|
1
|
Garcia-Pavia P, Cobo-Marcos M,
Guzzo-Merello G, Gomez-Bueno M, Bornstein B, Lara-Pezzi E, Segovia
J and Alonso-Pulpon L: Genetics in dilated cardiomyopathy. Biomark
Med. 7:517–533. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hershberger RE, Hedges DJ and Morales A:
Dilated cardiomyopathy: the complexity of a diverse genetic
architecture. Nat Rev Cardiol. 10:531–547. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
McNally EM, Golbus JR and Puckelwartz MJ:
Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin
Invest. 123:19–26. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Koutalas E, Kanoupakis E and Vardas P:
Sudden cardiac death in non-ischemic dilated cardiomyopathy: a
critical appraisal of existing and potential risk stratification
tools. Int J Cardiol. 167:335–341. 2013. View Article : Google Scholar
|
|
5
|
Yoshikawa T: Contribution of acquired
factors to the pathogenesis of dilated cardiomyopathy. The cause of
dilated cardiomyopathy: genetic or acquired? (Acquired-Side). Circ
J. 75:1766–1773. 2011. View Article : Google Scholar
|
|
6
|
Refaat MM, Lubitz SA, Makino S, Islam Z,
Frangiskakis JM, Mehdi H, Gutmann R, Zhang ML, Bloom HL, MacRae CA,
Dudley SC, Shalaby AA, Weiss R, McNamara DM, London B and Ellinor
PT: Genetic variation in the alternative splicing regulator RBM20
is associated with dilated cardiomyopathy. Heart Rhythm. 9:390–396.
2012. View Article : Google Scholar :
|
|
7
|
Wahbi K, Béhin A, Bécane HM, Leturcq F,
Cossée M, Laforêt P, Stojkovic T, Carlier P, Toussaint M, Gaxotte
V, Cluzel P, Eymard B and Duboc D: Dilated cardiomyopathy in
patients with mutations in anoctamin 5. Int J Cardiol. 168:76–79.
2013. View Article : Google Scholar
|
|
8
|
Flack E and Kannankeril PJ: The genetics
of dilated cardiomyopathy. Heart Rhythm. 9:397–398. 2012.
View Article : Google Scholar
|
|
9
|
Pikkarainen S, Tokola H, Kerkelä R and
Ruskoaho H: GATA transcription factors in the developing and adult
heart. Cardiovasc Res. 63:196–207. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Oka T, Xu J and Molkentin JD:
Re-employment of developmental transcription factors in adult heart
disease. Semin Cell Dev Biol. 18:117–131. 2007. View Article : Google Scholar
|
|
11
|
Kikuchi K, Holdway JE, Werdich AA,
Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY
and Poss KD: Primary contribution to zebrafish heart regeneration
by gata4+ cardiomyocytes. Nature. 464:601–605. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Akazawa H and Komuro I: Cardiac
transcription factor Csx/Nkx2–5: its role in cardiac development
and diseases. Pharmacol Ther. 107:252–268. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kasahara A, Cipolat S, Chen Y, Dorn GW II
and Scorrano L: Mitochondrial fusion directs cardiomyocyte
differentiation via calcineurin and Notch signaling. Science.
