Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2015 Volume 35 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2015 Volume 35 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review)

  • Authors:
    • Chang-Yi Li
    • Ling-Chao Yang
    • Kai Guo
    • Yue-Peng Wang
    • Yi-Gang Li
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
  • Pages: 1095-1102
    |
    Published online on: February 18, 2015
       https://doi.org/10.3892/ijmm.2015.2104
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitogen-activated protein kinase (MAPK) cascades are important players in the overall representation of cellular signal transduction pathways, and the deregulation of MAPKs is involved in a variety of diseases. The activation of MAPK signals occurs through phosphorylation by MAPK kinases at conserved threonine and tyrosine (Thr-Xaa-Tyr) residues. The mitogen-activated protein kinase phosphatases (MKPs) are a major part of the dual-specificity family of phosphatases and specifically inactivate MAPKs by dephosphorylating both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. MAPKs binding to MKPs can enhance MKP stablility and activity, providing an important negative-feedback control mechanism that limits the MAPK cascades. In recent years, accumulating and compelling evidence from studies mainly employing cultured cells and mouse models has suggested that the archetypal MKP family member, MKP-1, plays a pivotal role in cardiovascular disease as a major negative modulator of MAPK signaling pathways. In the present review, we summarize the current knowledge on the pathological properties and the regulation of MKP-1 in cardiovascular disease, which may provide valuable therapeutic options.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Garrington TP and Johnson GL: Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 11:211–218. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Su B and Karin M: Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol. 8:402–411. 1996. View Article : Google Scholar : PubMed/NCBI

3 

Rincon M and Davis RJ: Regulation of the immune response by stress-activated protein kinases. Immunol Rev. 228:212–224. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Owens DM and Keyse SM: Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 26:3203–3213. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Rohini A, Agrawal N, Koyani CN and Singh R: Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res. 61:269–280. 2010. View Article : Google Scholar

6 

Alonso A, Sasin J, Bottini N, et al: Protein tyrosine phosphatases in the human genome. Cell. 117:699–711. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Chang L and Karin M: Mammalian MAP kinase signalling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Muslin AJ: MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 115:203–218. 2008. View Article : Google Scholar

9 

Keyse SM: Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27:253–261. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Doddareddy MR, Rawling T and Ammit AJ: Targeting mitogen-activated protein kinase phosphatase-1 (MKP-1): structure-based design of MKP-1 inhibitors and upregulators. Curr Med Chem. 19:163–173. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Wu JJ, Zhang L and Bennett AM: The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation. Mol Cell Biol. 25:4792–4803. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Sun H, Charles CH, Lau LF and Tonks NK: MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell. 75:487–493. 1993. View Article : Google Scholar : PubMed/NCBI

13 

Franklin CC and Kraft AS: Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem. 272:16917–16923. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Liu Y, Gorospe M, Yang C and Holbrook NJ: Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP-1-dependent gene activation. J Biol Chem. 270:8377–8380. 1995. View Article : Google Scholar : PubMed/NCBI

15 

Raingeaud J, Gupta S, Rogers JS, et al: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 270:7420–7426. 1995. View Article : Google Scholar : PubMed/NCBI

16 

Hammer M, Mages J, Dietrich H, et al: Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 203:15–20. 2006. View Article : Google Scholar

17 

Chu Y, Solski PA, Khosravi-Far R, Der CJ and Kelly K: The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem. 271:6497–6501. 1996. View Article : Google Scholar : PubMed/NCBI

