Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2015 Volume 35 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2015 Volume 35 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review)

  • Authors:
    • Tamilselvan Subramani
    • Vidhya Rathnavelu
    • Noorjahan Banu Alitheen
    • Parasuraman Padmanabhan
  • View Affiliations / Copyright

    Affiliations: Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia, Department of Oral and Maxillofacial Pathology, Faculty of Dental Science, Sri Ramachandra University, Chennai 600116, India, The Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Republic of Singapore
  • Pages: 1151-1158
    |
    Published online on: March 18, 2015
       https://doi.org/10.3892/ijmm.2015.2144
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gingival overgrowth is an undesirable outcome of systemic medication and is evidenced by the accretion of collagenous components in gingival connective tissues along with diverse degrees of inflammation. Phenytoin therapy has been found to induce the most fibrotic lesions in gingiva, cyclosporine caused the least fibrotic lesions, and nifedipine induced intermediate fibrosis in drug‑induced gingival overgrowth. In drug‑induced gingival overgrowth, efficient oral hygiene is compromised and has negative consequences for the systemic health of the patients. Toll‑like receptors (TLRs) are involved in the effective recognition of microbial agents and play a vital role in innate immunity and inflammatory signaling responses. TLRs stimulate fibrosis and tissue repairs in several settings, although with evident differences between organs. In particular, TLRs exert a distinct effect on fibrosis in organs with greater exposure to TLR ligands, such as the gingiva. Cumulative evidence from diverse sources suggested that TLRs can affect gingival overgrowth in several ways. Numerous studies have demonstrated the expression of TLRs in gingival tissues and suggested its potential role in gingival inflammation, cell proliferation and synthesis of the extracellular matrix which is crucial to the development of gingival overgrowth. In the present review, we assessed the role of TLRs on individual cell populations in gingival tissues that contribute to the progression of gingival inflammation, and the involvement of TLRs in the development of gingival overgrowth. These observations suggest that TLRs provide new insight into the connection among infection, inflammation, drugs and gingival fibrosis, and are therefore efficient therapeutic target molecules. We hypothesize that TLRs are critical for the development and progression of gingival overgrowth, and thus blocking TLR expression may serve as a novel target for antifibrotic therapy.
View Figures

Figure 1

View References

1 

McGaw T, Lam S and Coates J: Cyclosporin-induced gingival overgrowth: correlation with dental plaque scores, gingivitis scores, and cyclosporin levels in serum and saliva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 64:293–297. 1987. View Article : Google Scholar

2 

Perlík F, Kolínová M, Zvárová J and Patzelová V: Phenytoin as a risk factor in gingival hyperplasia. Ther Drug Monit. 17:445–448. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Seymour RA: Calcium channel blockers and gingival overgrowth. Br Dent J. 170:376–379. 1991. View Article : Google Scholar : PubMed/NCBI

4 

Miller CS and Damm DD: Incidence of verapamil-induced gingival hyperplasia in a dental population. J Periodontol. 63:453–456. 1992. View Article : Google Scholar : PubMed/NCBI

5 

Nishikawa S, Nagata T, Morisaki I, Oka T and Ishida H: Pathogenesis of drug-induced gingival overgrowth. A review of studies in the rat model. J Periodontol. 67:463–471. 1996. View Article : Google Scholar : PubMed/NCBI

6 

Ellis JS, Seymour RA, Steele JG, Robertson P, Butler TJ and Thomason JM: Prevalence of gingival overgrowth induced by calcium channel blockers: a community-based study. J Periodontol. 70:63–67. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Marshall RI and Bartold PM: A clinical review of drug-induced gingival overgrowths. Aust Dent J. 44:219–232. 1999. View Article : Google Scholar

8 

Seymour RA, Ellis JS and Thomason JM: Risk factors for drug-induced gingival overgrowth. J Clin Periodontol. 27:217–223. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Yoshida M, Sakuma J, Hayashi S, Abe K, Saito I, Harada S, Sakatani M, Yamamoto S, Matsumoto N, Kaneda Y, et al: A histologically distinctive interstitial pneumonia induced by overexpression of the interleukin 6, transforming growth factor beta 1, or platelet-derived growth factor B gene. Proc Natl Acad Sci USA. 92:9570–9574. 1995. View Article : Google Scholar : PubMed/NCBI

