|
1
|
Garrington TP and Johnson GL: Organization
and regulation of mitogen-activated protein kinase signaling
pathways. Curr Opin Cell Biol. 11:211–218. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Su B and Karin M: Mitogen-activated
protein kinase cascades and regulation of gene expression. Curr
Opin Immunol. 8:402–411. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rincon M and Davis RJ: Regulation of the
immune response by stress-activated protein kinases. Immunol Rev.
228:212–224. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Owens DM and Keyse SM: Differential
regulation of MAP kinase signalling by dual-specificity protein
phosphatases. Oncogene. 26:3203–3213. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rohini A, Agrawal N, Koyani CN and Singh
R: Molecular targets and regulators of cardiac hypertrophy.
Pharmacol Res. 61:269–280. 2010. View Article : Google Scholar
|
|
6
|
Alonso A, Sasin J, Bottini N, et al:
Protein tyrosine phosphatases in the human genome. Cell.
117:699–711. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chang L and Karin M: Mammalian MAP kinase
signalling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Muslin AJ: MAPK signalling in
cardiovascular health and disease: molecular mechanisms and
therapeutic targets. Clin Sci (Lond). 115:203–218. 2008. View Article : Google Scholar
|
|
9
|
Keyse SM: Dual-specificity MAP kinase
phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 27:253–261.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Doddareddy MR, Rawling T and Ammit AJ:
Targeting mitogen-activated protein kinase phosphatase-1 (MKP-1):
structure-based design of MKP-1 inhibitors and upregulators. Curr
Med Chem. 19:163–173. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wu JJ, Zhang L and Bennett AM: The
noncatalytic amino terminus of mitogen-activated protein kinase
phosphatase 1 directs nuclear targeting and serum response element
transcriptional regulation. Mol Cell Biol. 25:4792–4803. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sun H, Charles CH, Lau LF and Tonks NK:
MKP-1 (3CH134), an immediate early gene product, is a dual
specificity phosphatase that dephosphorylates MAP kinase in vivo.
Cell. 75:487–493. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Franklin CC and Kraft AS: Conditional
expression of the mitogen-activated protein kinase (MAPK)
phosphatase MKP-1 preferentially inhibits p38 MAPK and
stress-activated protein kinase in U937 cells. J Biol Chem.
272:16917–16923. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu Y, Gorospe M, Yang C and Holbrook NJ:
Role of mitogen-activated protein kinase phosphatase during the
cellular response to genotoxic stress. Inhibition of c-Jun
N-terminal kinase activity and AP-1-dependent gene activation. J
Biol Chem. 270:8377–8380. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Raingeaud J, Gupta S, Rogers JS, et al:
Pro-inflammatory cytokines and environmental stress cause p38
mitogen-activated protein kinase activation by dual phosphorylation
on tyrosine and threonine. J Biol Chem. 270:7420–7426. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hammer M, Mages J, Dietrich H, et al: Dual
specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced
genes and protects mice from lethal endotoxin shock. J Exp Med.
203:15–20. 2006. View Article : Google Scholar
|
|
17
|
Chu Y, Solski PA, Khosravi-Far R, Der CJ
and Kelly K: The mitogen-activated protein kinase phosphatases
PAC1, MKP-1, and MKP-2 have unique substrate specificities and
reduced activity in vivo toward the ERK2 sevenmaker mutation. J
Biol Chem. 271:6497–6501. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang X, Zhao Q, Matta R, et al: Inducible
nitric-oxide synthase expression is regulated by mitogen-activated
protein kinase phosphatase-1. J Biol Chem. 284:27123–27134. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Keyse SM: Protein phosphatases and the
regulation of mitogen-activated protein kinase signalling. Curr
Opin Cell Biol. 12:186–192. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brondello JM, Brunet A, Pouyssegur J and
McKenzie FR: The dual specificity mitogen-activated protein kinase
phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J Biol
Chem. 272:1368–1376. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cho IJ, Woo NR and Kim SG: The
identification of C/EBPbeta as a transcription factor necessary for
the induction of MAPK phosphatase-1 by toll-like receptor-4 ligand.
Arch Biochem Biophys. 479:88–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lim HW, New L, Han J and Molkentin JD:
Calcineurin enhances MAPK phosphatase-1 expression and p38 MAPK
inactivation in cardiac myocytes. J Biol Chem. 276:15913–15919.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Valledor AF, Xaus J, Marques L and Celada
A: Macrophage colony-stimulating factor induces the expression of
mitogen-activated protein kinase phosphatase-1 through a protein
kinase C-dependent pathway. J Immunol. 163:2452–2462.