342:734–737. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cai H, Katoh-Kurasawa M, Muramoto T,
Santhanam B, Long Y, Li L, Ueda M, Iglesias PA, Shaulsky G and
Devreotes PN: Nucleocytoplasmic shuttling of a GATA transcription
factor functions as a development timer. Science. 343:12495312014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Garg V, Kathiriya IS, Barnes R,
Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS,
Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC and Srivastava D:
GATA4 mutations cause human congenital heart defects and reveal an
interaction with TBX5. Nature. 424:443–447. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rajagopal SK, Ma Q, Obler D, Shen J,
Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V,
Srivastava D, Goldmuntz E, Broman KW, Benson DW, Smoot LB and Pu
WT: Spectrum of heart disease associated with murine and human
GATA4 mutation. J Mol Cell Cardiol. 43:677–685. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang YQ, Li L, Wang J, Liu XY, Chen XZ,
Zhang W, Wang XZ, Jiang JQ, Liu X and Fang WY: A novel GATA4
loss-of-function mutation associated with congenital ventricular
septal defect. Pediatr Cardiol. 33:539–546. 2012. View Article : Google Scholar
|
|
18
|
Wang J, Sun YM and Yang YQ: Mutation
spectrum of the GATA4 gene in patients with idiopathic atrial
fibrillation. Mol Biol Rep. 39:8127–8135. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang YQ, Wang J, Liu XY, Chen XZ, Zhang W
and Wang XZ: Mutation spectrum of GATA4 associated with congenital
atrial septal defects. Arch Med Sci. 9:976–983. 2013. View Article : Google Scholar
|
|
20
|
Yang YQ, Gharibeh L, Li RG, Xin YF, Wang
J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, Liu X, Fang WY, Huang RT,
Xue S and Nemer G: GATA4 loss-of-function mutations underlie
familial tetralogy of fallot. Hum Mutat. 34:1662–1671. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang YQ, Wang J, Wang XH, Wang Q, Tan HW,
Zhang M, Shen FF, Jiang JQ, Fang WY and Liu X: Mutational spectrum
of the GATA5 gene associated with familial atrial fibrillation. Int
J Cardiol. 157:305–307. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gu JY, Xu JH, Yu H and Yang YQ: Novel
GATA5 loss-of-function mutations underlie familial atrial
fibrillation. Clinics (Sao Paulo). 67:1393–1399. 2012. View Article : Google Scholar
|
|
23
|
Jiang JQ, Li RG, Wang J, Liu XY, Xu YJ,
Fang WY, Chen XZ, Zhang W, Wang XZ and Yang YQ: Prevalence and
spectrum of GATA5 mutations associated with congenital heart
disease. Int J Cardiol. 165:570–573. 2013. View Article : Google Scholar
|
|
24
|
Wei D, Bao H, Zhou N, Zheng GF, Liu XY and
Yang YQ: GATA5 loss-of-function mutation responsible for the
congenital ventriculoseptal defect. Pediatr Cardiol. 34:504–511.
2013. View Article : Google Scholar
|
|
25
|
Wei D, Bao H, Liu XY, Zhou N, Wang Q, Li
RG, Xu YJ and Yang YQ: GATA5 loss-of-function mutations underlie
tetralogy of fallot. Int J Med Sci. 10:34–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang XH, Huang CX, Wang Q, Li RG, Xu YJ,
Liu X, Fang WY and Yang YQ: A novel GATA5 loss-of-function mutation
underlies lone atrial fibrillation. Int J Mol Med. 31:43–50.
2013.
|
|
27
|
Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu
L, Liu H, Li RG, Xu YJ, Wang Q, Zheng HZ, Li X, Wang XZ, Zhang M,
Qu XK and Yang YQ: GATA5 loss-of-function mutations associated with
congenital bicuspid aortic valve. Int J Mol Med. 33:1219–1226.
2014.PubMed/NCBI
|
|
28
|
Huang RT, Xue S, Xu YJ, Zhou M and Yang
YQ: Somatic GATA5 mutations in sporadic tetralogy of Fallot. Int J
Mol Med. 33:1227–1235. 2014.PubMed/NCBI
|
|
29
|
Zheng GF, Wei D, Zhao H, Zhou N, Yang YQ
and Liu XY: A novel GATA6 mutation associated with congenital
ventricular septal defect. Int J Mol Med. 29:1065–1071.
2012.PubMed/NCBI
|
|
30
|
Wang J, Luo XJ, Xin YF, Liu Y, Liu ZM,
Wang Q, Li RG, Fang WY, Wang XZ and Yang YQ: Novel GATA6 mutations
associated with congenital ventricular septal defect or tetralogy
of fallot. DNA Cell Biol. 31:1610–1617. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang YQ, Wang XH, Tan HW, Jiang WF, Fang
WY and Liu X: Prevalence and spectrum of GATA6 mutations associated
with familial atrial fibrillation. Int J Cardiol. 155:494–496.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yang YQ, Li L, Wang J, Zhang XL, Li RG, Xu
YJ, Tan HW, Wang XH, Jiang JQ, Fang WY and Liu X: GATA6
loss-of-function mutation in atrial fibrillation. Eur J Med Genet.
