|
1
|
Go AS, Mozaffarian D, Roger VL, Benjamin
EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton
HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd
SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD,
Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK,
Mohler ER III, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey
DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan
TN, Virani SS, Wong ND, Woo D and Turner MB; American Heart
Association Statistics Committee and Stroke Statistics
Subcommittee: Heart disease and stroke statistics - 2014 update: a
report from the American Heart Association. Circulation.
129:e28–e292. 2014. View Article : Google Scholar
|
|
2
|
van der Linde D, Konings EE, Slager MA,
Witsenburg M, Helbing WA, Takkenberg JJ and Roos-Hesselink JW:
Birth prevalence of congenital heart disease worldwide: a
systematic review and meta-analysis. J Am Coll Cardiol.
58:2241–2247. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zheng JY, Tian HT, Zhu ZM, Li B, Han L,
Jiang SL, Chen Y, Li DT, He JC, Zhao Z, Cao Y, Qiu YG and Li TC:
Prevalence of symptomatic congenital heart disease in Tibetan
school children. Am J Cardiol. 112:1468–1470. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Müller J, Berner A, Ewert P and Hager A:
Reduced health-related quality of life in older patients with
congenital heart disease: a cross sectional study in 2360 patients.
Int J Cardiol. 175:358–362. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Garcia Guerra G, Joffe AR, Robertson CM,
Atallah J, Alton G, Sauve RS, Dinu IA, Ross DB and Rebeyka IM;
Western Canadian Complex Pediatric Therapies Follow-up Group:
Health-related quality of life experienced by children with
chromosomal abnormalities and congenital heart defects. Pediatr
Cardiol. 35:536–541. 2014. View Article : Google Scholar
|
|
6
|
Cha KS, Cho KI, Seo JS, Choi JH, Park YH,
Yang DH, Hong GR and Kim DS: Effects of inhaled iloprost on
exercise capacity, quality of life, and cardiac function in
patients with pulmonary arterial hypertension secondary to
congenital heart disease (the Eisenmenger syndrome) (from the EIGER
Study). Am J Cardiol. 112:1834–1839. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Müller J, Engelhardt A, Fratz S, Eicken A,
Ewert P and Hager A: Improved exercise performance and quality of
life after percutaneous pulmonary valve implantation. Int J
Cardiol. 173:388–392. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Khalil A, Suff N, Thilaganathan B, Hurrell
A, Cooper D and Carvalho JS: Brain abnormalities and
neurodevelopmental delay in congenital heart disease: systematic
review and meta-analysis. Ultrasound Obstet Gynecol. 43:14–24.
2014. View Article : Google Scholar
|
|
9
|
Mulkey SB, Swearingen CJ, Melguizo MS,
Schmitz ML, Ou X, Ramakrishnaiah RH, Glasier CM, Bradley Schaefer G
and Bhutta AT: Multi-tiered analysis of brain injury in neonates
with congenital heart disease. Pediatr Cardiol. 34:1772–1784. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Giglia TM, Massicotte MP, Tweddell JS,
Barst RJ, Bauman M, Erickson CC, Feltes TF, Foster E, Hinoki K,
Ichord RN, Kreutzer J, McCrindle BW, Newburger JW, Tabbutt S, Todd
JL and Webb CL; American Heart Association Congenital Heart Defects
Committee of the Council on Cardiovascular Disease in the Young;
Council on Cardiovascular and Stroke Nursing; Council on
Epidemiology and Prevention; Stroke Council: Prevention and
treatment of thrombosis in pediatric and congenital heart disease:
a scientific statement from the American Heart Association.
Circulation. 128:2622–2703. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rushani D, Kaufman JS, Ionescu-Ittu R, et
al: Infective endocarditis in children with congenital heart
disease: cumulative incidence and predictors. Circulation.
128:1412–1419. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Martinez-Quintana E, Rodriguez-Gonzalez F
and Nieto-Lago V: Subclinical hypothyroidism in grown-up congenital
heart disease patients. Pediatr Cardiol. 34:912–917. 2013.
