Cymberknoh M, Miller NL, Reha A, Northcutt VJ, Hirawat S,
Donnelly K, Elfring GL, Ajayi T and Kerem E: Chronic ataluren
(PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir
J. 38:59–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Finkel RS, Flanigan KM, Wong B, Bönnemann
C, Sampson J, Sweeney HL, Reha A, Northcutt VJ, Elfring G, Barth J
and Peltz SW: Phase 2a study of ataluren-mediated dystrophin
production in patients with nonsense mutation Duchenne muscular
dystrophy. PLoS One. 8:e813022013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kerem E, Konstan MW, De Boeck K, Accurso
FJ, Sermet-Gaudelus I, Wilschanski M, Elborn JS, Melotti P,
Bronsveld I, Fajac I, Malfroot A, Rosenbluth DB, Walker PA,
McColley SA, Knoop C, Quattrucci S, Rietschel E, Zeitlin PL, Barth
J, Elfring GL, Welch EM, Branstrom A, Spiegel RJ, Peltz SW, Ajayi T
and Rowe SM; for the Cystic Fibrosis Ataluren Study Group. Ataluren
for the treatment of nonsense-mutation cystic fibrosis: a
randomised, double-blind, placebo-controlled phase 3 trial. Lancet
Respir Med. pii: S2213-2600(14)70100-6. View Article : Google Scholar : 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Amrani N, Ganesan R, Kervestin S, Mangus
DA, Ghosh S and Jacobson A: A faux 3′-UTR promotes aberrant
termination and triggers nonsense-mediated mRNA decay. Nature.
432:112–118. 2004.
|
|
77
|
Auld DS, Thorne N, Maguire WF and Inglese
J: Mechanism of PTC124 activity in cell-based luciferase assays of
nonsense codon suppression. Proc Natl Acad Sci USA. 106:3585–3590.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Auld DS, Lovell S, Thorne N, Lea WA,
Maloney DJ, Shen M, Rai G, Battaile KP, Thomas CJ, Simeonov A,
Hanzlik RP and Inglese J: Molecular basis for the high-affinity
binding and stabilization of firefly luciferase by PTC124. Proc
Natl Acad Sci USA. 107:4878–4883. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Peltz SW, Welch EM, Jacobson A, Trotta CR,
Naryshkin N, Sweeney HL and Bedwell DM: Nonsense suppression
activity of PTC124 (ataluren). Proc Natl Acad Sci USA.
106:E64author reply E65. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
McElroy SP, Nomura T, Torrie LS, Warbrick
E, Gartner U, Wood G and McLean WH: A lack of premature termination
codon read-through efficacy of PTC124 (Ataluren) in a diverse array
of reporter assays. PLoS Biol. 11:e10015932013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Karijolich J and Yu YT: Converting
nonsense codons into sense codons by targeted pseudouridylation.
Nature. 474:395–398. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Karijolich J, Kantartzis A and Yu YT: RNA
modifications: a mechanism that modulates gene expression. Methods
Mol Biol. 629:1–19. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Karijolich J and Yu YT: Spliceosomal snRNA
modifications and their function. RNA Biol. 7:192–204. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kierzek E, Malgowska M, Lisowiec J, Turner
DH, Gdaniec Z and Kierzek R: The contribution of pseudouridine to
stabilities and structure of RNAs. Nucleic Acids Res. 42:3492–3501.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fernández IS, Ng CL, Kelley AC, Wu G, Yu
YT and Ramakrishnan V: Unusual base pairing during the decoding of
a stop codon by the ribosome. Nature. 500:107–110. 2013.PubMed/NCBI
|
|
86
|
Ganot P, Bortolin ML and Kiss T:
Site-specific pseudouridine formation in preribosomal RNA is guided
by small nucleolar RNAs. Cell. 89:799–809. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Huang C, Karijolich J and Yu YT:
Post-transcriptional modification of RNAs by artificial Box H/ACA
and Box C/D RNPs. Methods Mol Biol. 718:227–244. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Barbalat R, Ewald SE, Mouchess ML and
Barton GM: Nucleic acid recognition by the innate immune system.
Ann Rev Immunol. 29:185–214. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Frischmeyer PA and Dietz HC:
Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet.
8:1893–1900. 1999. View Article : Google Scholar : PubMed/NCBI
|