Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2015 Volume 36 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2015 Volume 36 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)

  • Authors:
    • Julian Banerji
  • View Affiliations / Copyright

    Affiliations: Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
    Copyright: © Banerji et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 607-626
    |
    Published online on: July 15, 2015
       https://doi.org/10.3892/ijmm.2015.2285
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The present treatment of childhood T-cell leukemias involves the systemic administration of prokaryotic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
View Figures

Figure 1

View References

1 

Karlin S, Brocchieri L, Bergman A, Mrazek J and Gentles AJ: Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A. 99:333–338. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Kreil DP and Kreil G: Asparagine repeats are rare in mammalian proteins. Trends Biochem Sci. 25:270–271. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Karlin S and Burge C: Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci USA. 93:1560–1565. 1996. View Article : Google Scholar : PubMed/NCBI

4 

Kawedia JD and Rytting ME: Asparaginase in acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 14(Suppl): S14–S17. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Müller HJ and Boos J: Use of L-Asparaginase in childhood ALL. Crit Rev Oncol Hematol. 28:97–113. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Suzuki R: Pathogenesis and treatment of extranodal natural killer/T-cell lymphoma. Semin Hematol. 51:42–51. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Fréling E, Granel-Brocard F, Serrier C, Ortonne N, Barbaud A and Schmutz J: Extranodal NK/T-cell lymphoma, nasal-type, revealed by cutaneous breast involvement. Ann Dermatol Venereol. 142:104–111. 2015.In French. View Article : Google Scholar

8 

Kidd JG: Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med. 98:565–582. 1953. View Article : Google Scholar : PubMed/NCBI

9 

Broome JD: Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J Exp Med. 118:99–120. 1963. View Article : Google Scholar : PubMed/NCBI

10 

Essig S, Li Q, Chen Y, Hitzler J, Leisenring W, Greenberg M, Sklar C, Hudson MM, Armstrong GT, Krull KR, et al: Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: A report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 15:841–851. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Tong WH, Pieters R, Hop WC, Lanvers-Kaminsky C, Boos J and van der Sluis IM: No evidence of increased asparagine levels in the bone marrow of patients with acute lymphoblastic leukemia during asparaginase therapy. Pediatr Blood Cancer. 60:258–261. 2013. View Article : Google Scholar

12 

Fine BM, Kaspers GJ, Ho M, Loonen AH and Boxer LM: A genome-wide view of the in vitro response to l-asparaginase in acute lymphoblastic leukemia. Cancer Res. 65:291–299. 2005.PubMed/NCBI

13 

Kelo E, Noronkoski T, Stoineva IB, Petkov DD and Mononen I: Beta-aspartylpeptides as substrates of L-asparaginases from Escherichia coli and Erwinia chrysanthemi. FEBS Lett. 528:130–132. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB and Weinstein JN: The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood. 123:3596–3606. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Huang L, Liu Y, Sun Y, Yan Q and Jiang Z: Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol. 80:1561–1569. 2014. View Article : Google Scholar :

16 

Iwamaru Y, Miyake M, Arii J, Tanabe Y and Noda M: An inhibitory factor for cell-free protein synthesis from Salmonella enteritidis exhibits cytopathic activity against Chinese hamster ovary cells. Microb Pathog. 31:283–293. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Capizzi RL, Bertino JR, Skeel RT, Creasey WA, Zanes R, Olayon C, Peterson RG and Handschumacher RE: L-asparaginase: Clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med. 74:893–901. 1971. View Article : Google Scholar : PubMed/NCBI

18 

Bettigole RE, Himelstein ES, Oettgen HF and Clifford GO: Hypofibrinogenemia due to L-asparaginase: Studies of fibrinogen survival using autologous 131-I-fibrinogen. Blood. 35:195–200. 1970.PubMed/NCBI

19 

Avramis VI: Is glutamine depletion needed in ALL disease? Blood. 123:3532–3533. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Quintanilla-Flores DL, Flores-Caballero MÁ, Rodríguez-Gutiérrez R, Tamez-Pérez HE and González-González JG: Acute pancreatitis and diabetic ketoacidosis following L-asparaginase/prednisonetherapy in acute lymphoblastic leukemia. Case Rep Oncol Med. 2014:1391692014.

21 

Frankel DL, Wells H and Fillios LC: Concentrations of asparagine in tissues of prepubertal rats after enzymic or dietary depletion of asparagine. Biochem J. 132:645–648. 1973. View Article : Google Scholar : PubMed/NCBI

22 

Holcenberg JS, Tang E and Dolowy WC: Effect of Acinetobacter glutaminase-asparaginase treatment on free amino acids in mouse tissues. Cancer Res. 35:1320–1325. 1975.PubMed/NCBI

23 

Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL, et al: Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 125:2222–2231. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Kullas AL, McClelland M, Yang HJ, Tam JW, Torres A, Porwollik S, Mena P, McPhee JB, Bogomolnaya L, Andrews-Polymenis H and van der Velden AW: L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe. 12:791–798. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Lavine RL and DiCinto DM: L-asparaginase diabetes mellitus in rabbits: Differing effects of two different schedules of L-asparaginase administration. Horm Metab Res. 16(Suppl): 92–96. 1984.PubMed/NCBI

26 

Khan A, Adachi M and Hill JM: Diabetogenic effect of L-asparaginase. J Clin Endocrinol Metab. 29:1373–1376. 1969. View Article : Google Scholar : PubMed/NCBI

27 

Khan A, Adachi M and Hill JM: Potentiation of diabetogenic effect of L-asparaginase by prednisolone. Horm Metab Res. 2:275–276. 1970. View Article : Google Scholar : PubMed/NCBI

28 

Zhou Y, Qiu L, Xiao Q, Wang Y, Meng X, Xu R, Wang S and Na R: Obesity and diabetes related plasma amino acid alterations. Clin Biochem. 46:1447–1452. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Nakamura H, Jinzu H, Nagao K, Noguchi Y, Shimba N, Miyano H, Watanabe T and Iseki K: Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes. 4:e1332014. View Article : Google Scholar : PubMed/NCBI

30 

Burén J, Liu HX, Lauritz J and Eriksson JW: High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol. 148:157–167. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Tsunekawa S, Demozay D, Briaud I, McCuaig J, Accili D, Stein R and Rhodes CJ: FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes. Diabetes. 60:2883–2891. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Argetsinger LS, Norstedt G, Billestrup N, White MF and Carter-Su C: Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem. 271:29415–29421. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Uddin S, Fish EN, Sher D, Gardziola C, Colamonici OR, Kellum M, Pitha PM, White MF and Platanias LC: The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood. 90:2574–2582. 1997.PubMed/NCBI