View Article : Google Scholar
|
|
13
|
van Riel AC, Schuuring MJ, van Hessen ID,
Zwinderman AH, Cozijnsen L, Reichert CL, Hoorntje JC, Wagenaar LJ,
Post MC, van Dijk AP, Hoendermis ES, Mulder BJ and Bouma BJ:
Contemporary prevalence of pulmonary arterial hypertension in adult
congenital heart disease following the updated clinical
classification. Int J Cardiol. 174:299–305. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Barst RJ, Ivy DD, Foreman AJ, McGoon MD
and Rosenzweig EB: Four- and seven-year outcomes of patients with
congenital heart disease-associated pulmonary arterial hypertension
(from the REVEAL Registry). Am J Cardiol. 113:147–155. 2014.
View Article : Google Scholar
|
|
15
|
Dimopoulos K, Wort SJ and Gatzoulis MA:
Pulmonary hypertension related to congenital heart disease: a call
for action. Eur Heart J. 35:691–700. 2014. View Article : Google Scholar
|
|
16
|
Friedman KG, McElhinney DB, Rhodes J,
Powell AJ, Colan SD, Lock JE and Brown DW: Left ventricular
diastolic function in children and young adults with congenital
aortic valve disease. Am J Cardiol. 111:243–249. 2013. View Article : Google Scholar :
|
|
17
|
Schuck R, Abd El Rahman MY, Rentzsch A,
Hui W, Weng Y, Alexi-Meskishvili V, Lange PE, Berger F and
Abdul-Khaliq H: Altered right ventricular function in the long-term
follow-up evaluation of patients after delayed aortic
reimplantation of the anomalous left coronary artery from the
pulmonary artery. Pediatr Cardiol. 35:530–535. 2014. View Article : Google Scholar
|
|
18
|
Zomer AC, Vaartjes I, van der Velde ET, de
Jong HM, Konings TC, Wagenaar LJ, Heesen WF, Eerens F, Baur LH,
Grobbee DE and Mulder BJ: Heart failure admissions in adults with
congenital heart disease; risk factors and prognosis. Int J
Cardiol. 168:2487–2493. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Stefanescu A, Macklin EA, Lin E, Dudzinski
DM, Johnson J, Kennedy KF, Jacoby D, DeFaria Yeh D, Lewis GD, Yeh
RW, Liberthson R, Lui G and Bhatt AB: Usefulness of the Seattle
Heart Failure Model to identify adults with congenital heart
disease at high risk of poor outcome. Am J Cardiol. 113:865–870.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fahed AC, Roberts AE, Mital S and
Lakdawala NK: Heart failure in congenital heart disease: a
confluence of acquired and congenital. Heart Fail Clin. 10:219–227.
2014. View Article : Google Scholar
|
|
21
|
Ueda A, Adachi I, McCarthy KP, Li W, Ho SY
and Uemura H: Substrates of atrial arrhythmias: histological
insights from patients with congenital heart disease. Int J
Cardiol. 168:2481–2486. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mondésert B, Abadir S and Khairy P:
Arrhythmias in adult congenital heart disease: the year in review.
Curr Opin Cardiol. 28:354–359. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Priromprintr B, Rhodes J, Silka MJ and
Batra AS: Prevalence of arrhythmias during exercise stress testing
in patients with congenital heart disease and severe right
ventricular conduit dysfunction. Am J Cardiol. 114:468–472. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Khairy P, Van Hare GF, Balaji S, Berul CI,
Cecchin F, Cohen MI, Daniels CJ, Deal BJ, Dearani JA, Groot Nd,
Dubin AM, Harris L, Janousek J, Kanter RJ, Karpawich PP, Perry JC,
Seslar SP, Shah MJ, Silka MJ, Triedman JK, Walsh EP and Warnes CA:
PACES/HRS Expert Consensus Statement on the Recognition and
Management of Arrhythmias in Adult Congenital Heart Disease:
developed in partnership between the Pediatric and Congenital
Electrophysiology Society (PACES) and the Heart Rhythm Society
(HRS). Endorsed by the governing bodies of PACES, HRS, the American
College of Cardiology (ACC), the American Heart Association (AHA),
the European Heart Rhythm Association (EHRA), the Canadian Heart
Rhythm Society (CHRS), and the International Society for Adult
Congenital Heart Disease (ISACHD). Heart Rhythm. 11:e102–e165.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Moller JH and Anderson RC: A 43- to
54-year follow-up of 1,000 patients with congenital heart disease.