55:520–526. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li J, Liu WD, Yang ZL and Yang YQ: Novel
GATA6 loss-of-function mutation responsible for familial atrial
fibrillation. Int J Mol Med. 30:783–790. 2012.PubMed/NCBI
|
|
34
|
Huang RT, Xue S, Xu YJ and Yang YQ:
Somatic mutations in the GATA6 gene underlie sporadic tetralogy of
Fallot. Int J Mol Med. 31:51–58. 2013.
|
|
35
|
Schott JJ, Benson DW, Basson CT, Pease W,
Silberbach GM, Moak JP, Maron BJ, Seidman CE and Seidman JG:
Congenital heart disease caused by mutations in the transcription
factor NKX2-5. Science. 281:108–111. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Guntheroth W, Chun L, Patton KK,
Matsushita MM, Page RL and Raskind WH: Wenckebach periodicity at
rest that normalizes with tachycardia in a family with a NKX2.5
mutation. Am J Cardiol. 110:1646–1650. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xie WH, Chang C, Xu YJ, Li RG, Qu XK, Fang
WY, Liu X and Yang YQ: Prevalence and spectrum of Nkx2.5 mutations
associated with idiopathic atrial fibrillation. Clinics (Sao
Paulo). 68:777–784. 2013. View Article : Google Scholar
|
|
38
|
Huang RT, Xue S, Xu YJ, Zhou M and Yang
YQ: A novel NKX2.5 loss-of-function mutation responsible for
familial atrial fibrillation. Int J Mol Med. 31:1119–1126.
2013.PubMed/NCBI
|
|
39
|
McCulley DJ and Black BL: Transcription
factor pathways and congenital heart disease. Curr Top Dev Biol.
100:253–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X,
Xu YJ, Jiang WF, Jiang JQ, Liu X, Fang WY, Zhang M, Peng LY, Qu XK
and Yang YQ: GATA4 loss-of-function mutation underlies familial
dilated cardiomyopathy. Biochem Biophys Res Commun. 439:591–596.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng
HZ, Jiang WF, Jiang JF and Yang YQ: A novel GATA4 loss-of-function
mutation responsible for familial dilated cardiomyopathy. Int J Mol
Med. 33:654–660. 2014.
|
|
42
|
Brody MJ, Cho E, Mysliwiec MR, Kim TG,
Carlson CD, Lee KH and Lee Y: Lrrc10 is a novel cardiac-specific
target gene of Nkx2-5 and GATA4. J Mol Cell Cardiol. 62:237–246.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lints TJ, Parsons LM, Hartley L, Lyons I
and Harvey RP: Nkx-2.5: a novel murine homeobox gene expressed in
early heart progenitor cells and their myogenic descendants.
Development. 119:419–431. 1993.PubMed/NCBI
|
|
44
|
Lyons I, Parsons LM, Hartley L, Li R,
Andrews JE, Robb L and Harvey RP: Myogenic and morphogenetic
defects in the heart tubes of murine embryos lacking the homeo box
gene Nkx2-5. Genes Dev. 9:1654–1666. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Prall OW, Menon MK, Solloway MJ, Watanabe
Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet
H, Stennard FA, Wise N, Schaft D, Wolstein O, Furtado MB, Shiratori
H, Chien KR, Hamada H, Black BL, Saga Y, Robertson EJ, Buckingham
ME and Harvey RP: An Nkx2-5/Bmp2/Smad1 negative feedback loop
controls heart progenitor specification and proliferation. Cell.