34 

O'Connor JC, Sherry CL, Guest CB and Freund GG: Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. J Immunol. 178:6886–6893. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Carey GB, Semenova E, Qi X and Keegan AD: IL-4 protects the B-cell lymphoma cell line CH31 from anti-IgM-induced growth arrest and apoptosis: Contribution of the PI-3 kinase/AKT pathway. Cell Res. 17:942–955. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Blaeser F, Bryce PJ, Ho N, Raman V, Dedeoglu F, Donaldson DD, Geha RS, Oettgen HC and Chatila TA: Targeted inactivation of the IL-4 receptor alpha chain I4R motif promotes allergic airway inflammation. J Exp Med. 198:1189–1200. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Wurster AL, Withers DJ, Uchida T, White MF and Grusby MJ: Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent rescue from apoptosis. Mol Cell Biol. 22:117–126. 2002. View Article : Google Scholar

38 

Butte NF, Voruganti VS, Cole SA, Haack K, Comuzzie AG, Muzny DM, Wheeler DA, Chang K, Hawes A and Gibbs RA: Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children. Physiol Genomics. 43:1029–1037. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Haghani K and Bakhtiyari S: The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran. Genet Test Mol Biomarkers. 16:1270–1276. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Ayaz L, Karakaş Çelik S and Cayan F: The G1057D polymorphism of insulin receptor substrate-2 associated with gestational diabetes mellitus. Gynecol Endocrinol. 30:165–168. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Pezzolesi MG, Poznik GD, Skupien J, Smiles AM, Mychaleckyj JC, Rich SS, Warram JH and Krolewski AS: An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney Int. 80:105–111. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Craig DW, Millis MP and DiStefano JK: Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet Med. 26:1090–1098. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Kim SK, Yu GI, Park HJ, Kim YJ, Kim JW, Baik HH and Chung JH: A polymorphism (rs4773092, Cys816Cys) of IRS2 affects auditory hallucinations in schizophrenia patients. Psychiatry Res. 209:124–125. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Acevedo N, Mercado D, Vergara C, Sánchez J, Kennedy MW, Jiménez S, Fernández AM, Gutiérrez M, Puerta L and Caraballo L: Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clin Exp Immunol. 157:282–290. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Alvarez-Perez JC, Rosa TC, Casinelli GP, Valle SR, Lakshmipathi J, Rosselot C, Rausell-Palamos F, Vasavada RC and García-Ocaña A: Hepatocyte growth factor ameliorates hyperglycemia and corrects β-cell mass in IRS2-deficient mice. Mol Endocrinol. 28:2038–2048. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, et al: Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 391:900–904. 1998. View Article : Google Scholar : PubMed/NCBI

47 

Niessen M: On the role of IRS2 in the regulation of functional beta-cell mass. Arch Physiol Biochem. 112:65–73. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Park S, Hong SM, Lee JE, Sung SR and Kim SH: Chlorpromazine attenuates pancreatic beta-cell function and mass through IRS2 degradation, while exercise partially reverses the attenuation. J Psychopharmacol. 22:522–531. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Gunasekaran U, Hudgens CW, Wright BT, Maulis MF and Gannon M: Differential regulation of embryonic and adult β cell replication. Cell Cycle. 11:2431–2442. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Oliveira JM, Rebuffat SA, Gasa R and Gomis R: Targeting type 2 diabetes: Lessons from a knockout model of insulin receptor substrate 2. Can J Physiol Pharmacol. 92:613–620. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Rametta R, Mozzi E, Dongiovanni P, Motta BM, Milano M, Roviaro G, Fargion S and Valenti L: Increased insulin receptor substrate 2 expression is associated with steatohepatitis and altered lipid metabolism in obese subjects. Int J Obes (Lond). 37:986–992. 2013. View Article : Google Scholar

52 

Minchenko DO, Davydov VV, Budreiko OA, Moliavko OS, Kulieshova DK, Tiazhka OV and Minchenko OH: The expression of CCN2, IQSEC, RSPO1, DNAJC15, RIPK2, IL13RA2, IRS1, and IRS2 genes in blood of obese boys with insulin resistance. Fiziol Zh. 61:10–18. 2015.PubMed/NCBI

53 

Chen GT and Inouye M: Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev. 8:2641–2652. 1994. View Article : Google Scholar : PubMed/NCBI

54 

Mitarai N, Sneppen K and Pedersen S: Ribosome collisions and translation efficiency: Optimization by codon usage and mRNA destabilization. J Mol Biol. 382:236–245. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Zhang S, Goldman E and Zubay G: Clustering of low usage codons and ribosome movement. J Theor Biol. 170:339–354. 1994. View Article : Google Scholar : PubMed/NCBI

56 

Chen GF and Inouye M: Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 18:1465–1473. 1990. View Article : Google Scholar : PubMed/NCBI

57 

Ivanov IG, Saraffova AA and Abouhaidar MG: Unusual effect of clusters of rare arginine (AGG) codons on the expression of human interferon alpha 1 gene in Escherichia coli. Int J Biochem Cell Biol. 29:659–666. 1997. View Article : Google Scholar : PubMed/NCBI

58 

Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E and Mueller S: Virus attenuation by genome-scale changes in codon pair bias. Science. 320:1784–1787. 2008. View Article : Google Scholar : PubMed/NCBI

59 

de Fabritus L, Nougairède A, Aubry F, Gould EA and de Lamballerie X: Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding. PLoS Pathog. 11:e10047382015. View Article : Google Scholar : PubMed/NCBI

60 

Sauna ZE and Kimchi-Sarfaty C: Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 12:683–691. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Gartner JJ, Parker SC, Prickett TD, Dutton-Regester K, Stitzel ML, Lin JC, Davis S, Simhadri VL, Jha S, Katagiri N, et al: NISC Comparative Sequencing Program: Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci USA. 110:13481–13486. 2013. View Article : Google Scholar

62 

Ingolia NT: Ribosome profiling: New views of translation, from single codons to genome scale. Nat Rev Genet. 15:205–213. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Dana A and Tuller T: The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42:9171–9181. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Fredrick K and Ibba M: How the sequence of a gene can tune its translation. Cell. 141:227–229. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Li Q and Qu HQ: Human coding synonymous single nucleotide polymorphisms at ramp regions of mRNA translation. PLoS One. 8:e597062013. View Article : Google Scholar : PubMed/NCBI

66 

Charneski CA and Hurst LD: Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol. 11:e10015082013. View Article : Google Scholar : PubMed/NCBI

67 

Himeno H, Nameki N, Kurita D, Muto A and Abo T: Ribosome rescue systems in bacteria. Biochimie. 114:102–112. 2015. View Article : Google Scholar