10 

Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM and Fausto N: Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA. 102:3389–3394. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle PR, Lohse AW and Kanzler S: Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol. 45:419–428. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Yoshida T, Nagata J and Yamane A: Growth factors and prolife-ration of cultured rat gingival cells in response to cyclosporin A. J Periodontal Res. 40:11–19. 2005. View Article : Google Scholar

13 

Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar

14 

Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Wynn TA: Integrating mechanisms of pulmonary fibrosis. J Exp Med. 208:1339–1350. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Huebener P and Schwabe RF: Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim Biophys Acta. 1832:1005–1017. 2013. View Article : Google Scholar

17 

Sarah SM, Tamilselvan S, Kamatchiammal S and Suresh R: Expression of Toll-like receptors 2 and 4 in gingivitis and chronic periodontitis. Ind J Dent Res. 17:114–116. 2006. View Article : Google Scholar

18 

O’Neill LA, Fitzgerald KA and Bowie AG: The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24:286–290. 2003. View Article : Google Scholar

19 

Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K and Akira S: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 301:640–643. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K and Akira S: Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature. 420:324–329. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K and Akira S: TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 4:1144–1150. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Akira S, Uematsu S and Takeuchi O: Pathogen recognition and innate immunity. Cell. 124:783–801. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Ohashi K, Burkart V, Flohé S and Kolb H: Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 164:558–561. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T: TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 4:161–167. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA and O’Neill LA: Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature. 413:78–83. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Medzhitov R: Recognition of microorganisms and activation of the immune response. Nature. 449:819–826. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Uehara A and Takada H: Functional TLRs and NODs in human gingival fibroblasts. J Dent Res. 86:249–254. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Yan P, Yue J and Jiang H: Expression of ICAM-1/LFA-1 in the pocket area of adult periodontitis. Zhonghua Kou Qiang Yi Xue Za Zhi. 34:106–108. 1999.In Chinese.

29 

Han YW, Shi W, Huang GT, Kinder Haake S, Park NH, Kuramitsu H and Genco RJ: Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun. 68:3140–3146. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Warner RL, Bhagavathula N, Nerusu KC, Lateef H, Younkin E, Johnson KJ and Varani J: Matrix metalloproteinases in acute inflammation: induction of MMP-3 and MMP-9 in fibroblasts and epithelial cells following exposure to pro-inflammatory mediators in vitro. Exp Mol Pathol. 76:189–195. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Takada H, Mihara J, Morisaki I and Hamada S: Induction of interleukin-1 and -6 in human gingival fibroblast cultures stimulated with Bacteroides lipopolysaccharides. Infect Immun. 59:295–301. 1991.PubMed/NCBI

32 

Tamura M, Tokuda M, Nagaoka S and Takada H: Lipopolysaccharides of Bacteroides intermedius (Prevotella intermedia) and Bacteroides (Porphyromonas) gingivalis induce interleukin-8 gene expression in human gingival fibroblast cultures. Infect Immun. 60:4932–4937. 1992.PubMed/NCBI

33 

Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M and Arditi M: Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem. 275:11058–11063. 2000. View Article : Google Scholar

35 

Li J, Ma Z, Tang ZL, Stevens T, Pitt B and Li S: CpG DNA-mediated immune response in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol. 287:L552–L558. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Kataoka M, Kido J, Shinohara Y and Nagata T: Drug-induced gingival overgrowth – a review. Biol Pharm Bull. 28:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Romanos GE, Strub JR and Bernimoulin JP: Immunohistochemical distribution of extracellular matrix proteins as a diagnostic parameter in healthy and diseased gingiva. J Periodontol. 64:110–119. 1993. View Article : Google Scholar : PubMed/NCBI

38 

Seymour RA, Smith DG and Rogers SR: The comparative effect of azathioprine and cyclosporine on some gingival health parameters of renal transplant patients. A longitudinal study. J Clin Periodontol. 14:610–613. 1987. View Article : Google Scholar : PubMed/NCBI

39 

Seymour RA and Jacobs DJ: Cyclosporine and the gingival tissues. J Clin Periodontol. 19:1–11. 1992. View Article : Google Scholar : PubMed/NCBI