128:947–959. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pashmforoush M, Lu JT, Chen H, Amand TS,
Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W, Ho
SY, Benson DW, Silberbach M, Shou W and Chien KR: Nkx2-5 pathways
and congenital heart disease; loss of ventricular myocyte lineage
specification leads to progressive cardiomy-opathy and complete
heart block. Cell. 117:373–386. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Briggs LE, Takeda M, Cuadra AE, Wakimoto
H, Marks MH, Walker AJ, Seki T, Oh SP, Lu JT, Sumners C, Raizada
MK, Horikoshi N, Weinberg EO, Yasui K, Ikeda Y, Chien KR and
Kasahara H: Perinatal loss of Nkx2-5 results in rapid conduction
and contraction defects. Circ Res. 103:580–590. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Takeda M, Briggs LE, Wakimoto H, Marks MH,
Warren SA, Lu JT, Weinberg EO, Robertson KD, Chien KR and Kasahara
H: Slow progressive conduction and contraction defects in loss of
Nkx2-5 mice after cardiomyocyte terminal differentiation. Lab
Invest. 89:983–993. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Benson DW, Silberbach GM, Kavanaugh-McHugh
A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS,
Seidman JG, Seidman CE, Plowden J and Kugler JD: Mutations in the
cardiac transcription factor NKX2.5 affect diverse cardiac
developmental pathways. J Clin Invest. 104:1567–1573. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kirk EP, Sunde M, Costa MW, Rankin SA,
Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay
JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffiths
L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Winlaw DS and Harvey
RP: Mutations in cardiac T-box factor gene TBX20 are associated
with diverse cardiac pathologies, including defects of septation
and valvulogenesis and cardiomyopathy. Am J Hum Genet. 81:280–291.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Brody MJ, Hacker TA, Patel JR, Feng L,
Sadoshima J, Tevosian SG, Balijepalli RC, Moss RL and Lee Y:
Ablation of the cardiac-specific gene leucine-rich repeat
containing 10 (Lrrc10) results in dilated cardiomyopathy. PLoS One.
7:e516212012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Elliott P, O’Mahony C, Syrris P, Evans A,
Rivera Sorensen C, Sheppard MN, Carr-White G, Pantazis A and
McKenna WJ: Prevalence of desmosomal protein gene mutations in
patients with dilated cardiomyopathy. Circ Cardiovasc Genet.
3:314–322. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Costa MW, Guo G, Wolstein O, Vale M,
Castro ML, Wang L, Otway R, Riek P, Cochrane N, Furtado M,
Semsarian C, Weintraub RG, Yeoh T, Hayward C, Keogh A, Macdonald P,
Feneley M, Graham RM, Seidman JG, Seidman CE, Rosenthal N, Fatkin D
and Harvey RP: Functional characterization of a novel mutation in
NKX2-5 associated with congenital heart disease and adult-onset
cardiomyopathy. Circ Cardiovasc Genet. 6:238–247. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kasahara H, Lee B, Schott JJ, Benson DW,
Seidman JG, Seidman CE and Izumo S: Loss of function and inhibitory
effects of human CSX/NKX2.5 homeoprotein mutations associated with
congenital heart disease. J Clin Invest. 106:299–308. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Goldmuntz E, Geiger E and Benson DW:
NKX2.5 mutations in patients with tetralogy of fallot. Circulation.
104:2565–2568. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stallmeyer B, Fenge H, Nowak-Göttl U and
Schulze-Bahr E: Mutational spectrum in the cardiac transcription
factor gene NKX2.5 (CSX) associated with congenital heart disease.
Clin Genet. 78:533–540. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Beffagna G, Cecchetto A, Dal Bianco L,
Lorenzon A, Angelini A, Padalino M, Vida V, Bhattacharya S, Stellin
G, Rampazzo A and Daliento L: R25C mutation in the NKX2.5 gene in
Italian patients affected with non-syndromic and syndromic
congenital heart disease. J Cardiovasc Med (Hagerstown).
14:582–586. 2013. View Article : Google Scholar
|
|
58
|
Dentice M, Cordeddu V, Rosica A, Ferrara
AM, Santarpia L, Salvatore D, Chiovato L, Perri A, Moschini L,
Fazzini C, Olivieri A, Costa P, Stoppioni V, Baserga M, De Felice
M, Sorcini M, Fenzi G, Di Lauro R, Tartaglia M and Macchia PE:
Missense mutation in the transcription factor NKX2-5: a novel
molecular event in the pathogenesis of thyroid dysgenesis. J Clin
Endocrinol Metab. 91:1428–1433. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Komuro I and Izumo S: Csx: a murine
homeobox-containing gene specifically expressed in the developing
heart. Proc Natl Acad Sci USA. 90:814581491993. View Article : Google Scholar
|
|
60
|
Kasahara H, Bartunkova S, Schinke M,
Tanaka M and Izumo S: Cardiac and extracardiac expression of
Csx/Nkx2.5 homeodomain protein. Circ Res. 82:936–946. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Stanley EG, Biben C, Elefanty A, Barnett
L, Koentgen F, Robb L and Harvey RP: Efficient Cre-mediated
deletion in cardiac progenitor cells conferred by a 3’UTR-ires-Cre
allele of the homeobox gene Nkx2-5. Int J Dev Biol. 46:431–439.