18 

Wang X, Zhao Q, Matta R, et al: Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J Biol Chem. 284:27123–27134. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Keyse SM: Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 12:186–192. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Brondello JM, Brunet A, Pouyssegur J and McKenzie FR: The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J Biol Chem. 272:1368–1376. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Cho IJ, Woo NR and Kim SG: The identification of C/EBPbeta as a transcription factor necessary for the induction of MAPK phosphatase-1 by toll-like receptor-4 ligand. Arch Biochem Biophys. 479:88–96. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Lim HW, New L, Han J and Molkentin JD: Calcineurin enhances MAPK phosphatase-1 expression and p38 MAPK inactivation in cardiac myocytes. J Biol Chem. 276:15913–15919. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Valledor AF, Xaus J, Marques L and Celada A: Macrophage colony-stimulating factor induces the expression of mitogen-activated protein kinase phosphatase-1 through a protein kinase C-dependent pathway. J Immunol. 163:2452–2462. 1999.PubMed/NCBI

24 

Kuwano Y, Kim HH, Abdelmohsen K, et al: MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol. 28:4562–4575. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Emmons J, Townley-Tilson WH, Deleault KM, et al: Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA. 14:888–902. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Brondello JM, Pouyssegur J and McKenzie FR: Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 286:2514–2517. 1999. View Article : Google Scholar

27 

Lin YW and Yang JL: Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem. 281:915–926. 2006. View Article : Google Scholar

28 

Slack DN, Seternes OM, Gabrielsen M and Keyse SM: Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem. 276:16491–16500. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Cao W, Bao C, Padalko E and Lowenstein CJ: Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med. 205:1491–1503. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Kamata H, Honda S, Maeda S, Chang L, Hirata H and Karin M: Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 120:649–661. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Boutros T, Chevet E and Metrakos P: Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev. 60:261–310. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Navis AC, van den Eijnden M, Schepens JT, Hooft van Huijsduijnen R, Wesseling P and Hendriks WJ: Protein tyrosine phosphatases in glioma biology. Acta Neuropathol. 119:157–175. 2010. View Article : Google Scholar :

33 

Wang X and Liu Y: Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal. 19:1372–1382. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Weber C and Noels H: Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 17:1410–1422. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Libby P: Inflammation in atherosclerosis. Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Zakkar M, Chaudhury H, Sandvik G, et al: Increased endothelial mitogen-activated protein kinase phosphatase-1 expression suppresses proinflammatory activation at sites that are resistant to atherosclerosis. Circ Res. 103:726–732. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Zakkar M, Van der Heiden K, Luong le A, et al: Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol. 29:1851–1857. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Kim HS, Ullevig SL, Zamora D, Lee CF and Asmis R: Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc Natl Acad Sci USA. 109:E2803–E2812. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Chaudhury H, Zakkar M, Boyle J, et al: c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler Thromb Vasc Biol. 30:546–553. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA and Oravecz T: Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol. 176:1899–1907. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Chi H, Barry SP, Roth RJ, et al: Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA. 103:2274–2279. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Reddy ST, Nguyen JT, Grijalva V, et al: Potential role for mitogen-activated protein kinase phosphatase-1 in the development of atherosclerotic lesions in mouse models. Arterioscler Thromb Vasc Biol. 24:1676–1681. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Shen J, Chandrasekharan UM, Ashraf MZ, et al: Lack of mitogen-activated protein kinase phosphatase-1 protects ApoE-null mice against atherosclerosis. Circ Res. 106:902–910. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Imaizumi S, Grijalva V, Priceman S, et al: Mitogen-activated protein kinase phosphatase-1 deficiency decreases atherosclerosis in apolipoprotein E null mice by reducing monocyte chemoattractant protein-1 levels. Mol Genet Metab. 101:66–75. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Lacolley P, Regnault V, Nicoletti A, Li Z and Michel JB: The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 95:194–204. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Lai K, Wang H, Lee WS, Jain MK, Lee ME and Haber E: Mitogen-activated protein kinase phosphatase-1 in rat arterial smooth muscle cell proliferation. J Clin Invest. 98:1560–1567. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Koyama H, Olson NE, Dastvan FF and Reidy MA: Cell replication in the arterial wall: activation of signaling pathway following in vivo injury. Circ Res. 82:713–721. 1998. View Article : Google Scholar : PubMed/NCBI