40 

Aimetti M, Romano F, Marsico A and Navone R: Non-surgical periodontal treatment of cyclosporine A-induced gingival overgrowth: immunohistochemical results. Oral Dis. 14:244–250. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Nurmenniemi PK, Pernu HE, Laukkanen P and Knuuttila ML: Macrophage subpopulations in gingival overgrowth induced by nifedipine and immunosuppressive medication. J Periodontol. 73:1323–1330. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Becerik S, Ozsan N, Gürkan A, Oztürk VÖ, Atilla G and Eminqil G: Toll like receptor 4 and membrane-bound CD14 expressions in gingivitis, periodontitis and CsA-induced gingival overgrowth. Arch Oral Biol. 56:456–465. 2011. View Article : Google Scholar

43 

Stoll LL, Denning GM, Li WG, Rice JB, Harrelson AL, Romig SA, Gunnlaugsson ST, Miller FJ Jr and Weintraub NL: Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. J Immunol. 173:1336–1343. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Meneghin MD and Hogaboam C: Infectious disease, the innate immune response, and fibrosis. J Clin Invest. 117:530–538. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Otte JM, Rosenberg IM and Podolsky DK: Intestinal myofibro-blasts in innate immune responses of the intestine. Gastroenterol. 124:1866–1878. 2003. View Article : Google Scholar

46 

Coelho AL, Hogaboam CM and Kunkel SL: Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev. 16:553–560. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Kawai T and Akira S: TLR signaling. Cell Death Differ. 13:816–825. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Subramani T, Rathnavelu V, Yeap SK and Alitheen NB: Influence of mast cells in drug-induced gingival overgrowth. Mediators Inflamm. 2013:2751722013. View Article : Google Scholar : PubMed/NCBI

49 

Lim SW, Li C, Ahn KO, Kim J, Moon IS, Ahn C, Lee JR and Yang CW: Cyclosporine-induced renal injury induces toll-like receptor and maturation of dendritic cells. Transplantation. 80:691–699. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Suzuki AM, Yoshimura A, Ozaki Y, Kaneko T and Hara Y: Cyclosporin A and phenytoin modulate inflammatory responses. J Dent Res. 88:1131–1136. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, Ryffel B and Couillin I: IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 117:3786–3799. 2007.PubMed/NCBI

52 

Trujillo G, Meneghin A, Flaherty KR, Sholl LM, Myers JL, Kazerooni EA, Gross BH, Oak SR, Coelho AL, Evanoff H, Day E, Toews GB, Joshi AD, Schaller MA, Waters B, Jarai G, Westwick J, Kunkel SL, Martinez FJ and Hogaboam CM: TLR9 differentiates rapidly from slowly progressing forms of idiopathic pulmonary fibrosis. Sci Tranl Med. 2:57ra822010.

53 

Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR and Meldrum KK: Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res. 168:e61–e69. 2011. View Article : Google Scholar

54 

Mulrow PJ: The intrarenal renin-angiotensin system. Curr Opin Nephrol Hypertens. 2:41–44. 1993. View Article : Google Scholar : PubMed/NCBI

55 

Dzau VJ: Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens Suppl. 12:S3–S10. 1994. View Article : Google Scholar : PubMed/NCBI

56 

Subramani T, Senthilkumar K and Periasamy S: Histochemical expression of mast cell chymase in chronic periodontitis and cyclosporine-induced gingival overgrowth. J Histol. 2013.ID8128422013.

57 

Timmermans PB, Benfield P, Chiu AT, Herblin WF, Wong PC and Smith RD: Angiotensin II receptors and functional correlates. Am J Hypertens. 5:S221–S235. 1992. View Article : Google Scholar

58 

Subramani T, Senthilkumar K, Periasamy S and Rao S: Expression of angiotensin II and its receptors in cyclosporine-induced gingival overgrowth. J Periodontal Res. 48:386–391. 2013. View Article : Google Scholar

59 

Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K and Masaki T: The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA. 86:2863–2867. 1989. View Article : Google Scholar : PubMed/NCBI

60 

Levin ER: Endothelins. N Engl J Med. 333:356–363. 1995. View Article : Google Scholar : PubMed/NCBI

