|
1
|
Yong X, Xiao YF, Luo G, et al: Strategies
for enhancing vaccine-induced CTl antitumor immune responses. J
Biomed Biotechnol. 2012:6050452012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rosenberg SA, Yang JC and Restifo NP:
Cancer immunotherapy: moving beyond current vaccines. Nat Med.
10:909–915. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lazoura E and Apostolopoulos V: Rational
peptide-based vaccine design for cancer immunotherapeutic
applications. Curr Med Chem. 12:629–639. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Buhrman JD, Jordan KR, Munson DJ, Moore
BL, Kappler JW and Slansky JE: Improving antigenic peptide vaccines
for cancer immunotherapy using a dominant tumor-specific T cell
receptor. J Biol Chem. 288:33213–33225. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Milani A, Sangiolo D, Montemurro F,
Aglietta M and Valabrega G: Active immunotherapy in HER2
overexpressing breast cancer: current status and future
perspectives. Ann Oncol. 24:1740–1748. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tanaka T, Kitamura H, Inoue R, et al:
Potential survival benefit of anti-apoptosis protein:
survivin-derived peptide vaccine with and without interferon alpha
therapy for patients with advanced or recurrent urothelial cancer -
results from phase I clinical trials. Clin Dev Immunol.
2013:262967l2013. View Article : Google Scholar
|
|
7
|
Hui EP, Taylor GS, Jia H, et al: Phase I
trial of recombinant modified vaccinia ankara encoding epstein-BARR
viral tumor antigens in nasopharyngeal carcinoma patients. Cancer
Res. 73:1676–1688. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Asahara S, Takeda K, Yamao K, Maguchi H
and Yamaue H: Phase I/II clinical trial using HLA-A24-restricted
peptide vaccine derived from KIF20A for patients with advanced
pancreatic cancer. J Transl Med. 11:2912013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Basha G, Lizée G, Reinicke AT, et al: MHC
class I endosomal and lysosomal trafficking coincides with
exogenous antigen loading in dendritic cells. PLoS One.
3:e32472008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mellman I, Coukos G and Dranoff G: Cancer
immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Flutter B and Gao B: MHC class I antigen
presentation-recently trimmed and well presented. Cell Mol Immunol.
1:22–30. 2004.
|
|
12
|
Neefjes J, Jongsma MLM, Paul P and Bakke
O: Towards a systems understanding of MHC class I and MHC class II
antigen presentation. Nat Rev Immunol. 11:823–836. 2011.PubMed/NCBI
|
|
13
|
Van Kaer L: Major histocompatibility
complex class I-restricted antigen processing and presentation.
Tissue Antigens. 60:1–9. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Vyas JM, Van der Veen AG and Ploegh HL:
The known unknowns of antigen processing and presentation. Nat Rev
Immunol. 8:607–618. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pieters J: MHC class II-restricted antigen
processing and presentation. Adv Immunol. 75:159–208. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Callan MF, Fazou C, Yang H, et al: CD8(+)
T-cell selection, function, and death in the primary immune
response in vivo. J Clin Invest. 106:1251–1261. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vanneman M and Dranoff G: Combining
immunotherapy and targeted therapies in cancer treatment. Nat Rev
Cancer. 12:237–251. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shashidharamurthy R, Bozeman EN, Patel J,
Kaur R, Meganathan J and Selvaraj P: Immunotherapeutic strategies
for cancer treatment: a novel protein transfer approach for cancer
vaccine development. Med Res Rev. 32:1197–1219. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vesely MD, Kershaw MH, Schreiber RD and
Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev
Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kennedy R and Celis E: Multiple roles for
CD4+ T cells in anti-tumor immune responses. Immunol
Rev. 222:129–144. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bos R and Sherman LA: CD4+
T-cell help in the tumor milieu is required for recruitment and
cytolytic function of CD8+ T lymphocytes. Cancer Res.