Am J Cardiol. 111:1496–1500. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Koyak Z, Harris L, de Groot JR,
Silversides CK, Oechslin EN, Bouma BJ, Budts W, Zwinderman AH, Van
Gelder IC and Mulder BJ: Sudden cardiac death in adult congenital
heart disease. Circulation. 126:1944–1954. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Walsh EP: Sudden death in adult congenital
heart disease: risk stratification in 2014. Heart Rhythm.
11:1735–1742. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
van der Bom T, Zomer AC, Zwinderman AH,
Meijboom FJ, Bouma BJ and Mulder BJ: The changing epidemiology of
congenital heart disease. Nat Rev Cardiol. 8:50–60. 2011.
View Article : Google Scholar
|
|
29
|
Khairy P, Ionescu-Ittu R, Mackie AS,
Abrahamowicz M, Pilote L and Marelli AJ: Changing mortality in
congenital heart disease. J Am Coll Cardiol. 56:1149–1157. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Verheugt CL, Uiterwaal CS, van der Velde
ET, Meijboom FJ, Pieper PG, Sieswerda GT, Plokker HW, Grobbee DE
and Mulder BJ: The emerging burden of hospital admissions of adults
with congenital heart disease. Heart. 96:872–878. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Patel SS and Burns TL: Nongenetic risk
factors and congenital heart defects. Pediatr Cardiol.
34:1535–1555. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gorini F, Chiappa E, Gargani L and Picano
E: Potential effects of environmental chemical contamination in
congenital heart disease. Pediatr Cardiol. 35:559–568. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang C, Zhou K, Xie L, Li Y, Zhan Y, Qiao
L, Qin C, Liu R and Hua Y: Maternal medication use, fetal 3435
C>T polymorphism of the ABCB1 gene, and risk of isolated septal
defects in a Han Chinese population. Pediatr Cardiol. 35:1132–1141.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Andersen TA, Troelsen KL and Larsen LA: Of
mice and men: molecular genetics of congenital heart disease. Cell
Mol Life Sci. 71:1327–1352. 2014. View Article : Google Scholar :
|
|
35
|
Zaidi S, Choi M, Wakimoto H, Ma L, Jiang
J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown
KK, Carriero NJ, Cheung YH, Deanfield J, DePalma S, Fakhro KA,
Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R,
Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE,
Newburger JW, Parfenov M, Pe’er I, Porter G, Roberts AE,
Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S,
Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H,
Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE
and Lifton RP: De novo mutations in histone-modifying genes in
congenital heart disease. Nature. 498:220–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang RT, Xue S, Xu YJ and Yang YQ:
Somatic mutations in the GATA6 gene underlie sporadic tetralogy of
Fallot. Int J Mol Med. 31:51–58. 2013.
|
|
37
|
Yang YQ, Gharibeh L, Li RG, Xin YF, Wang
J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, Liu X, Fang WY, Huang RT,
Xue S and Nemer G: GATA4 loss-of-function mutations underlie
familial tetralogy of fallot. Hum Mutat. 34:1662–1671. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang J, Xin YF, Xu WJ, Liu ZM, Qiu XB, Qu
XK, Xu L, Li X and Yang YQ: Prevalence and spectrum of PITX2c
mutations associated with congenital heart disease. DNA Cell Biol.