68 

Edenberg ER, Downey M and Toczyski D: Polymerase stalling during replication, transcription and translation. Curr Biol. 24:R445–R452. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Faucillion ML and Larsson J: Increased expression of X-linked genes in mammals is associated with a higher stability of transcripts and an increased ribosome density. Genome Biol Evol. 7:1039–1052. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Che F, Fu Q, Li X, Gao N, Qi F, Sun Z, Du Y and Li M: Association of insulin receptor H1085H C>T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure. 25:178–180. 2015. View Article : Google Scholar

71 

de la Monte SM and Tong M: Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol. 88:548–559. 2014. View Article : Google Scholar : PubMed/NCBI

72 

White MF: IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obes Metab. 16(Suppl 1): 4–15. 2014. View Article : Google Scholar : PubMed/NCBI

73 

de la Monte SM: Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease. Drugs. 72:49–66. 2012. View Article : Google Scholar

74 

Albert-Fort M, Hombrebueno JR, Pons-Vazquez S, Sanz-Gonzalez S, Diaz-Llopis M and Pinazo-Durán MD: Retinal neurodegenerative changes in the adult insulin receptor substrate-2 deficient mouse. Exp Eye Res. 124:1–10. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, Choudhury AI, Giese KP, Withers DJ and Pedarzani P: Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One. 7:e311242012. View Article : Google Scholar : PubMed/NCBI

76 

Martín ED, Sánchez-Perez A, Trejo JL, Martin-Aldana JA, Cano Jaimez M, Pons S, Acosta Umanzor C, Menes L, White MF and Burks DJ: IRS-2 deficiency impairs NMDA receptor-dependent long-term potentiation. Cereb Cortex. 22:1717–1727. 2012. View Article : Google Scholar :

77 

Sadagurski M, Cheng Z, Rozzo A, Palazzolo I, Kelley GR, Dong X, Krainc D and White MF: IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J Clin Invest. 121:4070–4081. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM and Guo S: Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes. 62:3887–3900. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Carew RM, Sadagurski M, Goldschmeding R, Martin F, White MF and Brazil DP: Deletion of Irs2 causes reduced kidney size in mice: Role for inhibition of GSK3beta? BMC Dev Biol. 10:732010. View Article : Google Scholar : PubMed/NCBI

80 

Hookham MB, O'Donovan HC, Church RH, Mercier-Zuber A, Luzi L, Curran SP, Carew RM, Droguett A, Mezzano S, Schubert M, et al: Insulin receptor substrate-2 is expressed in kidney epithelium and up-regulated in diabetic nephropathy. FEBS J. 280:3232–3243. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Landis J and Shaw LM: Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis. J Biol Chem. 289:18603–18613. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Porter HA, Perry A, Kingsley C, Tran NL and Keegan AD: IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett. 338:239–248. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hanada R, Tanaka Y, Kato K, Maeda D, Fukayama M, et al: Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci. 104:856–864. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Verma R, Su S, McCrann DJ, Green JM, Leu K, Young PR, Schatz PJ, Silva JC, Stokes MP and Wojchowski DM: RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development. J Exp Med. 211:1715–1722. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Bunn HF: Erythropoietin. Cold Spring Harb Perspect Med. 3:a0116192013. View Article : Google Scholar : PubMed/NCBI

86 

Wang H, Rissanen J, Miettinen R, Kärkkäinen P, Kekäläinen P, Kuusisto J, Mykkänen L, Karhapää P and Laakso M: New amino acid substitutions in the IRS-2 gene in Finnish and Chinese subjects with late-onset type 2 diabetes. Diabetes. 50:1949–1951. 2001. View Article : Google Scholar : PubMed/NCBI

87 

Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, et al: Inflammation and Host Response to Injury, Large Scale Collaborative Research Program: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 110:3507–3512. 2013. View Article : Google Scholar

88 

Taborsky GJ Jr, Mei Q, Hackney DJ and Mundinger TO: The search for the mechanism of early sympathetic islet neuropathy in autoimmune diabetes. Diabetes Obes Metab. 16(Suppl 1): 96–101. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Nichenametla SN, Lazarus P and Richie JP Jr: A GAG trinucleotide-repeat polymorphism in the gene for glutathione biosynthetic enzyme, GCLC, affects gene expression through translation. FASEB J. 25:2180–2187. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, Piane LD, Kolahi K, Ameri K, Maltepe E, et al: Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 155:1956–1969. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Campolo J, Penco S, Bianchi E, Colombo L, Parolini M, Caruso R, Sedda V, Patrosso MC, Cighetti G, Marocchi A, et al: Glutamate-cysteine ligase polymorphism, hypertension, and male sex are associated with cardiovascular events. Biochemical and genetic characterization of Italian subpopulation. Am Heart J. 154:1123–1129. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Piao ZH, Kim MS, Jeong M, Yun S, Lee SH, Sun HN, Song HY, Suh HW, Jung H, Yoon SR, et al: VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa. Cell Immunol. 280:1–9. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Shalev A: Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mol Endocrinol. 28:1211–1220. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Coucha M, Elshaer SL, Eldahshan WS, Mysona BA and El-Remessy AB: Molecular mechanisms of diabetic retinopathy: Potential therapeutic targets. Middle East Afr J Ophthalmol. 22:135–144. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Kaadige MR, Yang J, Wilde BR and Ayer DE: MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Mol Cell Biol. 35:101–110. 2015. View Article : Google Scholar :

96 

Mead EA, Li M, Tu Z and Zhu J: Translational regulation of Anopheles gambiae mRNAs in the midgut during Plasmodium falciparuminfection. BMC Genomics. 13:3662012. View Article : Google Scholar

97 

Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, Horikoshi M, Johnson AD, Ng MC, Prokopenko I, et al: DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Mexican American Type 2 Diabetes (MAT2D) Consortium; Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium: Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 46:234–244. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Betarbet R, Anderson LR, Gearing M, Hodges TR, Fritz JJ, Lah JJ and Levey AI: Fas-associated factor 1 and Parkinson's disease. Neurobiol Dis. 31:309–315. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Labaj PP, Leparc GG, Bardet AF, Kreil G and Kreil DP: Single amino acid repeats in signal peptides. FEBS J. 277:3147–3157. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Depledge DP and Dalby AR: COPASAAR - a database for proteomic analysis of single amino acid repeats. BMC Bioinformatics. 6:1962005. View Article : Google Scholar

102 

Khan A, Hill JM and Adachi M: Inhibition of anti-tumour effect of L-asparaginase by methionine and choline. Lancet. 2:10821970. View Article : Google Scholar : PubMed/NCBI

103 

Rudman D, Vogler WR, Howard CH and Gerron GG: Observations on the plasma amino acids of patients with acute leukemia. Cancer Res. 31:1159–1165. 1971.PubMed/NCBI