70:8368–8377. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dosset M, Godet Y, Vauchy C, et al:
Universal cancer peptide-based therapeutic vaccine breaks tolerance
against telomerase and eradicates established tumor. Clin Cancer
Res. 18:6284–6295. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wei HJ, Wu AT, Hsu CH, et al: The
development of a novel cancer immunotherapeutic platform using
tumor-targeting mesenchymal stem cells and a protein vaccine. Mol
Ther. 19:2249–2257. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liao SJ, Deng DR, Zeng D, et al: HPV16 E5
peptide vaccine in treatment of cervical cancer in vitro and in
vivo. J Huazhong Univ Sci Technolog Med Sci. 33:735–742. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Palucka K, Banchereau J and Mellman I:
Designing vaccines based on biology of human dendritic cell
subsets. Immunity. 33:464–478. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Walker EB, Miller W, Haley D, Floyd K,
Curti B and Urba WJ: Characterization of the class I-restricted
gp100 melanoma peptide-stimulated primary immune response in
tumor-free vaccine-draining lymph nodes and peripheral blood. Clin
Cancer Res. 15:2541–2551. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schwartzentruber DJ, Lawson DH, Richards
JM, et al: gp100 peptide vaccine and interleukin-2 in patients with
advanced melanoma. N Engl J Med. 364:2119–2127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Knuth A, Wölfel T, Klehmann E, Boon T and
Meyer zum Buschenfelde KH: Cytolytic T-cell clones against an
autologous human melanoma: specificity study and definition of
three antigens by immunoselection. Proc Natl Acad Sci USA.
86:2804–2808. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fujie T, Tahara K, Tanaka F, Mori M,
Takesako K and Akiyoshi T: A MAGE-1-encoded HLA-A24-binding
synthetic peptide induces specific anti-tumor cytotoxic T
lymphocytes. Int J Cancer. 80:169–172. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Simpson AJ, Caballero OL, Jungbluth A,
Chen YT and Old LJ: Cancer/testis antigens, gametogenesis and
cancer. Nat Rev Cancer. 5:615–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Karbach J, Gnjatic S, Bender A, et al:
Tumor-reactive CD8+ T-cell responses after vaccination
with NY-ESO-1 peptide, CpG 7909 and montanide ISA-51: association
with survival. Int J Cancer. 126:909–918. 2010.
|
|
32
|
Disis ML, Gooley TA, Rinn K, et al:
Generation of T-cell immunity to the HER-2/neu protein after active
immunization with HER-2/neu peptide-based vaccines. J Clin Oncol.
20:2624–2632. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sangha R and Butts C: L-BLP25: a peptide
vaccine strategy in non small cell lung cancer. Clin Cancer Res.
13:s4652–s4654. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Barratt-Boyes SM, Vlad A and Finn OJ:
Immunization of chimpanzees with tumor antigen MUC1 mucin tandem
repeat peptide elicits both helper and cytotoxic T-cell responses.
Clin Cancer Res. 5:1918–1924. 1999.PubMed/NCBI
|
|
35
|
Bernhardt SL, Gjertsen MK, Trachsel S, et
al: Telomerase peptide vaccination of patients with non-resectable
pancreatic cancer: a dose escalating phase I/II study. Br J Cancer.
95:1474–1482. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim NW, Piatyszek MA, Prowse KR, et al:
Specific association of human telomerase activity with immortal
cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Brunsvig PF, Aamdal S, Gjertsen MK, et al:
Telomerase peptide vaccination: a phase I/II study in patients with
non-small cell lung cancer. Cancer Immunol Immunother.
55:1553–1564. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Brunsvig PF, Kyte JA, Kersten C, et al:
Telomerase peptide vaccination in NSCLC: a phase II trial in stage
III patients vaccinated after chemoradiotherapy and an 8-year
update on a phase I/II trial. Clin Cancer Res. 17:6847–6857. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ding Z, Ou R, Ni B, Tang J and Xu Y:
Cytolytic activity of the human papillomavirus type 16 E711-20
epitope-specific cytotoxic t lymphocyte is enhanced by heat shock
protein 110 in HLA-A*0201 transgenic mice. Clin Vaccine
Immunol. 20:1027–1033. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang J, Zhang Y, Wang H, et al:
Vaccination with the repeat β-hCG C-terminal peptide carried by
heat shock protein-65 (HSP65) for inducing antitumor effects. Tumor
Biol. 33:1777–1784. 2012. View Article : Google Scholar
|
|
41
|
Koido S, Homma S, Okamoto M, et al:
Combined TLR2/4-activated dendritic/tumor cell fusions induce
augmented cytotoxic T lymphocytes. PLoS One. 8:e592802013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Muraoka D, Kato T, Wang L, et al: Peptide
vaccine induces enhanced tumor growth associated with apoptosis
induction in CD8+ T cells. J Immunol. 185:3768–3776.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Speiser DE, Liénard D, Rufer N, et al:
Rapid and strong human CD8+ T cell responses to
vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J
Clin Invest. 115:739–746. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cho BK, Palliser D, Guillen E, et al: A
proposed mechanism for the induction of cytotoxic T lymphocyte
production by heat shock fusion proteins. Immunity. 12:263–272.