32:708–716. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lahm H, Deutsch MA, Dreßen M, Doppler S,
Werner A, Hörer J, Cleuziou J, Schreiber C, Böhm J, Laugwitz KL,
Lange R and Krane M: Mutational analysis of the human MESP1 gene in
patients with congenital heart disease reveals a highly variable
sequence in exon 1. Eur J Med Genet. 56:591–598. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang YQ, Wang J, Liu XY, Chen XZ, Zhang W
and Wang XZ: Mutation spectrum of GATA4 associated with congenital
atrial septal defects. Arch Med Sci. 9:976–983. 2013. View Article : Google Scholar
|
|
41
|
Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X,
Xu YJ, Jiang WF, Jiang JQ, Liu X, Fang WY, Zhang M, Peng LY, Qu XK
and Yang YQ: GATA4 loss-of-function mutation underlies familial
dilated cardiomyopathy. Biochem Biophys Res Commun. 439:591–596.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jiang JQ, Li RG, Wang J, Liu XY, Xu YJ,
Fang WY, Chen XZ, Zhang W, Wang XZ and Yang YQ: Prevalence and
spectrum of GATA5 mutations associated with congenital heart
disease. Int J Cardiol. 165:570–573. 2013. View Article : Google Scholar
|
|
43
|
Wei D, Bao H, Zhou N, Zheng GF, Liu XY and
Yang YQ: GATA5 loss-of-function mutation responsible for the
congenital ventriculoseptal defect. Pediatr Cardiol. 34:504–511.
2013. View Article : Google Scholar
|
|
44
|
Huang RT, Xue S, Xu YJ, Zhou M and Yang
YQ: A novel NKX2.5 loss-of-function mutation responsible for
familial atrial fibrillation. Int J Mol Med. 31:1119–1126.
2013.PubMed/NCBI
|
|
45
|
Yuan F, Zhao L, Wang J, Zhang W, Li X, Qiu
XB, Li RG, Xu YJ, Xu L, Qu XK, Fang WY and Yang YQ: PITX2c
loss-of-function mutations responsible for congenital atrial septal
defects. Int J Med Sci. 10:1422–1429. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wei D, Bao H, Liu XY, Zhou N, Wang Q, Li
RG, Xu YJ and Yang YQ: GATA5 loss-of-function mutations underlie
tetralogy of fallot. Int J Med Sci. 10:34–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Al Turki S, Manickaraj AK, Mercer CL,
Gerety SS, Hitz MP, Lindsay S, D’Alessandro LC, Swaminathan GJ,
Bentham J, Arndt AK, Low J, Breckpot J, Gewillig M, Thienpont B,
Abdul-Khaliq H, Harnack C, Hoff K, Kramer HH, Schubert S, Siebert
R, Toka O, Cosgrove C, Watkins H, Lucassen AM, O’Kelly IM, Salmon
AP, Bu’lock FA, Granados-Riveron J, Setchfield K, Thornborough C,
Brook JD, Mulder B, Klaassen S, Bhattacharya S, Devriendt K,
Fitzpatrick DF; UK10K Consortium; Wilson DI, Mital S and Hurles ME:
Rare variants in NR2F2 cause congenital heart defects in humans. Am
J Hum Genet. 94:5745–5785. 2014.
|
|
48
|
Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng
HZ, Jiang WF, Jiang JF and Yang YQ: A novel GATA4 loss-of-function
mutation responsible for familial dilated cardiomyopathy. Int J Mol
Med. 33:654–660. 2014.
|
|
49
|
Huang RT, Xue S, Xu YJ, Zhou M and Yang
YQ: Somatic GATA5 mutations in sporadic tetralogy of Fallot. Int J
Mol Med. 33:1227–1235. 2014.PubMed/NCBI
|
|
50
|
Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu
L, Liu H, Li RG, Xu YJ, Wang Q, Zheng HZ, Li X, Wang XZ, Zhang M,
Qu XK and Yang YQ: GATA5 loss-of-function mutations associated with
congenital bicuspid aortic valve. Int J Mol Med. 33:1219–1226.
2014.PubMed/NCBI
|
|
51
|
Wang X, Ji W, Wang J, Zhao P, Guo Y, Xu R,
Chen S and Sun K: Identification of two novel GATA6 mutations in
patients with nonsyndromic conotruncal heart defects. Mol Med Rep.