104 

Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS and Guan KL: Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 347:194–198. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Jewell JL, Russell RC and Guan KL: Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 14:133–139. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Yang J, Chi Y, Burkhardt BR, Guan Y and Wolf BA: Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 68:270–279. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Riedl E, Koeppel H, Brinkkoetter P, Sternik P, Steinbeisser H, Sauerhoefer S, Janssen B, van der Woude FJ and Yard BA: A CTG polymorphism in the CNDP1 gene determines the secretion of serum carnosinase in Cos-7 transfected cells. Diabetes. 56:2410–2413. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, Xu J, McDonough C, Janssen B, Yard BA, et al: A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant. 22:1131–1135. 2007. View Article : Google Scholar : PubMed/NCBI

109 

Zachariah RM, Olson CO, Ezeonwuka C and Rastegar M: Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One. 7:e497632012. View Article : Google Scholar : PubMed/NCBI

110 

No authors listed. The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72:971–983. 1993. View Article : Google Scholar

111 

Klesert TR, Otten AD, Bird TD and Tapscott SJ: Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat Genet. 16:402–406. 1997. View Article : Google Scholar : PubMed/NCBI

112 

Korade-Mirnics Z, Babitzke P and Hoffman E: Myotonic dystrophy: Molecular windows on a complex etiology. Nucleic Acids Res. 26:1363–1368. 1998. View Article : Google Scholar : PubMed/NCBI

113 

Lozano R, Rosero CA and Hagerman RJ: Fragile X spectrum disorders. Intractable Rare Dis Res. 3:134–146. 2014. View Article : Google Scholar

114 

Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L, Sulkava R, Jansson L, Hernandez DG, Gibbs JR, et al: Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: A genome-wide association study. Lancet Neurol. 9:978–985. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, et al: A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study. Lancet Neurol. 11:54–65. 2012. View Article : Google Scholar

116 

Rohrer JD, Isaacs AM, Mizielinska S, Mead S, Lashley T, Wray S, Sidle K, Fratta P, Orrell RW, Hardy J, et al: C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Lancet Neurol. 14:291–301. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ and Hautbergue GM: Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol. 41:109–134. 2015. View Article : Google Scholar :

118 

Cleary JD and Ranum LP: Repeat associated non-ATG (RAN) translation: New starts in microsatellite expansion disorders. Curr Opin Genet Dev. 26:6–15. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Yan S, Wen JD, Bustamante C and Tinoco I Jr: Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell. 160:870–881. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Scoles DR, Ho MH, Dansithong W, Pflieger LT, Petersen LW, Thai KK and Pulst SM: Repeat Associated Non-AUG Translation (RAN Translation) Dependent on Sequence Downstream of the ATXN2 CAG Repeat. PLoS One. 10:e01287692015. View Article : Google Scholar : PubMed/NCBI

121 

Muerdter F and Stark A: Genomics: Hiding in plain sight. Nature. 512:374–375. 2014. View Article : Google Scholar : PubMed/NCBI

122 

La Spada AR, Paulson HL and Fischbeck KH: Trinucleotide repeat expansion in neurological disease. Ann Neurol. 36:814–822. 1994. View Article : Google Scholar : PubMed/NCBI

123 

Kayatekin C, Matlack KE, Hesse WR, Guan Y, Chakrabortee S, Russ J, Wanker EE, Shah JV and Lindquist S: Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1. Proc Natl Acad Sci USA. 111:12085–12090. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Ripaud L, Chumakova V, Antonin M, Hastie AR, Pinkert S, Körner R, Ruff KM, Pappu RV, Hornburg D, Mann M, et al: Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc Natl Acad Sci USA. 111:18219–18224. 2014. View Article : Google Scholar : PubMed/NCBI

125 

Chambers JW, Maguire TG and Alwine JC: Glutamine metabolism is essential for human cytomegalovirus infection. J Virol. 84:1867–1873. 2010. View Article : Google Scholar :

126 

Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, et al: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 87:493–506. 1996. View Article : Google Scholar : PubMed/NCBI

127 

Rosas HD, Reuter M, Doros G, Lee SY, Triggs T, Malarick K, Fischl B, Salat DH and Hersch SM: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study. Mov Disord. 26:1691–1697. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, et al: PREDICT-HD study of the Huntington Study Group (HSG); REGISTRY study of the European Huntington's Disease Network; HD-MAPS Study Group; COHORT study of the HSG: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 78:690–695. 2012. View Article : Google Scholar : PubMed/NCBI

129 

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 490:55–60. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Ohlsson C and Sjögren K: Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 26:69–74. 2015. View Article : Google Scholar

131 

DelGiorno KE, Tam JW, Hall JC, Thotakura G, Crawford HC and van der Velden AW: Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One. 9:e928072014. View Article : Google Scholar : PubMed/NCBI

132 

Whitcomb DC: Genetic aspects of pancreatitis. Annu Rev Med. 61:413–424. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Wu F, Qu L, Tan Y, Zhang Y and Hu C: L-asparaginase-induced severe acute pancreatitis in an adult with extranodal natural killer/T-cell lymphoma, nasal type: A case report and review of the literature. Oncol Lett. 7:1305–1307. 2014.PubMed/NCBI

134 

Kaya I, Citil M, Sozmen M, Karapehlivan M and Cigsar G: Investigation of protective effect of L-carnitine on L-asparaginase-induced acute pancreatic injury in male Balb/c mice. Dig Dis Sci. 2014.PubMed/NCBI

135 

Bueno SM, Riquelme S, Riedel CA and Kalergis AM: Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology. 137:28–36. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Kafkewitz D and Bendich A: Enzyme-induced asparagine and glutamine depletion and immune system function. Am J Clin Nutr. 37:1025–1030. 1983.PubMed/NCBI

137 

Etheredge EE, Shons A, Harris N and Najarian JS: Prolongation of skin xenograft survival by L-asparaginase. Transplantation. 11:353–354. 1971. View Article : Google Scholar : PubMed/NCBI

138 

Khan A and Levine S: Further studies on the inhibition of allergic encephalomyelitis by L-asparaginase. J Immunol. 113:367–370. 1974.PubMed/NCBI

139 

Friedman H: L-asparaginase induced immunosuppression: Inhibition of bone marrow derived antibody precursor cells. Science. 174:139–141. 1971. View Article : Google Scholar : PubMed/NCBI

140 

Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA and Desir GV: The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA. 101:3112–3117. 2004. View Article : Google Scholar : PubMed/NCBI

141 

Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA and Nath A: Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One. 7:e439502012. View Article : Google Scholar : PubMed/NCBI

142 

LaRusch J and Whitcomb DC: Genetics of pancreatitis. Curr Opin Gastroenterol. 27:467–474. 2011. View Article : Google Scholar : PubMed/NCBI