2002.
|
|
62
|
Schlesinger J, Schueler M, Grunert M,
Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I and
Sperling SR: The cardiac transcription network modulated by Gata4,
Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS
Genet. 7:e10013132011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shin CH, Liu ZP, Passier R, Zhang CL, Wang
DZ, Harris TM, Yamagishi H, Richardson JA, Childs G and Olson EN:
Modulation of cardiac growth and development by HOP, an unusual
homeodomain protein. Cell. 110:725–735. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tanaka M, Chen Z, Bartunkova S, Yamasaki N
and Izumo S: The cardiac homeobox gene Csx/Nkx2.5 lies genetically
upstream of multiple genes essential for heart development.
Development. 126:1269–1280. 1999.PubMed/NCBI
|
|
65
|
Biben C, Weber R, Kesteven S, Stanley E,
McDonald L, Elliott DA, Barnett L, Köentgen F, Robb L, Feneley M
and Harvey RP: Cardiac septal and valvular dysmorphogenesis in mice
heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res.
87:888–895. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Biben C and Harvey RP: Homeodomain factor
Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand
during murine heart development. Genes Dev. 11:1357–1369. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zou Y, Evans S, Chen J, Kuo HC, Harvey RP
and Chien KR: CARP, a cardiac ankyrin repeat protein, is downstream
in the Nkx2–5 homeobox gene pathway. Development. 124:793–804.
1997.PubMed/NCBI
|
|
68
|
Thompson JT, Rackley MS and O’Brien TX:
Upregulation of the cardiac homeobox gene Nkx2-5 (CSX) in feline
right ventricular pressure overload. Am J Physiol. 274:H1569–H1573.
1998.PubMed/NCBI
|
|
69
|
Saadane N, Alpert L and Chalifour LE:
Expression of immediate early genes, GATA-4, and Nkx-2.5 in
adrenergic-induced cardiac hypertrophy and during regression in
adult mice. Br J Pharmacol. 127:1165–1176. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Toko H, Zhu W, Takimoto E, Shiojima I,
Hiroi Y, Zou Y, Oka T, Akazawa H, Mizukami M, Sakamoto M, Terasaki
F, Kitaura Y, Takano H, Nagai T, Nagai R and Komuro I: Csx/Nkx2-5
is required for homeostasis and survival of cardiac myocytes in the
adult heart. J Biol Chem. 277:24735–24743. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kasahara H, Wakimoto H, Liu M, Maguire CT,
Converso KL, Shioi T, Huang WY, Manning WJ, Paul D, Lawitts J,
Berul CI and Izumo S: Progressive atrioventricular conduction
defects and heart failure in mice expressing a mutant Csx/Nkx2.5
homeoprotein. J Clin Invest. 108:189–201. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hiroi Y, Kudoh S, Monzen K, Ikeda Y,
Yazaki Y, Nagai R and Komuro I: Tbx5 associates with Nkx2-5 and
synergistically promotes cardiomyocyte differentiation. Nat Genet.
28:276–280. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sepulveda JL, Belaguli N, Nigam V, Chen
CY, Nemer M and Schwartz RJ: GATA-4 and Nkx-2.5 coactivate Nkx-2
DNA binding targets: role for regulating early cardiac gene
expression. Mol Cell Biol. 18:3405–3415. 1998.PubMed/NCBI
|
|
74
|
Durocher D, Charron F, Warren R, Schwartz
RJ and Nemer M: The cardiac transcription factors Nkx2-5 and GATA-4
are mutual cofactors. EMBO J. 16:5687–5696. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen CY and Schwartz RJ: Recruitment of
the tinman homolog Nkx-2.5 by serum response factor activates
cardiac alpha-actin gene transcription. Mol Cell Biol.