61 

Leask A: Targeting the TGFbeta, endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell Signal. 20:1409–1414. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Leask A: Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res. 106:1675–1680. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Ehrenreich H, Anderson RW, Fox CH, Rieckmann P, Hoffman GS, Travis WD, Coligan JE, Kehrl JH and Fauci AS: Endothelins, peptides with potent vasoactive properties, are produced by human macrophages. J Exp Med. 172:1741–1748. 1990. View Article : Google Scholar : PubMed/NCBI

64 

Spirig R, Potapova I, Shaw-Boden J, Tsui J, Rieben R and Shaw SG: TLR2 and TLR4 agonists induce production of the vasoactive peptide endothelin-1 by human dendritic cells. Mol Immunol. 46:3178–3182. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Tamilselvan S, Raju SN, Loganathan D, Kamatchiammal S, Abraham G and Suresh R: Endothelin-1 and its receptors ET(A) and ET(B) in drug-induced gingival overgrowth. J Periodontol. 78:290–295. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Kuruvilla L, Nair RR, Umashankar PR, Lal AV and Kartha CC: Endocardial endothelial cells stimulate proliferation and collagen synthesis of cardiac fibroblasts. Cell Biochem Biophyics. 47:65–72. 2007. View Article : Google Scholar

67 

Nishida M, Onohara N, Sato Y, Suda R, Ogushi M, Tanabe S, Inoue R, Mori Y and Kurose H: Galpha12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem. 282:23117–23128. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Katwa LC: Cardiac myofibroblasts isolated from the site of myocardial infarction express endothelin de novo. Am J Physiol Heart Circ Physiol. 285:H1132–H1139. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Chintalgattu V and Katwa LC: Role of protein kinase Cdelta in endothelin-induced type I collagen expression in cardiac myofibroblasts isolated from the site of myocardial infarction. J Pharmacol Exp Ther. 311:691–699. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Hafizi S, Wharton J, Chester AH and Yacoub MH: Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts. Cell Physiol Biochem. 14:285–292. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Guarda E, Katwa LC, Myers PR, Tyagi SC and Weber KT: Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovas Res. 27:2130–2134. 1993. View Article : Google Scholar

72 

Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T and Mor G: TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 66:3859–3868. 2006. View Article : Google Scholar : PubMed/NCBI

73 

He W, Liu Q, Wang L, Chen W, Li N and Cao X: TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 44:2850–2859. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL and Xu L: Functional expression of TLR9 is associated to the metastatic potential of human lung cancer cell: functional active role of TLR9 on tumor metastasis. Cancer Biol Ther. 6:1704–1709. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T and Drew AF: Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 58:1375–1385. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Sato M, Muragaki Y, Saika S, Roberts AB and Ooshima A: Targeted disruption of TGF-beta1/Smad3 signalling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest. 112:1486–1494. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD and Ruoslahti E: Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 360:361–364. 1992. View Article : Google Scholar : PubMed/NCBI

78 

Clouthier DE, Comerford SA and Hammer RE: Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest. 100:2697–2713. 1997. View Article : Google Scholar

79 

Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J and Kolb M: TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol. 175:5390–5395. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Sime PJ, Xing Z, Graham FL, Csaky KG and Gauldie J: Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 100:768–776. 1997. View Article : Google Scholar : PubMed/NCBI

81 

Roberts AB, Russo A, Felici A and Flanders KC: Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann NY Acad Sci. 995:1–10. 2003. View Article : Google Scholar : PubMed/NCBI

82 

Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG and Moses HL: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 303:848–851. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Khalil N, Corne S, Whitman C and Yacyshyn H: Plasmin regulates the activation of cell-associated latent TGF-beta1 secreted by rat alveolar macrophages after in vivo bleomycin injury. Am J Respir Cell Mol Biol. 15:252–259. 1996. View Article : Google Scholar : PubMed/NCBI

84 

Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ, McKerrow JM, Wakefield LM, Letterio JJ and Wynn TA: IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol. 173:4020–4029. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Ma LJ, Yang H, Gaspert A, Carlesso G, Barty MM, Davidson JM, Sheppard D and Fogo AB: Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(−/−) mice. Am J Pathol. 163:1261–1273. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C and Roberts AB: Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1:260–266. 1999. View Article : Google Scholar : PubMed/NCBI