143 

Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, Wright FA, Rommens JM, Sun L, Pace RG, et al: Genetic modifiers of cystic fibrosis-related diabetes. Diabetes. 62:3627–3635. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Santoro N, Colombini A, Silvestri D, Grassi M, Giordano P, Parasole R, Barisone E, Caruso R, Conter V, Valsecchi MG, et al: Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: An AIEOP experience. J Pediatr Hematol Oncol. 35:348–355. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, Cazzaniga G, Horstmann M, Panzer Grümayer R, Cavé H, et al: Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia. 26:902–909. 2012. View Article : Google Scholar :

146 

Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA and Desir GV: The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet. 12:551–559. 2003. View Article : Google Scholar : PubMed/NCBI

147 

Tu L, Khanna P and Deutsch C: Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J Mol Biol. 426:185–198. 2014. View Article : Google Scholar

148 

Kosolapov A and Deutsch C: Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol. 16:405–411. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Delaney E, Khanna P, Tu L, Robinson JM and Deutsch C: Determinants of pore folding in potassium channel biogenesis. Proc Natl Acad Sci USA. 111:4620–4625. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, et al: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI

151 

Gray MA: Bicarbonate secretion: It takes two to tango. Nat Cell Biol. 6:292–294. 2004. View Article : Google Scholar : PubMed/NCBI

152 

Chang MH, Plata C, Sindic A, Ranatunga WK, Chen AP, Zandi-Nejad K, Chan KW, Thompson J, Mount DB and Romero MF: Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain. J Biol Chem. 284:28306–28318. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 74:1–18. 2012.PubMed/NCBI

154 

Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV and Gottesman MM: A 'silent' polymorphism in the MDR1 gene changes substrate specificity. Science. 315:525–528. 2007. View Article : Google Scholar

155 

Chong PA, Kota P, Dokholyan NV and Forman-Kay JD: Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med. 3:a0095222013. View Article : Google Scholar : PubMed/NCBI

156 

LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, et al North American Pancreatitis Study Group: Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet. 10:e10043762014. View Article : Google Scholar : PubMed/NCBI

157 

El Khouri E and Touré A: Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): Physiological and pathophysiological relevance. Int J Biochem Cell Biol. 52:58–67. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A, Thomas PJ, Frizzell RA, Ford RC and Forman-Kay JD: Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra-and intermolecular interactions. Proc Natl Acad Sci USA. 110:E4427–E4436. 2013. View Article : Google Scholar

159 

Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, Ratcliff R, Evans MJ and Colledge WH: Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature. 393:79–82. 1998. View Article : Google Scholar : PubMed/NCBI

160 

Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, Havasi V, Keiles S, Kappes J, Kumar R, Lefkowitz E, et al: The silent codon change I507-ATC->ATT contributes to the severity of the DeltaF508 CFTR channel dysfunction. FASEB J. 27:4630–4645. 2013. View Article : Google Scholar : PubMed/NCBI

161 

van der Wijst J, Bindels RJ and Hoenderop JG: Mg2+ homeostasis: The balancing act of TRPM6. Curr Opin Nephrol Hypertens. 23:361–369. 2014. View Article : Google Scholar : PubMed/NCBI

162 

Smith JG, Avery CL, Evans DS, Nalls MA, Meng YA, Smith EN, Palmer C, Tanaka T, Mehra R, Butler AM, et al: CARe and COGENT consortia: Impact of ancestry and common genetic variants on QT interval in African Americans. Circ Cardiovasc Genet. 5:647–655. 2012. View Article : Google Scholar : PubMed/NCBI

163 

Hermosura MC and Garruto RM: TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? Biochim Biophys Acta. 1772:822–835. 2007. View Article : Google Scholar : PubMed/NCBI

164 

Krapivinsky G, Krapivinsky L, Manasian Y and Clapham DE: The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 157:1061–1072. 2014. View Article : Google Scholar : PubMed/NCBI

165 

Wrighton KH: Epigenetics: The TRPM7 ion channel modifies histones. Nat Rev Mol Cell Biol. 15:4272014. View Article : Google Scholar : PubMed/NCBI

166 

Zeng Z, Inoue K, Sun H, Leng T, Feng X, Zhu L and Xiong ZG: TRPM7 regulates vascular endothelial cell adhesion and tube formation. Am J Physiol Cell Physiol. 308:C308–C318. 2015. View Article : Google Scholar

167 

Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, Sha D, Shen R, Cui YG, Zhang Z, et al: TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett. 356:483–490. 2015. View Article : Google Scholar

168 

Hunt RC, Simhadri VL, Iandoli M, Sauna ZE and Kimchi-Sarfaty C: Exposing synonymous mutations. Trends Genet. 30:308–321. 2014. View Article : Google Scholar : PubMed/NCBI

169 

Wu DF, Yin RX, Cao XL, Chen WX, Aung LH, Wang W, Huang KK, Huang P, Zeng XN and Wu J: Scavenger receptor class B type 1 gene rs5888 single nucleotide polymorphism and the risk of coronary artery disease and ischemic stroke: A case-control study. Int J Med Sci. 10:1771–1777. 2013. View Article : Google Scholar : PubMed/NCBI

170 

Constantineau J, Greason E, West M, Filbin M, Kieft JS, Carletti MZ, Christenson LK and Rodriguez A: A synonymous variant in scavenger receptor, class B, type I gene is associated with lower SR-BI protein expression and function. Atherosclerosis. 210:177–182. 2010. View Article : Google Scholar : PubMed/NCBI

171 

Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, et al: Global Lipids Genetics Consortium: Discovery and refinement of loci associated with lipid levels. Nat Genet. 45:1274–1283. 2013. View Article : Google Scholar : PubMed/NCBI

172 

Meyer JM, Graf GA and van der Westhuyzen DR: New developments in selective cholesteryl ester uptake. Curr Opin Lipidol. 24:386–392. 2013.PubMed/NCBI

173 

Nofer JR: Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handb Exp Pharmacol. 224:229–256. 2015. View Article : Google Scholar

174 

Tong WH, Pieters R, de Groot-Kruseman HA, Hop WC, Boos J, Tissing WJ and van der Sluis IM: The toxicity of very prolonged courses of PEGasparaginase or Erwinia asparaginase in relation to asparaginase activity, with a special focus on dyslipidemia. Haematologica. 99:1716–1721. 2014. View Article : Google Scholar : PubMed/NCBI

175 

Stanislovaitiene D, Lesauskaite V, Zaliuniene D, Smalinskiene A, Gustiene O, Zaliaduonyte-Peksiene D, Tamosiunas A, Luksiene D, Petkeviciene J and Zaliunas R: SCARB1 single nucleotide polymorphism (rs5888) is associated with serum lipid profile and myocardial infarction in an age- and gender-dependent manner. Lipids Health Dis. 12:242013. View Article : Google Scholar : PubMed/NCBI