1999.PubMed/NCBI
|
|
24
|
Kuwano Y, Kim HH, Abdelmohsen K, et al:
MKP-1 mRNA stabilization and translational control by RNA-binding
proteins HuR and NF90. Mol Cell Biol. 28:4562–4575. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Emmons J, Townley-Tilson WH, Deleault KM,
et al: Identification of TTP mRNA targets in human dendritic cells
reveals TTP as a critical regulator of dendritic cell maturation.
RNA. 14:888–902. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Brondello JM, Pouyssegur J and McKenzie
FR: Reduced MAP kinase phosphatase-1 degradation after
p42/p44MAPK-dependent phosphorylation. Science. 286:2514–2517.
1999. View Article : Google Scholar
|
|
27
|
Lin YW and Yang JL: Cooperation of ERK and
SCFSkp2 for MKP-1 destruction provides a positive feedback
regulation of proliferating signaling. J Biol Chem. 281:915–926.
2006. View Article : Google Scholar
|
|
28
|
Slack DN, Seternes OM, Gabrielsen M and
Keyse SM: Distinct binding determinants for ERK2/p38alpha and JNK
map kinases mediate catalytic activation and substrate selectivity
of map kinase phosphatase-1. J Biol Chem. 276:16491–16500. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cao W, Bao C, Padalko E and Lowenstein CJ:
Acetylation of mitogen-activated protein kinase phosphatase-1
inhibits Toll-like receptor signaling. J Exp Med. 205:1491–1503.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kamata H, Honda S, Maeda S, Chang L,
Hirata H and Karin M: Reactive oxygen species promote
TNFalpha-induced death and sustained JNK activation by inhibiting
MAP kinase phosphatases. Cell. 120:649–661. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Boutros T, Chevet E and Metrakos P:
Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase
regulation: roles in cell growth, death, and cancer. Pharmacol Rev.
60:261–310. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Navis AC, van den Eijnden M, Schepens JT,
Hooft van Huijsduijnen R, Wesseling P and Hendriks WJ: Protein
tyrosine phosphatases in glioma biology. Acta Neuropathol.
119:157–175. 2010. View Article : Google Scholar :
|
|
33
|
Wang X and Liu Y: Regulation of innate
immune response by MAP kinase phosphatase-1. Cell Signal.
19:1372–1382. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Weber C and Noels H: Atherosclerosis:
current pathogenesis and therapeutic options. Nat Med.
17:1410–1422. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Libby P: Inflammation in atherosclerosis.
Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zakkar M, Chaudhury H, Sandvik G, et al:
Increased endothelial mitogen-activated protein kinase
phosphatase-1 expression suppresses proinflammatory activation at
sites that are resistant to atherosclerosis. Circ Res. 103:726–732.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zakkar M, Van der Heiden K, Luong le A, et
al: Activation of Nrf2 in endothelial cells protects arteries from
exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol.
29:1851–1857. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kim HS, Ullevig SL, Zamora D, Lee CF and
Asmis R: Redox regulation of MAPK phosphatase 1 controls monocyte
migration and macrophage recruitment. Proc Natl Acad Sci USA.
109:E2803–E2812. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chaudhury H, Zakkar M, Boyle J, et al:
c-Jun N-terminal kinase primes endothelial cells at atheroprone
sites for apoptosis. Arterioscler Thromb Vasc Biol. 30:546–553.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Salojin KV, Owusu IB, Millerchip KA,
Potter M, Platt KA and Oravecz T: Essential role of MAPK
phosphatase-1 in the negative control of innate immune responses. J
Immunol. 176:1899–1907. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chi H, Barry SP, Roth RJ, et al: Dynamic
regulation of pro- and anti-inflammatory cytokines by MAPK
phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad
Sci USA. 103:2274–2279. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Reddy ST, Nguyen JT, Grijalva V, et al:
Potential role for mitogen-activated protein kinase phosphatase-1
in the development of atherosclerotic lesions in mouse models.
Arterioscler Thromb Vasc Biol. 24:1676–1681. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shen J, Chandrasekharan UM, Ashraf MZ, et
al: Lack of mitogen-activated protein kinase phosphatase-1 protects
ApoE-null mice against atherosclerosis. Circ Res. 106:902–910.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Imaizumi S, Grijalva V, Priceman S, et al:
Mitogen-activated protein kinase phosphatase-1 deficiency decreases
atherosclerosis in apolipoprotein E null mice by reducing monocyte
chemoattractant protein-1 levels. Mol Genet Metab. 101:66–75. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lacolley P, Regnault V, Nicoletti A, Li Z
and Michel JB: The vascular smooth muscle cell in arterial
pathology: a cell that can take on multiple roles. Cardiovasc Res.
