|
1
|
McGaw T, Lam S and Coates J:
Cyclosporin-induced gingival overgrowth: correlation with dental
plaque scores, gingivitis scores, and cyclosporin levels in serum
and saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.
64:293–297. 1987. View Article : Google Scholar
|
|
2
|
Perlík F, Kolínová M, Zvárová J and
Patzelová V: Phenytoin as a risk factor in gingival hyperplasia.
Ther Drug Monit. 17:445–448. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Seymour RA: Calcium channel blockers and
gingival overgrowth. Br Dent J. 170:376–379. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Miller CS and Damm DD: Incidence of
verapamil-induced gingival hyperplasia in a dental population. J
Periodontol. 63:453–456. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nishikawa S, Nagata T, Morisaki I, Oka T
and Ishida H: Pathogenesis of drug-induced gingival overgrowth. A
review of studies in the rat model. J Periodontol. 67:463–471.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ellis JS, Seymour RA, Steele JG, Robertson
P, Butler TJ and Thomason JM: Prevalence of gingival overgrowth
induced by calcium channel blockers: a community-based study. J
Periodontol. 70:63–67. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Marshall RI and Bartold PM: A clinical
review of drug-induced gingival overgrowths. Aust Dent J.
44:219–232. 1999. View Article : Google Scholar
|
|
8
|
Seymour RA, Ellis JS and Thomason JM: Risk
factors for drug-induced gingival overgrowth. J Clin Periodontol.
27:217–223. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yoshida M, Sakuma J, Hayashi S, Abe K,
Saito I, Harada S, Sakatani M, Yamamoto S, Matsumoto N, Kaneda Y,
et al: A histologically distinctive interstitial pneumonia induced
by overexpression of the interleukin 6, transforming growth factor
beta 1, or platelet-derived growth factor B gene. Proc Natl Acad
Sci USA. 92:9570–9574. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Campbell JS, Hughes SD, Gilbertson DG,
Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen
HS, Yeh MM and Fausto N: Platelet-derived growth factor C induces
liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl
Acad Sci USA. 102:3389–3394. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Czochra P, Klopcic B, Meyer E, Herkel J,
Garcia-Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle
PR, Lohse AW and Kanzler S: Liver fibrosis induced by hepatic
overexpression of PDGF-B in transgenic mice. J Hepatol. 45:419–428.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yoshida T, Nagata J and Yamane A: Growth
factors and prolife-ration of cultured rat gingival cells in
response to cyclosporin A. J Periodontal Res. 40:11–19. 2005.
View Article : Google Scholar
|
|
13
|
Wynn TA: Cellular and molecular mechanisms
of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar
|
|
14
|
Bataller R and Brenner DA: Liver fibrosis.
J Clin Invest. 115:209–218. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wynn TA: Integrating mechanisms of
pulmonary fibrosis. J Exp Med. 208:1339–1350. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huebener P and Schwabe RF: Regulation of
wound healing and organ fibrosis by toll-like receptors. Biochim
Biophys Acta. 1832:1005–1017. 2013. View Article : Google Scholar
|
|
17
|
Sarah SM, Tamilselvan S, Kamatchiammal S
and Suresh R: Expression of Toll-like receptors 2 and 4 in
gingivitis and chronic periodontitis. Ind J Dent Res. 17:114–116.