2000. View Article : Google Scholar
|
|
45
|
Khan S, Bijker MS, Weterings JJ, et al:
Distinct uptake mechanisms but similar intracellular processing of
two different toll-like receptor ligand-peptide conjugates in
dendritic cells. J Biol Chem. 282:21145–21159. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Weber J, Sondak VK, Scotland R, et al:
Granulocyte- macrophage-colony-stimulating factor added to a
multipeptide vaccine for resected stage II melanoma. Cancer.
97:186–200. 2003. View Article : Google Scholar
|
|
47
|
Hamid O, Solomon JC, Scotland R, et al:
Alum with interleukin-12 augments immunity to a melanoma peptide
vaccine: correlation with time to relapse in patients with resected
high-risk disease. Clin Cancer Res. 13:215–222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee P, Wang F, Kuniyoshi J, et al: Effects
of interleukin-12 on the immune response to a multipeptide vaccine
for resected metastatic melanoma. J Clin Oncol. 19:3836–3847.
2001.PubMed/NCBI
|
|
49
|
Izumoto S: Peptide vaccine. Adv Exp Med
Biol. 746:166–177. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
May RJ, Dao T, Pinilla-Ibarz J, et al:
Peptide epitopes from the wilms’ tumor 1 oncoprotein stimulate
CD4+ and CD8+ T cells that recognize and kill
human malignant mesothelioma tumor cells. Clin Cancer Res.
13:4547–4555. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Fujiki F, Oka Y, Tsuboi A, et al:
Identification and characterization of a WT1 (Wilms Tumor Gene)
protein-derived HLA-DRB1*0405-restricted 16-mer helper
peptide that promotes the induction and activation of WT1-specific
cytotoxic T lymphocytes. J Immunother. 30:282–293. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pipkin ME, Sacks JA, Cruz-Guilloty F,
Lichtenheld MG, Bevan MJ and Rao A: Interleukin-2 and inflammation
induce distinct transcriptional programs that promote the
differentiation of effector cytolytic T cells. Immunity. 32:79–90.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nakanishi Y, Lu B, Gerard C and Iwasaki A:
CD8+ T lymphocyte mobilization to virus-infected tissue
requires CD4+ T-cell help. Nature. 462:510–513. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Williams MA, Tyznik AJ and Bevan MJ:
Interleukin-2 signals during priming are required for secondary
expansion of CD8+ memory T cells. Nature. 441:890–893.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Knutson KL, Schiffman K and Disis ML:
Immunization with a HER-2/neu helper peptide vaccine generates
HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest.
107:477–484. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gritzapis AD, Voutsas IF, Lekka E,
Papamichail M and Baxevanis CN: Peptide vaccination breaks
tolerance to HER-2/neu by generating vaccine-specific FasL(+)
CD4(+) T cells: first evidence for intratumor apoptotic regulatory
T cells. Cancer Res. 70:2686–2696. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang Y, Wang XY, Subjeck JR, Shrikant PA
and Kim HL: Temsirolimus, an mTOR inhibitor, enhances anti-tumour
effects of heat shock protein cancer vaccines. Br J Cancer.
104:643–652. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Arens R, van Hall T, van der Burg SH,
Ossendorp F and Melief CJM: Prospects of combinatorial synthetic
peptide vaccine-based immunotherapy against cancer. Semin Immunol.