87 

Chin YT, Liao YW, Fu MM, Tu HP, Shen EC, Nieh S, Shih KC and Fu E: Nrf-2 regulates cyclosporine-stimulated HO-1 expression in gingiva. J Dent Res. 90:995–1000. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Schröder NW, Pfeil D, Opitz B, Michelsen KS, Amberger J, Zähringer U, Göbel UB and Schumann RR: Activation of mitogen-activated protein kinases p42/44, p38, and stress-activated protein kinases in myelo-monocytic cells by Treponema lipoteichoic acid. J Biol Chem. 276:9713–9719. 2001. View Article : Google Scholar : PubMed/NCBI

89 

Kaisho T and Akira S: Toll-like receptor function and signaling. J Allergy Clin Immunol. 117:979–987. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Subramani T, Rao S, Senthilkumar K, Periasamy S and Alitheen NB: Angiotensin II stimulates expression of transcription factors c-Jun and c-Fos in cyclosporine induced human gingival fibroblasts. Biocell. 37:71–76. 2013.

91 

O’Reilly SM and Moynagh PN: Regulation of Toll-like receptor 4 signalling by A20 zinc finger protein. Biochem Biophysic Res Commun. 303:586–593. 2003. View Article : Google Scholar

92 

Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C and Ma A: The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol. 5:1052–1060. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Yokota S, Okabayashi T, Yokosawa N and Fujii N: Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J. 22:74–83. 2008. View Article : Google Scholar

94 

Arslan F, Houtgraaf JH, Keogh B, Kazemi K, de Jong R, McCormack WJ, O’Neill LA, McGuirk P, Timmers L, Smeets MB, Akeroyd L, Reilly M, Pasterkamp G and de Kleijn DP: Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Interv. 5:279–287. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N and Suzumura A: Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology. 46:404–411. 2004. View Article : Google Scholar : PubMed/NCBI

96 

Rolan P, Gibbons JA, He L, Chang E, Jones D, Gross MI, Davidson JB, Sanftner LM and Johnson KW: Ibudilast in healthy volunteers: safety, tolerability and pharmacokinetics with single and multiple doses. Br J Clin Pharmacol. 66:792–801. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Zeisberg EM1, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S and Kalluri R: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Czeslick E, Struppert A, Simm A and Sablotzki A: E5564 (Eritoran) inhibits lipopolysaccharide-induced cytokine production in human blood monocytes. Inflamm Res. 55:511–515. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Hennessy EJ, Parker AE and O’Neill LA: Targeting Toll-like receptors: emerging therapeutics. Nat Rev Drug Discov. 9:293–307. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Connolly DJ and O’Neill LA: New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol. 12:510–518. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Subramani T, Rathnavelu V, Alitheen NB and Padmanabhan P: Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review). Int J Mol Med 35: 1151-1158, 2015.
APA
Subramani, T., Rathnavelu, V., Alitheen, N.B., & Padmanabhan, P. (2015). Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review). International Journal of Molecular Medicine, 35, 1151-1158. https://doi.org/10.3892/ijmm.2015.2144
MLA
Subramani, T., Rathnavelu, V., Alitheen, N. B., Padmanabhan, P."Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review)". International Journal of Molecular Medicine 35.5 (2015): 1151-1158.
Chicago
Subramani, T., Rathnavelu, V., Alitheen, N. B., Padmanabhan, P."Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review)". International Journal of Molecular Medicine 35, no. 5 (2015): 1151-1158. https://doi.org/10.3892/ijmm.2015.2144
Copy and paste a formatted citation
x
Spandidos Publications style
Subramani T, Rathnavelu V, Alitheen NB and Padmanabhan P: Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review). Int J Mol Med 35: 1151-1158, 2015.
APA
Subramani, T., Rathnavelu, V., Alitheen, N.B., & Padmanabhan, P. (2015). Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review). International Journal of Molecular Medicine, 35, 1151-1158. https://doi.org/10.3892/ijmm.2015.2144
MLA
Subramani, T., Rathnavelu, V., Alitheen, N. B., Padmanabhan, P."Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review)". International Journal of Molecular Medicine 35.5 (2015): 1151-1158.
Chicago
Subramani, T., Rathnavelu, V., Alitheen, N. B., Padmanabhan, P."Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review)". International Journal of Molecular Medicine 35, no. 5 (2015): 1151-1158. https://doi.org/10.3892/ijmm.2015.2144
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team