Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid

  • Authors:
    • Yinghua Zhang
    • Cailing Yang
    • Guoyan Yuan
    • Zhongping Wang
    • Weigang Cui
    • Ruixi Li
  • View Affiliations

  • Published online on: November 10, 2014     https://doi.org/10.3892/ijmm.2014.1996
  • Pages: 263-270
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Accumulating evidence suggests that anti-inflammatory agents and antioxidants have neuroprotective properties and may be beneficial in the treatment of neurodevelopental disorders, such as autism. In the present study, the possible neuroprotective properties of sulindac, a non-steroidal anti-inflammatory drug (NSAID), were investigated in vitro using cultured cortical neurons with valproic acid (VPA)-induced neurotoxicity, as well as in vivo through the behavioral analysis of rats prenatally exposed to VPA as a model of autism. VPA induced 4-hydroxynonenal (4-HNE) expression, reactive oxygen species (ROS) generation and decreased cell viability in primary cultured cortical neurons established from timed-pregnant (embryonic day 18) Wistar rat pups. However, co-incubation of the neurons with VPA and sulindac reduced oxidative stress and increased cell viability. The rats were administered an intraperitoneal injection with one of the following: VPA, sulindac, VPA and sulindac, or physiological saline, and their offspring were subjected to the open field test. During the test trials, repetitive/stereotypic-like movements for each rat were recorded and analyzed. The results revealed that treatment with both sulindac and VPA reduced the VPA-induced repetitive/stereotypic-like activity and the sulindac and VPA-treated animals responded better in the open field test compared to the VPA-treated animals. The results from the present study demonstrate that the antioxidant properties of sulindac may prove to be beneficial in the treatment of autism, suggesting that the upregulation of the Wnt/β-catenin signaling pathway disrupts oxidative homeostasis and facilitates susceptibility to autism.
View Figures
View References

Related Articles

Journal Cover

January-2015
Volume 35 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Yang C, Yuan G, Wang Z, Cui W and Li R: Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid . Int J Mol Med 35: 263-270, 2015
APA
Zhang, Y., Yang, C., Yuan, G., Wang, Z., Cui, W., & Li, R. (2015). Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid . International Journal of Molecular Medicine, 35, 263-270. https://doi.org/10.3892/ijmm.2014.1996
MLA
Zhang, Y., Yang, C., Yuan, G., Wang, Z., Cui, W., Li, R."Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid ". International Journal of Molecular Medicine 35.1 (2015): 263-270.
Chicago
Zhang, Y., Yang, C., Yuan, G., Wang, Z., Cui, W., Li, R."Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid ". International Journal of Molecular Medicine 35, no. 1 (2015): 263-270. https://doi.org/10.3892/ijmm.2014.1996