2006. View Article : Google Scholar
|
|
18
|
O’Neill LA, Fitzgerald KA and Bowie AG:
The Toll-IL-1 receptor adaptor family grows to five members. Trends
Immunol. 24:286–290. 2003. View Article : Google Scholar
|
|
19
|
Yamamoto M, Sato S, Hemmi H, Hoshino K,
Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K and
Akira S: Role of adaptor TRIF in the MyD88-independent toll-like
receptor signaling pathway. Science. 301:640–643. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yamamoto M, Sato S, Hemmi H, Sanjo H,
Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T,
Takeda K and Akira S: Essential role for TIRAP in activation of the
signaling cascade shared by TLR2 and TLR4. Nature. 420:324–329.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yamamoto M, Sato S, Hemmi H, Uematsu S,
Hoshino K, Kaisho T, Takeuchi O, Takeda K and Akira S: TRAM is
specifically involved in the Toll-like receptor 4-mediated
MyD88-independent signaling pathway. Nat Immunol. 4:1144–1150.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Akira S, Uematsu S and Takeuchi O:
Pathogen recognition and innate immunity. Cell. 124:783–801. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ohashi K, Burkart V, Flohé S and Kolb H:
Cutting edge: heat shock protein 60 is a putative endogenous ligand
of the toll-like receptor-4 complex. J Immunol. 164:558–561. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Oshiumi H, Matsumoto M, Funami K, Akazawa
T and Seya T: TICAM-1, an adaptor molecule that participates in
Toll-like receptor 3-mediated interferon-beta induction. Nat
Immunol. 4:161–167. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fitzgerald KA, Palsson-McDermott EM, Bowie
AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P,
Harte MT, McMurray D, Smith DE, Sims JE, Bird TA and O’Neill LA:
Mal (MyD88-adapter-like) is required for Toll-like receptor-4
signal transduction. Nature. 413:78–83. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Medzhitov R: Recognition of microorganisms
and activation of the immune response. Nature. 449:819–826. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Uehara A and Takada H: Functional TLRs and
NODs in human gingival fibroblasts. J Dent Res. 86:249–254. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yan P, Yue J and Jiang H: Expression of
ICAM-1/LFA-1 in the pocket area of adult periodontitis. Zhonghua
Kou Qiang Yi Xue Za Zhi. 34:106–108. 1999.In Chinese.
|
|
29
|
Han YW, Shi W, Huang GT, Kinder Haake S,
Park NH, Kuramitsu H and Genco RJ: Interactions between periodontal
bacteria and human oral epithelial cells: Fusobacterium nucleatum
adheres to and invades epithelial cells. Infect Immun.
68:3140–3146. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Warner RL, Bhagavathula N, Nerusu KC,
Lateef H, Younkin E, Johnson KJ and Varani J: Matrix
metalloproteinases in acute inflammation: induction of MMP-3 and
MMP-9 in fibroblasts and epithelial cells following exposure to
pro-inflammatory mediators in vitro. Exp Mol Pathol. 76:189–195.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Takada H, Mihara J, Morisaki I and Hamada
S: Induction of interleukin-1 and -6 in human gingival fibroblast
cultures stimulated with Bacteroides lipopolysaccharides. Infect
Immun. 59:295–301. 1991.PubMed/NCBI
|
|
32
|
Tamura M, Tokuda M, Nagaoka S and Takada
H: Lipopolysaccharides of Bacteroides intermedius (Prevotella
intermedia) and Bacteroides (Porphyromonas) gingivalis induce
interleukin-8 gene expression in human gingival fibroblast
cultures. Infect Immun. 60:4932–4937. 1992.PubMed/NCBI
|
|
33
|
Seki E, De Minicis S, Osterreicher CH,
Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta
signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Faure E, Equils O, Sieling PA, Thomas L,
Zhang FX, Kirschning CJ, Polentarutti N, Muzio M and Arditi M:
Bacterial lipopolysaccharide activates NF-kappaB through toll-like
receptor 4 (TLR-4) in cultured human dermal endothelial cells.
Differential expression of TLR-4 and TLR-2 in endothelial cells. J
Biol Chem. 275:11058–11063. 2000. View Article : Google Scholar
|
|
35
|
Li J, Ma Z, Tang ZL, Stevens T, Pitt B and
Li S: CpG DNA-mediated immune response in pulmonary endothelial
cells. Am J Physiol Lung Cell Mol Physiol. 287:L552–L558. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kataoka M, Kido J, Shinohara Y and Nagata
T: Drug-induced gingival overgrowth – a review. Biol Pharm Bull.
28:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Romanos GE, Strub JR and Bernimoulin JP:
Immunohistochemical distribution of extracellular matrix proteins
as a diagnostic parameter in healthy and diseased gingiva. J
Periodontol. 64:110–119. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Seymour RA, Smith DG and Rogers SR: The
comparative effect of azathioprine and cyclosporine on some
gingival health parameters of renal transplant patients. A
longitudinal study. J Clin Periodontol. 14:610–613. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Seymour RA and Jacobs DJ: Cyclosporine and
the gingival tissues. J Clin Periodontol. 19:1–11. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Aimetti M, Romano F, Marsico A and Navone
R: Non-surgical periodontal treatment of cyclosporine A-induced
gingival overgrowth: immunohistochemical results. Oral Dis.
14:244–250. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Nurmenniemi PK, Pernu HE, Laukkanen P and
Knuuttila ML: Macrophage subpopulations in gingival overgrowth
induced by nifedipine and immunosuppressive medication. J
Periodontol. 73:1323–1330. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Becerik S, Ozsan N, Gürkan A, Oztürk VÖ,
Atilla G and Eminqil G: Toll like receptor 4 and membrane-bound
CD14 expressions in gingivitis, periodontitis and CsA-induced
gingival overgrowth. Arch Oral Biol. 56:456–465. 2011. View Article : Google Scholar
|
|
43
|
Stoll LL, Denning GM, Li WG, Rice JB,
Harrelson AL, Romig SA, Gunnlaugsson ST, Miller FJ Jr and Weintraub
NL: Regulation of endotoxin-induced proinflammatory activation in
human coronary artery cells: expression of functional
membrane-bound CD14 by human coronary artery smooth muscle cells. J
Immunol. 173:1336–1343. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Meneghin MD and Hogaboam C: Infectious
disease, the innate immune response, and fibrosis. J Clin Invest.
117:530–538. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Otte JM, Rosenberg IM and Podolsky DK:
Intestinal myofibro-blasts in innate immune responses of the
intestine. Gastroenterol. 124:1866–1878. 2003. View Article : Google Scholar
|
|
46
|
Coelho AL, Hogaboam CM and Kunkel SL:
Chemokines provide the sustained inflammatory bridge between innate
and acquired immunity. Cytokine Growth Factor Rev. 16:553–560.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kawai T and Akira S: TLR signaling. Cell
Death Differ. 13:816–825. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Subramani T, Rathnavelu V, Yeap SK and
Alitheen NB: Influence of mast cells in drug-induced gingival
overgrowth. Mediators Inflamm. 2013:2751722013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lim SW, Li C, Ahn KO, Kim J, Moon IS, Ahn
C, Lee JR and Yang CW: Cyclosporine-induced renal injury induces
toll-like receptor and maturation of dendritic cells.
Transplantation. 80:691–699. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Suzuki AM, Yoshimura A, Ozaki Y, Kaneko T
and Hara Y: Cyclosporin A and phenytoin modulate inflammatory
responses. J Dent Res. 88:1131–1136. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gasse P, Mary C, Guenon I, Noulin N,
Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF,
Lagente V, Ryffel B and Couillin I: IL-1R1/MyD88 signaling and the
inflammasome are essential in pulmonary inflammation and fibrosis
in mice. J Clin Invest. 117:3786–3799. 2007.PubMed/NCBI
|
|
52
|
Trujillo G, Meneghin A, Flaherty KR, Sholl
LM, Myers JL, Kazerooni EA, Gross BH, Oak SR, Coelho AL, Evanoff H,
Day E, Toews GB, Joshi AD, Schaller MA, Waters B, Jarai G, Westwick
J, Kunkel SL, Martinez FJ and Hogaboam CM: TLR9 differentiates
rapidly from slowly progressing forms of idiopathic pulmonary
fibrosis. Sci Tranl Med. 2:57ra822010.
|
|
53
|
Campbell MT, Hile KL, Zhang H, Asanuma H,
Vanderbrink BA, Rink RR and Meldrum KK: Toll-like receptor 4: a
novel signaling pathway during renal fibrogenesis. J Surg Res.