10:743–748. 2014.PubMed/NCBI
|
|
52
|
Zhao L, Ni SH, Liu XY, Wei D, Yuan F, Xu
L, Li X, Li RG, Qu XK, Xu YJ, Fang WY, Yang YQ and Qiu XB:
Prevalence and spectrum of Nkx2.6 mutations in patients with
congenital heart disease. Eur J Med Genet. 57:579–586. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cowan J, Tariq M and Ware SM: Genetic and
functional analyses of ZIC3 variants in congenital heart disease.
Hum Mutat. 35:66–75. 2014. View Article : Google Scholar :
|
|
54
|
Wang J, Zhang DF, Sun YM and Yang YQ: A
novel PITX2c loss-of-function mutation associated with familial
atrial fibrillation. Eur J Med Genet. 57:25–31. 2014. View Article : Google Scholar
|
|
55
|
Wei D, Gong XH, Qiu G, Wang J and Yang YQ:
Novel PITX2c loss-of-function mutations associated with complex
congenital heart disease. Int J Mol Med. 33:1201–1208.
2014.PubMed/NCBI
|
|
56
|
Stennard FA and Harvey RP: T-box
transcription factors and their roles in regulatory hierarchies in
the developing heart. Development. 132:4897–4910. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Stennard FA, Costa MW, Elliott DA, Rankin
S, Haast SJP, Lai D, McDonald LPA, Niederreither K, Dolle P,
Bruneau BG, Zorn AM and Harvey RP: Cardiac T-box factor Tbx20
directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of
gene expression in the developing heart. Dev Biol. 262:206–224.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Stennard FA, Costa MW, Lai D, Biben C,
Furtado M, Solloway MJ, McCulley DJ, Leimena C, Preis JI, Dunwoodie
SL, Elliott DE, Prall OW, Black BL, Fatkin D and Harvey RP: Murine
T-box transcription factor Tbx20 acts as a repressor during heart
development, and is essential for adult heart integrity, function
and adaptation. Development. 132:2451–2462. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cai CL, Zhou W, Yang L, Bu L, Qyang Y,
Zhang X, Li X, Rosenfeld MG, Chen J and Evans S: T-box genes
coordinate regional rates of proliferation and regional
specification during cardiogenesis. Development. 132:2475–2487.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Singh MK, Christoffels VM, Dias JM, Trowe
MO, Petry M, Schuster-Gossler K, Burger A, Ericson J and Kispert A:
Tbx20 is essential for cardiac chamber differentiation and
repression of Tbx2. Development. 132:2697–2707. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Takeuchi JJ, Mileikovskaia M,
Koshiba-Takeuchi K, Heidt AB, Mori AD, Arruda EP, Gertsensein M,
Georges R, Davidson L, Mo R, Hui CC, Henkelman RM, Nemer M, Black
BL, Nagy A and Bruneau BG: Tbx20 dose-dependently regulates
transcription factor networks required for mouse heart and
motoneuron development. Development. 132:2463–2474. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kirk EP, Sunde M, Costa MW, Rankin SA,
Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay
JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffiths
L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Winlaw DS and Harvey
RP: Mutations in cardiac T-box factor gene TBX20 are associated
with diverse cardiac pathologies, including defects of septation
and valvulogenesis and cardiomyopathy. Am J Hum Genet. 81:280–291.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu C, Shen A, Li X, Jiao W, Zhang X and
Li Z: T-box transcription factor TBX20 mutations in Chinese
patients with congenital heart disease. Eur J Med Genet.
51:580–587. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qian L, Mohapatra B, Akasaka T, Liu J,
Ocorr K, Towbin JA and Bodmer R: Transcription factor
neuromancer/TBX20 is required for cardiac function in Drosophila
with implications for human heart disease. Proc Natl Acad Sci USA.