176 

Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Gaborieau V, et al: Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 43:60–65. 2011. View Article : Google Scholar :

177 

Pośpiech E, Ligęza J, Wilk W, Gołas A, Jaszczyński J, Stelmach A, Ryś J, Blecharczyk A, Wojas-Pelc A, Jura J, et al: Variants of SCARB1 and VDR involved in complex genetic interactions may be implicated in the genetic susceptibility to clear cell renal cell carcinoma. Biomed Res Int. 2015:8604052015. View Article : Google Scholar

178 

Suchindran S, Rivedal D, Guyton JR, Milledge T, Gao X, Benjamin A, Rowell J, Ginsburg GS and McCarthy JJ: Genome-wide association study of Lp-PLA(2) activity and mass in the Framingham Heart Study. PLoS Genet. 6:e10009282010. View Article : Google Scholar : PubMed/NCBI

179 

Song GJ, Kim SM, Park KH, Kim J, Choi I and Cho KH: SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochem Biophys Res Commun. 457:112–118. 2015. View Article : Google Scholar

180 

Gao M, Zhao D, Schouteden S, Sorci-Thomas MG, Van Veldhoven PP, Eggermont K, Liu G, Verfaillie CM and Feng Y: Regulation of high-density lipoprotein on hematopoietic stem/progenitor cells in atherosclerosis requires scavenger receptor type BI expression. Arterioscler Thromb Vasc Biol. 34:1900–1909. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Sticozzi C, Belmonte G, Cervellati F, Muresan XM, Pessina F, Lim Y, Forman HJ and Valacchi G: Resveratrol protects SR-B1 levels in keratinocytes exposed to cigarette smoke. Free Radic Biol Med. 69:50–57. 2014. View Article : Google Scholar : PubMed/NCBI

182 

Christianson MS and Yates M: Scavenger receptor class B type 1 gene polymorphisms and female fertility. Curr Opin Endocrinol Diabetes Obes. 19:115–120. 2012. View Article : Google Scholar : PubMed/NCBI

183 

Meyers KJ, Mares JA, Igo RP Jr, Truitt B, Liu Z, Millen AE, Klein M, Johnson EJ, Engelman CD, Karki CK, et al: Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in age-related eye disease study (CAREDS). Invest Ophthalmol Vis Sci. 55:587–599. 2014. View Article : Google Scholar :

184 

Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X and Borel P: Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol Nutr Food Res. 55:691–702. 2011. View Article : Google Scholar : PubMed/NCBI

185 

Goncalves A, Margier M, Roi S, Collet X, Niot I, Goupy P, Caris-Veyrat C and Reboul E: Intestinal scavenger receptors are involved in vitamin K1 absorption. J Biol Chem. 289:30743–30752. 2014. View Article : Google Scholar : PubMed/NCBI

186 

Major JM, Yu K, Wheeler W, Zhang H, Cornelis MC, Wright ME, Yeager M, Snyder K, Weinstein SJ, Mondul A, et al: Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet. 20:3876–3883. 2011. View Article : Google Scholar : PubMed/NCBI

187 

Schulman S and Furie B: How I treat poisoning with vitamin K antagonists. Blood. 125:438–442. 2015. View Article : Google Scholar

188 

Ibarrola-Jurado N, Salas-Salvadó J, Martínez-González MA and Bulló M: Dietary phylloquinone intake and risk of type 2 diabetes in elderly subjects at high risk of cardiovascular disease. Am J Clin Nutr. 96:1113–1118. 2012. View Article : Google Scholar : PubMed/NCBI

189 

Tang W, Schwienbacher C, Lopez LM, Ben-Shlomo Y, Oudot-Mellakh T, Johnson AD, Samani NJ, Basu S, Gögele M, Davies G, et al: Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease. Am J Hum Genet. 91:152–162. 2012. View Article : Google Scholar : PubMed/NCBI

190 

Melville SA, Buros J, Parrado AR, Vardarajan B, Logue MW, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, et al: Alzheimer's Disease Neuroimaging Initiative: Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol. 72:65–75. 2012. View Article : Google Scholar : PubMed/NCBI

191 

Nowak-Göttl U, Wermes C, Junker R, Koch HG, Schobess R, Fleischhack G, Schwabe D and Ehrenforth S: Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT 677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. Blood. 93:1595–1599. 1999.PubMed/NCBI

192 

Schmalbach B, Stepanow O, Jochens A, Riedel C, Deuschl G and Kuhlenbäumer G: Determinants of platelet-leukocyte aggregation and platelet activation in stroke. Cerebrovasc Dis. 39:176–180. 2015. View Article : Google Scholar : PubMed/NCBI

193 

Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, Serbanovic-Canic J, Elling U, Goodall AH, Labrune Y, et al: New gene functions in megakaryopoiesis and platelet formation. Nature. 480:201–208. 2011. View Article : Google Scholar : PubMed/NCBI

194 

Hunault-Berger M, Chevallier P, Delain M, Bulabois CE, Bologna S, Bernard M, Lafon I, Cornillon J, Maakaroun A, Tizon A, et al GOELAMS (Groupe Ouest-Est des Leucémies Aiguës et Maladies du Sang): Changes in antithrombin and fibrinogen levels during induction chemotherapy with L-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and clinical outcome: The CAPELAL study Haematologica. 93:1488–1494. 2008.

195 

López Herce Cid J, Martínez A, González M and García S: Diabetic ketoacidosis and hypofibrinogenemia as a complication of the treatment with L-asparaginase of acute lymphoblastic leukemia. Sangre (Barc). 31:195–199. 1986.In Spanish.

196 

Alving BM, Barr CF and Tang DB: L-asparaginase: Acute effects on protein synthesis in rabbits with normal and increased fibrinogen production. Blood. 63:823–827. 1984.PubMed/NCBI

197 

Brodsky I, Kahn SB, Vash G, Ross EM and Petkov G: Fibrinogen survival with [75Se]Selenomethionine during L-asparaginase therapy. Br J Haematol. 20:477–487. 1971. View Article : Google Scholar : PubMed/NCBI

198 

Sleddering MA, Markvoort AJ, Dharuri HK, Jeyakar S, Snel M, Juhasz P, Lynch M, Hines W, Li X, Jazet IM, et al: Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS One. 9:e1128352014. View Article : Google Scholar : PubMed/NCBI

199 

Barazzoni R, Kiwanuka E, Zanetti M, Cristini M, Vettore M and Tessari P: Insulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes. Diabetes. 52:1851–1856. 2003. View Article : Google Scholar : PubMed/NCBI