168:e61–e69. 2011. View Article : Google Scholar
|
|
54
|
Mulrow PJ: The intrarenal
renin-angiotensin system. Curr Opin Nephrol Hypertens. 2:41–44.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dzau VJ: Cell biology and genetics of
angiotensin in cardiovascular disease. J Hypertens Suppl.
12:S3–S10. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Subramani T, Senthilkumar K and Periasamy
S: Histochemical expression of mast cell chymase in chronic
periodontitis and cyclosporine-induced gingival overgrowth. J
Histol. 2013.ID8128422013.
|
|
57
|
Timmermans PB, Benfield P, Chiu AT,
Herblin WF, Wong PC and Smith RD: Angiotensin II receptors and
functional correlates. Am J Hypertens. 5:S221–S235. 1992.
View Article : Google Scholar
|
|
58
|
Subramani T, Senthilkumar K, Periasamy S
and Rao S: Expression of angiotensin II and its receptors in
cyclosporine-induced gingival overgrowth. J Periodontal Res.
48:386–391. 2013. View Article : Google Scholar
|
|
59
|
Inoue A, Yanagisawa M, Kimura S, Kasuya Y,
Miyauchi T, Goto K and Masaki T: The human endothelin family: three
structurally and pharmacologically distinct isopeptides predicted
by three separate genes. Proc Natl Acad Sci USA. 86:2863–2867.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Levin ER: Endothelins. N Engl J Med.
333:356–363. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Leask A: Targeting the TGFbeta,
endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell
Signal. 20:1409–1414. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Leask A: Potential therapeutic targets for
cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF,
partners in fibroblast activation. Circ Res. 106:1675–1680. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ehrenreich H, Anderson RW, Fox CH,
Rieckmann P, Hoffman GS, Travis WD, Coligan JE, Kehrl JH and Fauci
AS: Endothelins, peptides with potent vasoactive properties, are
produced by human macrophages. J Exp Med. 172:1741–1748. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Spirig R, Potapova I, Shaw-Boden J, Tsui
J, Rieben R and Shaw SG: TLR2 and TLR4 agonists induce production
of the vasoactive peptide endothelin-1 by human dendritic cells.
Mol Immunol. 46:3178–3182. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tamilselvan S, Raju SN, Loganathan D,
Kamatchiammal S, Abraham G and Suresh R: Endothelin-1 and its
receptors ET(A) and ET(B) in drug-induced gingival overgrowth. J
Periodontol. 78:290–295. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kuruvilla L, Nair RR, Umashankar PR, Lal
AV and Kartha CC: Endocardial endothelial cells stimulate
proliferation and collagen synthesis of cardiac fibroblasts. Cell
Biochem Biophyics. 47:65–72. 2007. View Article : Google Scholar
|
|
67
|
Nishida M, Onohara N, Sato Y, Suda R,
Ogushi M, Tanabe S, Inoue R, Mori Y and Kurose H:
Galpha12/13-mediated up-regulation of TRPC6 negatively regulates
endothelin-1-induced cardiac myofibroblast formation and collagen
synthesis through nuclear factor of activated T cells activation. J
Biol Chem. 282:23117–23128. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Katwa LC: Cardiac myofibroblasts isolated
from the site of myocardial infarction express endothelin de novo.
Am J Physiol Heart Circ Physiol. 285:H1132–H1139. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chintalgattu V and Katwa LC: Role of
protein kinase Cdelta in endothelin-induced type I collagen
expression in cardiac myofibroblasts isolated from the site of
myocardial infarction. J Pharmacol Exp Ther. 311:691–699. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hafizi S, Wharton J, Chester AH and Yacoub
MH: Profibrotic effects of endothelin-1 via the ETA receptor in
cultured human cardiac fibroblasts. Cell Physiol Biochem.