95:194–204. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lai K, Wang H, Lee WS, Jain MK, Lee ME and
Haber E: Mitogen-activated protein kinase phosphatase-1 in rat
arterial smooth muscle cell proliferation. J Clin Invest.
98:1560–1567. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Koyama H, Olson NE, Dastvan FF and Reidy
MA: Cell replication in the arterial wall: activation of signaling
pathway following in vivo injury. Circ Res. 82:713–721. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Metzler B, Li C, Hu Y, Sturm G,
Ghaffari-Tabrizi N and Xu Q: LDL stimulates mitogen-activated
protein kinase phosphatase-1 expression, independent of LDL
receptors, in vascular smooth muscle cells. Arterioscler Thromb
Vasc Biol. 19:1862–1871. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gouni-Berthold I, Seewald S, Hescheler J
and Sachinidis A: Regulation of mitogen-activated protein kinase
cascades by low density lipoprotein and lysophosphatidic acid. Cell
Physiol Biochem. 14:167–176. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gao Y, Deng J, Yu XF, Yang DL, Gong QH and
Huang XN: Ginsenoside Rg1 inhibits vascular intimal hyperplasia in
balloon-injured rat carotid artery by down-regulation of
extracellular signal-regulated kinase 2. J Ethnopharmacol.
138:472–478. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim SY, Kwon YW, Jung IL, Sung JH and Park
SG: Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia
by suppression of ERK via PKCalpha-mediated MKP-1 induction.
Cardiovasc Res. 92:307–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yang YB, Yang YX, Su B, et al: Probucol
mediates vascular remodeling after percutaneous transluminal
angioplasty via down-regulation of the ERK1/2 signaling pathway.
Eur J Pharmacol. 570:125–134. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Begum N, Song Y, Rienzie J and Ragolia L:
Vascular smooth muscle cell growth and insulin regulation of
mitogen-activated protein kinase in hypertension. Am J Physiol.
275:C42–C49. 1998.PubMed/NCBI
|
|
54
|
Begum N and Ragolia L: High glucose and
insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK
activation. Am J Physiol Cell Physiol. 278:C81–C91. 2000.PubMed/NCBI
|
|
55
|
Jacob A, Smolenski A, Lohmann SM and Begum
N: MKP-1 expression and stabilization and cGK Ialpha prevent
diabetes-associated abnormalities in VSMC migration. Am J Physiol
Cell Physiol. 287:C1077–C1086. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jacob A, Molkentin JD, Smolenski A,
Lohmann SM and Begum N: Insulin inhibits PDGF-directed VSMC
migration via NO/cGMP increase of MKP-1 and its inactivation of
MAPKs. Am J Physiol Cell Physiol. 283:C704–C713. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li B, Yang L, Shen J, Wang C and Jiang Z:
The antiproliferative effect of sildenafil on pulmonary artery
smooth muscle cells is mediated via upregulation of
mitogen-activated protein kinase phosphatase-1 and degradation of
extracellular signal-regulated kinase 1/2 phosphorylation. Anesth
Analg. 105:1034–1041, table of contents. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jin Y, Calvert TJ, Chen B, et al: Mice
deficient in Mkp-1 develop more severe pulmonary hypertension and
greater lung protein levels of arginase in response to chronic
hypoxia. Am J Physiol Heart Circ Physiol. 298:H1518–H1528. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yamboliev IA, Hedges JC, Mutnick JL, Adam
LP and Gerthoffer WT: Evidence for modulation of smooth muscle
force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ
Physiol. 278:H1899–H1907. 2000.PubMed/NCBI
|
|
60
|
Han W, Tang X, Wu H, Liu Y and Zhu D: Role
of ERK1/2 signaling pathways in 4-aminopyridine-induced rat
pulmonary vasoconstriction. Eur J Pharmacol. 569:138–144. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Khan TA, Bianchi C, Ruel M, et al:
Mitogen-activated protein kinase inhibition and
cardioplegia-cardiopulmonary bypass reduce coronary myogenic tone.