200 

Luo C, Zhao J, Madden A, Chen M and Xu H: Complement expression in retinal pigment epithelial cells is modulated by activated macrophages. Exp Eye Res. 112:93–101. 2013. View Article : Google Scholar : PubMed/NCBI

201 

Kallio SP, Jakkula E, Purcell S, Suvela M, Koivisto K, Tienari PJ, Elovaara I, Pirttilä T, Reunanen M, Bronnikov D, et al: Use of a genetic isolate to identify rare disease variants: C7 on 5p associated with MS. Hum Mol Genet. 18:1670–1683. 2009. View Article : Google Scholar : PubMed/NCBI

202 

Brudner M, Karpel M, Lear C, Chen L, Yantosca LM, Scully C, Sarraju A, Sokolovska A, Zariffard MR, Eisen DP, et al: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One. 8:e608382013. View Article : Google Scholar : PubMed/NCBI

203 

van Vliet SJ, Steeghs L, Bruijns SC, Vaezirad MM, Snijders Blok C, Arenas Busto JA, Deken M, van Putten JP and van Kooyk Y: Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog. 5:e10006252009. View Article : Google Scholar : PubMed/NCBI

204 

Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H and Chen W: Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition. 30:1061–1068. 2014. View Article : Google Scholar : PubMed/NCBI

205 

Meyre D and Pare G: Genetic dissection of diabetes: Facing the giant. Diabetes. 62:3338–3340. 2013. View Article : Google Scholar : PubMed/NCBI

206 

Qi L, Parast L, Cai T, Powers C, Gervino EV, Hauser TH, Hu FB and Doria A: Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol. 58:2675–2682. 2011. View Article : Google Scholar : PubMed/NCBI

207 

Sandyk R: The relationship between diabetes mellitus and Parkinson's disease. Int J Neurosci. 69:125–130. 1993. View Article : Google Scholar : PubMed/NCBI

208 

Calkin CV, Ruzickova M, Uher R, Hajek T, Slaney CM, Garnham JS, O'Donovan MC and Alda M: Insulin resistance and outcome in bipolar disorder. Br J Psychiatry. 206:52–57. 2015. View Article : Google Scholar

209 

Cosgrove J, Alty JE and Jamieson S: Cognitive impairment in Parkinson's disease. Postgrad Med J. 91:212–220. 2015. View Article : Google Scholar : PubMed/NCBI

210 

Talbot K: Amyotrophic lateral sclerosis: cell vulnerability or system vulnerability? J Anat. 224:45–51. 2014. View Article : Google Scholar

211 

Carbutt S, Duff J, Yarnall A, Burn DJ and Hudson G: Variation in complement protein C1q is not a major contributor to cognitive impairment in Parkinson's disease. Neurosci Lett. 594:66–69. 2015. View Article : Google Scholar : PubMed/NCBI

212 

Ressl S, Vu BK, Vivona S, Martinelli DC, Südhof TC and Brunger AT: Structures of C1q-like proteins reveal unique features among the C1q/TNF superfamily. Structure. 23:688–699. 2015. View Article : Google Scholar : PubMed/NCBI

213 

Sigoillot SM, Iyer K, Binda F, González-Calvo I, Talleur M, Vodjdani G, Isope P and Selimi F: The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar purkinje cells. Cell Rep. 10:820–832. 2015. View Article : Google Scholar

214 

Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield JP, Sleiman PM, et al: Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 459:528–533. 2009. View Article : Google Scholar : PubMed/NCBI

215 

Malenfant P, Liu X, Hudson ML, Qiao Y, Hrynchak M, Riendeau N, Hildebrand MJ, Cohen IL, Chudley AE, Forster-Gibson C, et al: Association of GTF2i in the Williams-Beuren syndrome critical region with autism spectrum disorders. J Autism Dev Disord. 42:1459–1469. 2012. View Article : Google Scholar

216 

Lu RC, Wang H, Tan MS, Yu JT and Tan L: TMEM106B and APOE polymorphisms interact to confer risk for late-onset Alzheimer's disease in Han Chinese. J Neural Transm. 121:283–287. 2014. View Article : Google Scholar

217 

Stagi M, Klein ZA, Gould TJ, Bewersdorf J and Strittmatter SM: Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci. 61:226–240. 2014. View Article : Google Scholar : PubMed/NCBI

218 

Paoletti C and Hayes DF: Molecular testing in breast cancer. Annu Rev Med. 65:95–110. 2014. View Article : Google Scholar : PubMed/NCBI

219 

Ma CX, Reinert T, Chmielewska I and Ellis MJ: Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 15:261–275. 2015. View Article : Google Scholar : PubMed/NCBI

220 

Nollau P, Wolters-Eisfeld G, Mortezai N, Kurze AK, Klampe B, Debus A, Bockhorn M, Niendorf A and Wagener C: Protein domain histochemistry (PDH): binding of the carbohydrate recognition domain (CRD) of recombinant human glycoreceptor CLEC10A (CD301) to formalin-fixed, paraffin-embedded breast cancer tissues. J Histochem Cytochem. 61:199–205. 2013. View Article : Google Scholar : PubMed/NCBI

221 

Chen W, Salto-Tellez M, Palanisamy N, Ganesan K, Hou Q, Tan LK, Sii LH, Ito K, Tan B, Wu J, et al: Targets of genome copy number reduction in primary breast cancers identified by integrative genomics. Genes Chromosomes Cancer. 46:288–301. 2007. View Article : Google Scholar

222 

Ahmeti KB, Ajroud-Driss S, Al-Chalabi A, Andersen PM, Armstrong J, Birve A, Blauw HM, Brown RH, Bruijn L, Chen W, et al: Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging. 34(357): e7–e19. 2013.

223 

Brady OA, Zheng Y, Murphy K, Huang M and Hu F: The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 22:685–695. 2013. View Article : Google Scholar :

224 

Sergouniotis PI, Chakarova C, Murphy C, Becker M, Lenassi E, Arno G, Lek M, MacArthur DG, Bhattacharya SS, Moore AT, et al: UCL-Exomes Consortium: Biallelic variants in TTLL5, encoding a tubulin glutamylase, cause retinal dystrophy. Am J Hum Genet. 94:760–769. 2014. View Article : Google Scholar : PubMed/NCBI

225 

Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S, Thorleifsson G, Mitchell BD, Assimes TL, Levi C, et al: METASTROKE Consortium; CARDIoGRAM Consortium; C4D Consortium; International Stroke Genetics Consortium: Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants. Stroke. 45:24–36. 2014. View Article : Google Scholar :

226 

Hartmaier RJ, Richter AS, Gillihan RM, Sallit JZ, McGuire SE, Wang J, Lee AV, Osborne CK, O'Malley BW, Brown PH, et al: A SNP in steroid receptor coactivator-1 disrupts a GSK3β phosphorylation site and is associated with altered tamoxifen response in bone. Mol Endocrinol. 26:220–227. 2012. View Article : Google Scholar :

227 

Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, et al: GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet. 45:362–370. 370e1–2. 2013. View Article : Google Scholar : PubMed/NCBI

228 

Kriegel MA, Rathinam C and Flavell RA: E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci USA. 106:16770–16775. 2009. View Article : Google Scholar : PubMed/NCBI

229 

MacKenzie DA, Schartner J, Lin J, Timmel A, Jennens-Clough M, Fathman CG and Seroogy CM: GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem. 282:9696–9702. 2007. View Article : Google Scholar : PubMed/NCBI

230 

Seroogy CM1, Soares L, Ranheim EA, Su L, Holness C, Bloom D and Fathman CG: The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol. 173:79–85. 2004. View Article : Google Scholar : PubMed/NCBI

231 

No authors listed. A death attributed to antitoxin. Boston Med Surg J. 132:337–341. 1895.