25:182–190. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gray JC, French RR, James S, Al-Shamkhani
A, Johnson PW and Glennie MJ: Optimising anti-tumour CD8 T-cell
responses using combinations of immunomodulatory antibodies. Eur J
Immunol. 38:2499–2511. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fransen MF, Sluijter M, Morreau H, Arens R
and Melief CJ: Local activation of CD8 T cells and systemic tumor
eradication without toxicity via slow release and local delivery of
agonistic CD40 antibody. Clin Cancer Res. 17:2270–2280. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ascierto PA, Simeone E, Sznol M, Fu YX and
Melero I: Clinical experiences with anti-CD137 and anti-PD1
therapeutic antibodies. Semin Oncol. 37:508–516. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Croft M: The role of TNF superfamily
members in T-cell function and diseases. Nat Rev Immunol.
9:271–285. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Croft M: Co-stimulatory members of the
TNFR family: keys to effective T-cell immunity? Nat Rev Immunol.
3:609–620. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Topalian SL, Weiner GJ and Pardoll DM:
Cancer immunotherapy comes of age. J Clin Oncol. 29:4828–4836.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sin JI, Kim H, Ahn E, et al: Combined
stimulation of TLR9 and 4.1BB augments Trp2 peptide
vaccine-mediated melanoma rejection by increasing Ag-specific CTl
activity and infiltration into tumor sites. Cancer Lett.
330:190–199. 2013. View Article : Google Scholar
|
|
66
|
Curran MA, Montalvo W, Yagita H and
Allison JP: PD-1 and CTLA-4 combination blockade expands
infiltrating T cells and reduces regulatory T and myeloid cells
within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Apostolopoulos V: Peptide-based vaccines
for cancer: are we choosing the right peptides? Expert Rev
Vaccines. 8:259–260. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Disis ML, Smith JW, Murphy AE, Chen W and
Cheever MA: In vitro generation of human cytolytic T-cells specific
for peptides derived from the HER-2/neu protooncogene protein.
Cancer Res. 54:1071–1076. 1994.PubMed/NCBI
|
|
69
|
Robbins PF, El-Gamil M, Li YF, et al: A
mutated beta-catenin gene encodes a melanoma-specific antigen
recognized by tumor infiltrating lymphocytes. J Exp Med.
183:1185–1192. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wölfel T, Hauer M, Schneider J, et al: A
p16INK4a-insensitive CDK4 mutant targeted by cytolytic T
lymphocytes in a human melanoma. Science. 269:1281–1284. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kawakami Y, Wang X, Shofuda T, et al:
Isolation of a new melanoma antigen, MART-2, containing a mutated
epitope recognized by autologous tumor-infiltrating T lymphocytes.
J Immunol. 166:2871–2877. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Coulie PG, Lehmann F, Lethé B, et al: A
mutated intron sequence codes for an antigenic peptide recognized
by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci
USA. 92:7976–7980. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Baurain JF, Colau D, van Baren N, et al:
High frequency of autologous anti-melanoma CTL directed against an
antigen generated by a point mutation in a new helicase gene. J
Immunol. 164:6057–6066. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gaudin C, Kremer F, Angevin E, Scott V and
Triebel F: A hsp70-2 mutation recognized by CTl on a human renal
cell carcinoma. J Immunol. 162:1730–1738. 1999.PubMed/NCBI
|
|
75
|
Mandruzzato S, Brasseur F, Andry G, Boon T
and van der Bruggen P: A CASP-8 mutation recognized by cytolytic T
lymphocytes on a human head and neck carcinoma. J Exp Med.
186:785–793. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bristol JA, Schlom J and Abrams SI:
Development of a murine mutant ras CD8+ CTL peptide
epitope variant that possesses enhanced MHC class I binding and
immunogenic properties. J Immunol. 160:2433–2441. 1998.PubMed/NCBI
|
|
77
|
Couch ME, Ferris RL, Brennan JA, et al:
Alteration of cellular and humoral immunity by mutant p53 protein
and processed mutant peptide in head and neck cancer. Clin Cancer
Res. 13:7199–7206. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Pieper R, Christian RE, Gonzales MI, et
al: Biochemical identification of a mutated human melanoma antigen
recognized by CD4(+) T cells. J Exp Med. 189:757–766. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang RF, Wang X, Atwood AC, Topalian SL
and Rosenberg SA: Cloning genes encoding MHC class II-restricted
antigens: mutated CDC27 as a tumor antigen. Science. 284:1351–1354.
1999. View Article : Google Scholar : PubMed/NCBI
|