16:6372–6384. 1996.PubMed/NCBI
|
|
76
|
Song K, Backs J, McAnally J, Qi X, Gerard
RD, Richardson JA, Hill JA, Bassel-Duby R and Olson EN: The
transcriptional coactivator CAMTA2 stimulates cardiac growth by
opposing class II histone deacetylases. Cell. 125:453–466. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kasahara H, Ueyama T, Wakimoto H, Liu MK,
Maguire CT, Converso KL, Kang PM, Manning WJ, Lawitts J, Paul DL,
Berul CI and Izumo S: Nkx2. 5 homeoprotein regulates expression of
gap junction protein connexin 43 and sarcomere organization in
postnatal cardiomyocytes. J Mol Cell Cardiol. 35:243–256. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gutierrez-Roelens I, Sluysmans T, Gewillig
M, Devriendt K and Vikkula M: Progressive AV-block and anomalous
venous return among cardiac anomalies associated with two novel
missense mutations in the CSX/NKX2-5 gene. Hum Mutat. 20:75–76.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Elliott DA, Kirk EP, Yeoh T, Chandar S,
McKenzie F, Taylor P, Grossfeld P, Fatkin D, Jones O, Hayes P,
Feneley M and Harvey RP: Cardiac homeobox gene NKX2-5 mutations and
congenital heart disease: associations with atrial septal defect
and hypoplastic left heart syndrome. J Am Coll Cardiol.
41:2072–2076. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
McElhinney DB, Geiger E, Blinder J, Benson
DW and Goldmuntz E: NKX2.5 mutations in patients with congenital
heart disease. J Am Coll Cardiol. 42:1650–1655. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Reamon-Buettner SM and Borlak J: NKX2-5:
an update on this hypermutable homeodomain protein and its role in
human congenital heart disease (CHD). Hum Mutat. 31:1185–1194.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang J, Xin YF, Liu XY, Liu ZM, Wang XZ
and Yang YQ: A novel NKX2-5 mutation in familial ventricular septal
defect. Int J Mol Med. 27:369–375. 2011.
|
|
83
|
Qin X, Xing Q, Ma L, Meng H, Liu Y, Pang S
and Yan B: Genetic analysis of an enhancer of the NKX2-5 gene in
ventricular septal defects. Gene. 508:106–109. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Huang W, Meng H, Qiao Y, Pang S, Chen D
and Yan B: Two novel and functional DNA sequence variants within an
upstream enhancer of the human NKX2-5 gene in ventricular septal
defects. Gene. 524:152–155. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yan H, Yuan W, Velculescu VE, Vogelstein B
and Kinzler KW: Allelic variation in human gene expression.
Science. 297:11432002. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Weisfeld-Adams JD, Edelmann L, Gadi IK and
Mehta L: Phenotypic heterogeneity in a family with a small atypical
microduplication of chromosome 22q11.2 involving TBX1. Eur J Med
Genet. 55:732–736. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Smith H, Galmes R, Gogolina E,
Straatman-Iwanowska A, Reay K, Banushi B, Bruce CK, Cullinane AR,
Romero R, Chang R, Ackermann O, Baumann C, Cangul H, Cakmak Celik
F, Aygun C, Coward R, Dionisi-Vici C, Sibbles B, Inward C, Kim CA,
Klumperman J, Knisely AS, Watson SP and Gissen P: Associations
among genotype, clinical phenotype, and intracellular localization
of trafficking proteins in ARC syndrome. Hum Mutat. 33:1656–1664.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Soemedi R, Wilson IJ, Bentham J, Darlay R,
Töpf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C,
Granados-Riveron J, Blue GM, Breckpot J, Hellens S, Zwolinkski S,
Glen E, Mamasoula C, Rahman TJ, Hall D, Rauch A, Devriendt K,
Gewillig M, O’ Sullivan J, Winlaw DS, Bu’Lock F, Brook JD,
Bhattacharya S, Lathrop M, Santibanez-Koref M, Cordell HJ, Goodship
JA and Keavney BD: Contribution of global rare copy-number variants
to the risk of sporadic congenital heart disease. Am J Hum Genet.
91:489–501. 2012. View Article : Google Scholar : PubMed/NCBI
|