48 

Metzler B, Li C, Hu Y, Sturm G, Ghaffari-Tabrizi N and Xu Q: LDL stimulates mitogen-activated protein kinase phosphatase-1 expression, independent of LDL receptors, in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 19:1862–1871. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Gouni-Berthold I, Seewald S, Hescheler J and Sachinidis A: Regulation of mitogen-activated protein kinase cascades by low density lipoprotein and lysophosphatidic acid. Cell Physiol Biochem. 14:167–176. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Gao Y, Deng J, Yu XF, Yang DL, Gong QH and Huang XN: Ginsenoside Rg1 inhibits vascular intimal hyperplasia in balloon-injured rat carotid artery by down-regulation of extracellular signal-regulated kinase 2. J Ethnopharmacol. 138:472–478. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Kim SY, Kwon YW, Jung IL, Sung JH and Park SG: Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKCalpha-mediated MKP-1 induction. Cardiovasc Res. 92:307–316. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Yang YB, Yang YX, Su B, et al: Probucol mediates vascular remodeling after percutaneous transluminal angioplasty via down-regulation of the ERK1/2 signaling pathway. Eur J Pharmacol. 570:125–134. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Begum N, Song Y, Rienzie J and Ragolia L: Vascular smooth muscle cell growth and insulin regulation of mitogen-activated protein kinase in hypertension. Am J Physiol. 275:C42–C49. 1998.PubMed/NCBI

54 

Begum N and Ragolia L: High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol. 278:C81–C91. 2000.PubMed/NCBI

55 

Jacob A, Smolenski A, Lohmann SM and Begum N: MKP-1 expression and stabilization and cGK Ialpha prevent diabetes-associated abnormalities in VSMC migration. Am J Physiol Cell Physiol. 287:C1077–C1086. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Jacob A, Molkentin JD, Smolenski A, Lohmann SM and Begum N: Insulin inhibits PDGF-directed VSMC migration via NO/cGMP increase of MKP-1 and its inactivation of MAPKs. Am J Physiol Cell Physiol. 283:C704–C713. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Li B, Yang L, Shen J, Wang C and Jiang Z: The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase 1/2 phosphorylation. Anesth Analg. 105:1034–1041, table of contents. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Jin Y, Calvert TJ, Chen B, et al: Mice deficient in Mkp-1 develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia. Am J Physiol Heart Circ Physiol. 298:H1518–H1528. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Yamboliev IA, Hedges JC, Mutnick JL, Adam LP and Gerthoffer WT: Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol. 278:H1899–H1907. 2000.PubMed/NCBI

60 

Han W, Tang X, Wu H, Liu Y and Zhu D: Role of ERK1/2 signaling pathways in 4-aminopyridine-induced rat pulmonary vasoconstriction. Eur J Pharmacol. 569:138–144. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Khan TA, Bianchi C, Ruel M, et al: Mitogen-activated protein kinase inhibition and cardioplegia-cardiopulmonary bypass reduce coronary myogenic tone. Circulation. 108(Suppl 1): II348–II353. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Suzuki H, Hasegawa Y, Chen W, Kanamaru K and Zhang JH: Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 68:650–660. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Tong XK and Hamel E: Transforming growth factor-beta 1 impairs endothelin-1-mediated contraction of brain vessels by inducing mitogen-activated protein (MAP) kinase phosphatase-1 and inhibiting p38 MAP kinase. Mol Pharmacol. 72:1476–1483. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Xu Q, Fawcett TW, Gorospe M, Guyton KZ, Liu Y and Holbrook NJ: Induction of mitogen-activated protein kinase phosphatase-1 during acute hypertension. Hypertension. 30:106–111. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Huang PL, Huang Z, Mashimo H, et al: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 377:239–242. 1995. View Article : Google Scholar : PubMed/NCBI

66 

Zhao Q, Wang X, Nelin LD, et al: MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med. 203:131–140. 2006. View Article : Google Scholar