14:285–292. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guarda E, Katwa LC, Myers PR, Tyagi SC and
Weber KT: Effects of endothelins on collagen turnover in cardiac
fibroblasts. Cardiovas Res. 27:2130–2134. 1993. View Article : Google Scholar
|
|
72
|
Kelly MG, Alvero AB, Chen R, Silasi DA,
Abrahams VM, Chan S, Visintin I, Rutherford T and Mor G: TLR-4
signaling promotes tumor growth and paclitaxel chemoresistance in
ovarian cancer. Cancer Res. 66:3859–3868. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
He W, Liu Q, Wang L, Chen W, Li N and Cao
X: TLR4 signaling promotes immune escape of human lung cancer cells
by inducing immunosuppressive cytokines and apoptosis resistance.
Mol Immunol. 44:2850–2859. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL
and Xu L: Functional expression of TLR9 is associated to the
metastatic potential of human lung cancer cell: functional active
role of TLR9 on tumor metastasis. Cancer Biol Ther. 6:1704–1709.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhou M, McFarland-Mancini MM, Funk HM,
Husseinzadeh N, Mounajjed T and Drew AF: Toll-like receptor
expression in normal ovary and ovarian tumors. Cancer Immunol
Immunother. 58:1375–1385. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sato M, Muragaki Y, Saika S, Roberts AB
and Ooshima A: Targeted disruption of TGF-beta1/Smad3 signalling
protects against renal tubulointerstitial fibrosis induced by
unilateral ureteral obstruction. J Clin Invest. 112:1486–1494.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Border WA, Noble NA, Yamamoto T, Harper
JR, Yamaguchi Y, Pierschbacher MD and Ruoslahti E: Natural
inhibitor of transforming growth factor-beta protects against
scarring in experimental kidney disease. Nature. 360:361–364. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Clouthier DE, Comerford SA and Hammer RE:
Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like
syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest.
100:2697–2713. 1997. View Article : Google Scholar
|
|
79
|
Bonniaud P, Margetts PJ, Ask K, Flanders
K, Gauldie J and Kolb M: TGF-beta and Smad3 signaling link
inflammation to chronic fibrogenesis. J Immunol. 175:5390–5395.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sime PJ, Xing Z, Graham FL, Csaky KG and
Gauldie J: Adenovector-mediated gene transfer of active
transforming growth factor-beta1 induces prolonged severe fibrosis
in rat lung. J Clin Invest. 100:768–776. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Roberts AB, Russo A, Felici A and Flanders
KC: Smad3: a key player in pathogenetic mechanisms dependent on
TGF-beta. Ann NY Acad Sci. 995:1–10. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bhowmick NA, Chytil A, Plieth D, Gorska
AE, Dumont N, Shappell S, Washington MK, Neilson EG and Moses HL:
TGF-beta signaling in fibroblasts modulates the oncogenic potential
of adjacent epithelia. Science. 303:848–851. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Khalil N, Corne S, Whitman C and Yacyshyn
H: Plasmin regulates the activation of cell-associated latent
TGF-beta1 secreted by rat alveolar macrophages after in vivo
bleomycin injury. Am J Respir Cell Mol Biol. 15:252–259. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kaviratne M, Hesse M, Leusink M, Cheever
AW, Davies SJ, McKerrow JM, Wakefield LM, Letterio JJ and Wynn TA:
IL-13 activates a mechanism of tissue fibrosis that is completely
TGF-beta independent. J Immunol. 173:4020–4029. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ma LJ, Yang H, Gaspert A, Carlesso G,
Barty MM, Davidson JM, Sheppard D and Fogo AB: Transforming growth
factor-beta-dependent and -independent pathways of induction of
tubulointerstitial fibrosis in beta6(−/−) mice. Am J Pathol.