105:19833–19838. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Posch MG, Gramlich M, Sunde M, Schmitt KR,
Lee SH, Richter S, Kersten A, Perrot A, Panek AN, Al Khatib IH,
Nemer G, Mégarbané A, Dietz R, Stiller B, Berger F, Harvey RP and
Ozcelik C: A gain-of-function TBX20 mutation causes congenital
atrial septal defects, patent foramen ovale and cardiac valve
defects. J Med Genet. 47:230–235. 2010. View Article : Google Scholar :
|
|
66
|
Qiao Y, Wanyan H, Xing Q, Xie W, Pang S,
Shan J and Yan B: Genetic analysis of the TBX20 gene promoter
region in patients with ventricular septal defects. Gene.
500:28–31. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu JJ, Fan LL, Chen JL, Tan ZP and Yang
YF: A novel variant in TBX20 (p.D176N) identified by whole-exome
sequencing in combination with a congenital heart disease related
gene filter is associated with familial atrial septal defect. J
Zhejiang Univ Sci B. 15:830–837. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang XH, Huang CX, Wang Q, Li RG, Xu YJ,
Liu X, Fang WY and Yang YQ: A novel GATA5 loss-of-function mutation
underlies lone atrial fibrillation. Int J Mol Med. 31:43–50.
2013.
|
|
69
|
Plageman TF and Yutzey KE: T-box genes and
heart development: putting the ‘T’ in heart. Dev Dyn. 232:11–20.
2005. View Article : Google Scholar
|
|
70
|
Schott JJ, Benson DW, Basson CT, Pease W,
Silberbach GM, Moak JP, Maron BJ, Seidman CE and Seidman JG:
Congenital heart disease caused by mutations in the transcription
factor NKX2-5. Science. 281:108–111. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Huang W, Meng H, Qiao Y, Pang S, Chen D
and Yan B: Two novel and functional DNA sequence variants within an
upstream enhancer of the human NKX2-5 gene in ventricular septal
defects. Gene. 524:152–155. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Costa MW, Guo G, Wolstein O, Vale M,
Castro ML, Wang L, Otway R, Riek P, Cochrane N, Furtado M,
Semsarian C, Weintraub RG, Yeoh T, Hayward C, Keogh A, Macdonald P,
Feneley M, Graham RM, Seidman JG, Seidman CE, Rosenthal N, Fatkin D
and Harvey RP: Functional characterization of a novel mutation in
NKX2-5 associated with congenital heart disease and adult-onset
cardiomyopathy. Circ Cardiovasc Genet. 6:238–247. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Perera JL, Johnson NM, Judge DP and
Crosson JE: Novel and highly lethal NKX2.5 missense mutation in a
family with sudden death and ventricular arrhythmia. Pediatr
Cardiol. 35:1206–1212. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Garg V, Kathiriya IS, Barnes R,
Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS,
Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC and Srivastava D:
GATA4 mutations cause human congenital heart defects and reveal an
interaction with TBX5. Nature. 424:443–447. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nemer G, Fadlalah F, Usta J, Nemer M,
Dbaibo G, Obeid M and Bitar F: A novel mutation in the GATA4 gene
in patients with Tetralogy of Fallot. Hum Mutat. 27:293–294. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tomita-Mitchell A, Maslen CL, Morris CD,
Garg V and Goldmuntz E: GATA4 sequence variants in patients with
congenital heart disease. J Med Genet. 44:779–783. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Rajagopal SK, Ma Q, Obler D, Shen J,
Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V,
Srivastava D, Goldmuntz E, Broman KW, Benson DW, Smoot LB and Pu
WT: Spectrum of heart disease associated with murine and human
GATA4 mutation. J Mol Cell Cardiol. 43:677–685. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang E, Sun S, Qiao B, Duan W, Huang G, An
Y, Xu S, Zheng Y, Su Z, Gu X, Jin L and Wang H: Identification of
functional mutations in GATA4 in patients with congenital heart
disease. PLoS One. 8:e621382013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xiang R, Fan LL, Huang H, Cao BB, Li XP,
Peng DQ and Xia K: A novel mutation of GATA4 (K319E) is responsible
for familial atrial septal defect and pulmonary valve stenosis.
Gene. 534:320–323. 2014. View Article : Google Scholar : PubMed/NCBI
|