67 

Calvert TJ, Chicoine LG, Liu Y and Nelin LD: Deficiency of mitogen-activated protein kinase phosphatase-1 results in iNOS-mediated hypotension in response to low-dose endotoxin. Am J Physiol Heart Circ Physiol. 294:H1621–H1629. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Kan W, Zhao KS, Jiang Y, et al: Lung, spleen, and kidney are the major places for inducible nitric oxide synthase expression in endotoxic shock: role of p38 mitogen-activated protein kinase in signal transduction of inducible nitric oxide synthase expression. Shock. 21:281–287. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Klinge CM, Blankenship KA, Risinger KE, et al: Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem. 280:7460–7468. 2005. View Article : Google Scholar

70 

Uchiba M, Okajima K, Oike Y, et al: Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ Res. 95:34–41. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Xing F, Jiang Y, Liu J, et al: Downregulation of human endothelial nitric oxide synthase promoter activity by p38 mitogen-activated protein kinase activation. Biochem Cell Biol. 84:780–788. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Niwano K, Arai M, Koitabashi N, et al: Competitive binding of CREB and ATF2 to cAMP/ATF responsive element regulates eNOS gene expression in endothelial cells. Arterioscler Thromb Vasc Biol. 26:1036–1042. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Gupta A and Sharma AC: Despite minimal hemodynamic alterations endotoxemia modulates NOS and p38-MAPK phosphorylation via metalloendopeptidases. Mol Cell Biochem. 265:47–56. 2004. View Article : Google Scholar : PubMed/NCBI

74 

Saxena M and Mustelin T: Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol. 12:387–396. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Rose BA, Force T and Wang Y: Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 90:1507–1546. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Fuller SJ, Davies EL, Gillespie-Brown J, Sun H and Tonks NK: Mitogen-activated protein kinase phosphatase 1 inhibits the stimulation of gene expression by hypertrophic agonists in cardiac myocytes. Biochem J. 323:313–319. 1997.PubMed/NCBI

77 

Hayashi D, Kudoh S, Shiojima I, et al: Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1. Biochem Biophys Res Commun. 322:310–319. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Goldsmith EC, Bradshaw AD, Zile MR and Spinale FG: Myocardial fibroblast-matrix interactions and potential therapeutic targets. J Mol Cell Cardiol. 70:92–99. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Stawowy P, Goetze S, Margeta C, Fleck E and Graf K: LPS regulate ERK1/2-dependent signaling in cardiac fibroblasts via PKC-mediated MKP-1 induction. Biochem Biophys Res Commun. 303:74–80. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Valente AJ, Yoshida T, Gardner JD, Somanna N, Delafontaine P and Chandrasekar B: Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell Signal. 24:560–568. 2012. View Article : Google Scholar :

81 

Short MD, Fox SM, Lam CF, Stenmark KR and Das M: Protein kinase Czeta attenuates hypoxia-induced proliferation of fibroblasts by regulating MAP kinase phosphatase-1 expression. Mol Biol Cell. 17:1995–2008. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Bueno OF, De Windt LJ, Lim HW, et al: The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res. 88:88–96. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Auger-Messier M, Accornero F, Goonasekera SA, et al: Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res. 112:48–56. 2013. View Article : Google Scholar

84 

Ueyama T, Kawashima S, Sakoda T, et al: Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol. 32:947–960. 2000. View Article : Google Scholar : PubMed/NCBI

85 

Wang Y, Huang S, Sah VP, et al: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 273:2161–2168. 1998. View Article : Google Scholar : PubMed/NCBI

86 

Wang Y, Su B, Sah VP, Brown JH, Han J and Chien KR: Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem. 273:5423–5426. 1998. View Article : Google Scholar : PubMed/NCBI