Circulation. 108(Suppl 1): II348–II353. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Suzuki H, Hasegawa Y, Chen W, Kanamaru K
and Zhang JH: Recombinant osteopontin in cerebral vasospasm after
subarachnoid hemorrhage. Ann Neurol. 68:650–660. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tong XK and Hamel E: Transforming growth
factor-beta 1 impairs endothelin-1-mediated contraction of brain
vessels by inducing mitogen-activated protein (MAP) kinase
phosphatase-1 and inhibiting p38 MAP kinase. Mol Pharmacol.
72:1476–1483. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xu Q, Fawcett TW, Gorospe M, Guyton KZ,
Liu Y and Holbrook NJ: Induction of mitogen-activated protein
kinase phosphatase-1 during acute hypertension. Hypertension.
30:106–111. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Huang PL, Huang Z, Mashimo H, et al:
Hypertension in mice lacking the gene for endothelial nitric oxide
synthase. Nature. 377:239–242. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhao Q, Wang X, Nelin LD, et al: MAP
kinase phosphatase 1 controls innate immune responses and
suppresses endotoxic shock. J Exp Med. 203:131–140. 2006.
View Article : Google Scholar
|
|
67
|
Calvert TJ, Chicoine LG, Liu Y and Nelin
LD: Deficiency of mitogen-activated protein kinase phosphatase-1
results in iNOS-mediated hypotension in response to low-dose
endotoxin. Am J Physiol Heart Circ Physiol. 294:H1621–H1629. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kan W, Zhao KS, Jiang Y, et al: Lung,
spleen, and kidney are the major places for inducible nitric oxide
synthase expression in endotoxic shock: role of p38
mitogen-activated protein kinase in signal transduction of
inducible nitric oxide synthase expression. Shock. 21:281–287.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Klinge CM, Blankenship KA, Risinger KE, et
al: Resveratrol and estradiol rapidly activate MAPK signaling
through estrogen receptors alpha and beta in endothelial cells. J
Biol Chem. 280:7460–7468. 2005. View Article : Google Scholar
|
|
70
|
Uchiba M, Okajima K, Oike Y, et al:
Activated protein C induces endothelial cell proliferation by
mitogen-activated protein kinase activation in vitro and
angiogenesis in vivo. Circ Res. 95:34–41. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xing F, Jiang Y, Liu J, et al:
Downregulation of human endothelial nitric oxide synthase promoter
activity by p38 mitogen-activated protein kinase activation.
Biochem Cell Biol. 84:780–788. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Niwano K, Arai M, Koitabashi N, et al:
Competitive binding of CREB and ATF2 to cAMP/ATF responsive element
regulates eNOS gene expression in endothelial cells. Arterioscler
Thromb Vasc Biol. 26:1036–1042. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gupta A and Sharma AC: Despite minimal
hemodynamic alterations endotoxemia modulates NOS and p38-MAPK
phosphorylation via metalloendopeptidases. Mol Cell Biochem.
265:47–56. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Saxena M and Mustelin T: Extracellular
signals and scores of phosphatases: all roads lead to MAP kinase.
Semin Immunol. 12:387–396. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rose BA, Force T and Wang Y:
Mitogen-activated protein kinase signaling in the heart: angels
versus demons in a heart-breaking tale. Physiol Rev. 90:1507–1546.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fuller SJ, Davies EL, Gillespie-Brown J,
Sun H and Tonks NK: Mitogen-activated protein kinase phosphatase 1
inhibits the stimulation of gene expression by hypertrophic
agonists in cardiac myocytes. Biochem J. 323:313–319.
1997.PubMed/NCBI
|
|
77
|
Hayashi D, Kudoh S, Shiojima I, et al:
Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy
through mitogen-activated protein kinase phosphatase-1. Biochem
Biophys Res Commun. 322:310–319. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Goldsmith EC, Bradshaw AD, Zile MR and
Spinale FG: Myocardial fibroblast-matrix interactions and potential
therapeutic targets. J Mol Cell Cardiol. 70:92–99. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Stawowy P, Goetze S, Margeta C, Fleck E
and Graf K: LPS regulate ERK1/2-dependent signaling in cardiac
fibroblasts via PKC-mediated MKP-1 induction. Biochem Biophys Res
Commun. 303:74–80. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Valente AJ, Yoshida T, Gardner JD, Somanna
N, Delafontaine P and Chandrasekar B: Interleukin-17A stimulates
cardiac fibroblast proliferation and migration via negative
regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell
Signal. 24:560–568. 2012. View Article : Google Scholar :
|
|
81
|
Short MD, Fox SM, Lam CF, Stenmark KR and
Das M: Protein kinase Czeta attenuates hypoxia-induced
proliferation of fibroblasts by regulating MAP kinase phosphatase-1
expression. Mol Biol Cell. 17:1995–2008. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bueno OF, De Windt LJ, Lim HW, et al: The
dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic
response in vitro and in vivo. Circ Res. 88:88–96. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Auger-Messier M, Accornero F, Goonasekera
SA, et al: Unrestrained p38 MAPK activation in Dusp1/4 double-null
mice induces cardiomyopathy. Circ Res. 112:48–56. 2013. View Article : Google Scholar
|
|
84
|
Ueyama T, Kawashima S, Sakoda T, et al:
Requirement of activation of the extracellular signal-regulated
kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol.