163:1261–1273. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ashcroft GS, Yang X, Glick AB, Weinstein
M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng
C and Roberts AB: Mice lacking Smad3 show accelerated wound healing
and an impaired local inflammatory response. Nat Cell Biol.
1:260–266. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chin YT, Liao YW, Fu MM, Tu HP, Shen EC,
Nieh S, Shih KC and Fu E: Nrf-2 regulates cyclosporine-stimulated
HO-1 expression in gingiva. J Dent Res. 90:995–1000. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Schröder NW, Pfeil D, Opitz B, Michelsen
KS, Amberger J, Zähringer U, Göbel UB and Schumann RR: Activation
of mitogen-activated protein kinases p42/44, p38, and
stress-activated protein kinases in myelo-monocytic cells by
Treponema lipoteichoic acid. J Biol Chem. 276:9713–9719. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kaisho T and Akira S: Toll-like receptor
function and signaling. J Allergy Clin Immunol. 117:979–987. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Subramani T, Rao S, Senthilkumar K,
Periasamy S and Alitheen NB: Angiotensin II stimulates expression
of transcription factors c-Jun and c-Fos in cyclosporine induced
human gingival fibroblasts. Biocell. 37:71–76. 2013.
|
|
91
|
O’Reilly SM and Moynagh PN: Regulation of
Toll-like receptor 4 signalling by A20 zinc finger protein. Biochem
Biophysic Res Commun. 303:586–593. 2003. View Article : Google Scholar
|
|
92
|
Boone DL, Turer EE, Lee EG, Ahmad RC,
Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O,
McNally E, Pickart C and Ma A: The ubiquitin-modifying enzyme A20
is required for termination of Toll-like receptor responses. Nat
Immunol. 5:1052–1060. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yokota S, Okabayashi T, Yokosawa N and
Fujii N: Measles virus P protein suppresses Toll-like receptor
signal through up-regulation of ubiquitin-modifying enzyme A20.
FASEB J. 22:74–83. 2008. View Article : Google Scholar
|
|
94
|
Arslan F, Houtgraaf JH, Keogh B, Kazemi K,
de Jong R, McCormack WJ, O’Neill LA, McGuirk P, Timmers L, Smeets
MB, Akeroyd L, Reilly M, Pasterkamp G and de Kleijn DP: Treatment
with OPN-305, a humanized anti-Toll-Like receptor-2 antibody,
reduces myocardial ischemia/reperfusion injury in pigs. Circ
Cardiovasc Interv. 5:279–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mizuno T, Kurotani T, Komatsu Y,
Kawanokuchi J, Kato H, Mitsuma N and Suzumura A: Neuroprotective
role of phosphodiesterase inhibitor ibudilast on neuronal cell
death induced by activated microglia. Neuropharmacology.
46:404–411. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Rolan P, Gibbons JA, He L, Chang E, Jones
D, Gross MI, Davidson JB, Sanftner LM and Johnson KW: Ibudilast in
healthy volunteers: safety, tolerability and pharmacokinetics with
single and multiple doses. Br J Clin Pharmacol. 66:792–801. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zeisberg EM1, Tarnavski O, Zeisberg M,
Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT,
Roberts AB, Neilson EG, Sayegh MH, Izumo S and Kalluri R:
Endothelial-to-mesenchymal transition contributes to cardiac
fibrosis. Nat Med. 13:952–961. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
98
|
Czeslick E, Struppert A, Simm A and
Sablotzki A: E5564 (Eritoran) inhibits lipopolysaccharide-induced
cytokine production in human blood monocytes. Inflamm Res.
55:511–515. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hennessy EJ, Parker AE and O’Neill LA:
Targeting Toll-like receptors: emerging therapeutics. Nat Rev Drug
Discov. 9:293–307. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Connolly DJ and O’Neill LA: New
developments in Toll-like receptor targeted therapeutics. Curr Opin
Pharmacol. 12:510–518. 2012. View Article : Google Scholar : PubMed/NCBI
|