87 

Deng J, Lv XT, Wu Q and Huang XN: Ginsenoside Rg1 inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. Eur J Pharmacol. 608:42–47. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Dash R, Schmidt AG, Pathak A, et al: Differential regulation of p38 mitogen-activated protein kinase mediates gender-dependent catecholamine-induced hypertrophy. Cardiovasc Res. 57:704–714. 2003. View Article : Google Scholar : PubMed/NCBI

89 

McCollum LT, Gallagher PE and Ann Tallant E: Angiotensin-(1–7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1. Am J Physiol Heart Circ Physiol. 302:H801–H810. 2012. View Article : Google Scholar

90 

Choudhary R, Palm-Leis A, Scott RC III, et al: All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am J Physiol Heart Circ Physiol. 294:H633–H644. 2008. View Article : Google Scholar

91 

Ohki R, Yamamoto K, Ueno S, et al: Transcriptional profile of genes induced in human atrial myocardium with pressure overload. Int J Cardiol. 96:381–387. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Communal C, Colucci WS, Remondino A, et al: Reciprocal modulation of mitogen-activated protein kinases and mitogen-activated protein kinase phosphatase 1 and 2 in failing human myocardium. J Card Fail. 8:86–92. 2002. View Article : Google Scholar : PubMed/NCBI

93 

Kaiser RA, Bueno OF, Lips DJ, et al: Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem. 279:15524–15530. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Fan WJ, Genade S, Genis A, Huisamen B and Lochner A: Dexamethasone-induced cardioprotection: a role for the phosphatase MKP-1? Life Sci. 84:838–846. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Engelbrecht AM, Engelbrecht P, Genade S, et al: Long-chain polyunsaturated fatty acids protect the heart against ischemia/reperfusion-induced injury via a MAPK dependent pathway. J Mol Cell Cardiol. 39:940–954. 2005. View Article : Google Scholar : PubMed/NCBI

96 

Xie P, Guo S, Fan Y, Zhang H, Gu D and Li H: Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem. 284:5488–5496. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Przyklenk K, Maynard M, Darling CE and Whittaker P: Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol. 51:1393–1398. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Lips DJ, Bueno OF, Wilkins BJ, et al: MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation. 109:1938–1941. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Engelbrecht AM, Niesler C, Page C and Lochner A: p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol. 99:338–350. 2004. View Article : Google Scholar : PubMed/NCBI

100 

Mocanu MM, Baxter GF, Yue Y, Critz SD and Yellon DM: The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Res Cardiol. 95:472–478. 2000. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li C, Yang L, Guo K, Wang Y and Li Y: Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review). Int J Mol Med 35: 1095-1102, 2015.
APA
Li, C., Yang, L., Guo, K., Wang, Y., & Li, Y. (2015). Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review). International Journal of Molecular Medicine, 35, 1095-1102. https://doi.org/10.3892/ijmm.2015.2104
MLA
Li, C., Yang, L., Guo, K., Wang, Y., Li, Y."Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review)". International Journal of Molecular Medicine 35.4 (2015): 1095-1102.
Chicago
Li, C., Yang, L., Guo, K., Wang, Y., Li, Y."Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review)". International Journal of Molecular Medicine 35, no. 4 (2015): 1095-1102. https://doi.org/10.3892/ijmm.2015.2104
Copy and paste a formatted citation
x
Spandidos Publications style
Li C, Yang L, Guo K, Wang Y and Li Y: Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review). Int J Mol Med 35: 1095-1102, 2015.
APA
Li, C., Yang, L., Guo, K., Wang, Y., & Li, Y. (2015). Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review). International Journal of Molecular Medicine, 35, 1095-1102. https://doi.org/10.3892/ijmm.2015.2104
MLA
Li, C., Yang, L., Guo, K., Wang, Y., Li, Y."Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review)". International Journal of Molecular Medicine 35.4 (2015): 1095-1102.
Chicago
Li, C., Yang, L., Guo, K., Wang, Y., Li, Y."Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review)". International Journal of Molecular Medicine 35, no. 4 (2015): 1095-1102. https://doi.org/10.3892/ijmm.2015.2104
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team