32:947–960. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Huang S, Sah VP, et al: Cardiac
muscle cell hypertrophy and apoptosis induced by distinct members
of the p38 mitogen-activated protein kinase family. J Biol Chem.
273:2161–2168. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang Y, Su B, Sah VP, Brown JH, Han J and
Chien KR: Cardiac hypertrophy induced by mitogen-activated protein
kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase
in ventricular muscle cells. J Biol Chem. 273:5423–5426. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Deng J, Lv XT, Wu Q and Huang XN:
Ginsenoside Rg1 inhibits rat left ventricular
hypertrophy induced by abdominal aorta coarctation: involvement of
calcineurin and mitogen-activated protein kinase signalings. Eur J
Pharmacol. 608:42–47. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dash R, Schmidt AG, Pathak A, et al:
Differential regulation of p38 mitogen-activated protein kinase
mediates gender-dependent catecholamine-induced hypertrophy.
Cardiovasc Res. 57:704–714. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
McCollum LT, Gallagher PE and Ann Tallant
E: Angiotensin-(1–7) attenuates angiotensin II-induced cardiac
remodeling associated with upregulation of dual-specificity
phosphatase 1. Am J Physiol Heart Circ Physiol. 302:H801–H810.
2012. View Article : Google Scholar
|
|
90
|
Choudhary R, Palm-Leis A, Scott RC III, et
al: All-trans retinoic acid prevents development of cardiac
remodeling in aortic banded rats by inhibiting the
renin-angiotensin system. Am J Physiol Heart Circ Physiol.
294:H633–H644. 2008. View Article : Google Scholar
|
|
91
|
Ohki R, Yamamoto K, Ueno S, et al:
Transcriptional profile of genes induced in human atrial myocardium
with pressure overload. Int J Cardiol. 96:381–387. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Communal C, Colucci WS, Remondino A, et
al: Reciprocal modulation of mitogen-activated protein kinases and
mitogen-activated protein kinase phosphatase 1 and 2 in failing
human myocardium. J Card Fail. 8:86–92. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kaiser RA, Bueno OF, Lips DJ, et al:
Targeted inhibition of p38 mitogen-activated protein kinase
antagonizes cardiac injury and cell death following
ischemia-reperfusion in vivo. J Biol Chem. 279:15524–15530. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fan WJ, Genade S, Genis A, Huisamen B and
Lochner A: Dexamethasone-induced cardioprotection: a role for the
phosphatase MKP-1? Life Sci. 84:838–846. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Engelbrecht AM, Engelbrecht P, Genade S,
et al: Long-chain polyunsaturated fatty acids protect the heart
against ischemia/reperfusion-induced injury via a MAPK dependent
pathway. J Mol Cell Cardiol. 39:940–954. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xie P, Guo S, Fan Y, Zhang H, Gu D and Li
H: Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced
apoptosis in cardiomyocytes through degradation of MAPK
phosphatase-1 and sustained JNK activation. J Biol Chem.
284:5488–5496. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Przyklenk K, Maynard M, Darling CE and
Whittaker P: Aging mouse hearts are refractory to infarct size
reduction with post-conditioning. J Am Coll Cardiol. 51:1393–1398.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lips DJ, Bueno OF, Wilkins BJ, et al:
MEK1-ERK2 signaling pathway protects myocardium from ischemic
injury in vivo. Circulation. 109:1938–1941. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Engelbrecht AM, Niesler C, Page C and
Lochner A: p38 and JNK have distinct regulatory functions on the
development of apoptosis during simulated ischaemia and reperfusion
in neonatal cardiomyocytes. Basic Res Cardiol. 99:338–350. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Mocanu MM, Baxter GF, Yue Y, Critz SD and
Yellon DM: The p38 MAPK inhibitor, SB203580, abrogates ischaemic
preconditioning in rat heart but timing of administration is
critical. Basic Res Cardiol. 95:472–478. 2000. View Article : Google Scholar
|