232 

Hunt EL: Death from allergic shock. N Engl J Med. 228:502–507. 1943. View Article : Google Scholar

233 

Kortright JL: Practical experiences with antitoxin. Brooklyn MJ (Medical Society of the County of Kings). 10:87–101. 1896.

234 

Gillis C, Gouel-Chéron A, Jönsson F and Bruhns P: Contribution of human FcγRs to disease with evidence from human polymorphisms and transgenic animal studies. Front Immunol. 5:2542014. View Article : Google Scholar

235 

Lu W, Lin C and Li Y: Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal. 26:1303–1309. 2014. View Article : Google Scholar : PubMed/NCBI

236 

Malinauskas T and Jones EY: Extracellular modulators of Wnt signalling. Curr Opin Struct Biol. 29:77–84. 2014. View Article : Google Scholar : PubMed/NCBI

237 

Joiner DM, Ke J, Zhong Z, Xu HE and Williams BO: LRP5 and LRP6 in development and disease. Trends Endocrinol Metab. 24:31–39. 2013. View Article : Google Scholar :

238 

Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI

239 

Jiang X, Charlat O, Zamponi R, Yang Y and Cong F: Dishevelled Promotes Wnt Receptor Degradation through Recruitment of ZNRF3/RNF43 E3 Ubiquitin Ligases. Mol Cell. 58:522–533. 2015. View Article : Google Scholar : PubMed/NCBI

240 

Holland J, Fasanello S and Onuma T: Psychiatric symptoms associated with L-asparaginase administration. J Psychiatr Res. 10:105–113. 1974. View Article : Google Scholar : PubMed/NCBI

241 

Feinberg WM and Swenson MR: Cerebrovascular complications of L-asparaginase therapy. Neurology. 38:127–133. 1988. View Article : Google Scholar : PubMed/NCBI

242 

Rodrigo R, Cauli O, Boix J, ElMlili N, Agusti A and Felipo V: Role of NMDA receptors in acute liver failure and ammonia toxicity: Therapeutical implications. Neurochem Int. 55:113–118. 2009. View Article : Google Scholar : PubMed/NCBI

243 

Davidovic L, Jaglin XH, Lepagnol-Bestel AM, Tremblay S, Simonneau M, Bardoni B and Khandjian EW: The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet. 16:3047–3058. 2007. View Article : Google Scholar : PubMed/NCBI

244 

Darnell JC and Klann E: The translation of translational control by FMRP: Therapeutic targets for FXS. Nat Neurosci. 16:1530–1536. 2013. View Article : Google Scholar : PubMed/NCBI

245 

Poliakov E, Koonin EV and Rogozin IB: Impairment of translation in neurons as a putative causative factor for autism. Biol Direct. 9:162014. View Article : Google Scholar : PubMed/NCBI

246 

Cauchi RJ: Gem depletion: Amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther. 20:574–581. 2014. View Article : Google Scholar : PubMed/NCBI

247 

Häggmark A, Mikus M, Mohsenchian A, Hong MG, Forsström B, Gajewska B, Barańczyk-Kuźma A, Uhlén M, Schwenk JM, Kuźma-Kozakiewicz M, et al: Plasma profiling reveals three proteins associated to amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 1:544–553. 2014. View Article : Google Scholar : PubMed/NCBI

248 

Ingre C, Roos PM, Piehl F, Kamel F and Fang F: Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 7:181–193. 2015.PubMed/NCBI

249 

Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA, Copeland NG, Troncoso JC, Pletnikov M, Dawson TM, et al: Synphilin-1 attenuates neuronal degeneration in the A53T alpha-synuclein transgenic mouse model. Hum Mol Genet. 19:2087–2098. 2010. View Article : Google Scholar : PubMed/NCBI

250 

Wang X, Zeng W, Kim MS, Allen PB, Greengard P and Muallem S: Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors. EMBO J. 26:2768–2776. 2007. View Article : Google Scholar : PubMed/NCBI

251 

Latourelle JC, Pankratz N, Dumitriu A, Wilk JB, Goldwurm S, Pezzoli G, Mariani CB, DeStefano AL, Halter C, Gusella JF, et al: PROGENI Investigators, Coordinators and Molecular Genetic Laboratories; GenePD Investigators, Coordinators and Molecular Genetic Laboratories: Genomewide association study for onset age in Parkinson disease. BMC Med Genet. 10:982009. View Article : Google Scholar

252 

Lalla E and Papapanou PN: Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat Rev Endocrinol. 7:738–748. 2011. View Article : Google Scholar : PubMed/NCBI

253 

Zeng Z, Feingold E, Wang X, Weeks DE, Lee M, Cuenco DT, Broffitt B, Weyant RJ, Crout R, McNeil DW, et al: Genome-wide association study of primary dentition pit-and-fissure and smooth surface caries. Caries Res. 48:330–338. 2014. View Article : Google Scholar : PubMed/NCBI

254 

Teumer A, Holtfreter B, Völker U, Petersmann A, Nauck M, Biffar R, Völzke H, Kroemer HK, Meisel P, Homuth G, et al: Genome-wide association study of chronic periodontitis in a general German population. J Clin Periodontol. 40:977–985. 2013. View Article : Google Scholar : PubMed/NCBI

255 

Elks CE, Perry JR, Sulem P, Chasman DI, Franceschini N, He C, Lunetta KL, Visser JA, Byrne EM, Cousminer DL, et al: GIANT Consortium: Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 42:1077–1085. 2010. View Article : Google Scholar : PubMed/NCBI

256 

Haas J, Beer AG, Widschwendter P, Oberdanner J, Salzmann K, Sarg B, Lindner H, Herz J, Patsch JR and Marschang P: LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE-carrying lipoproteins. Atherosclerosis. 216:342–347. 2011. View Article : Google Scholar : PubMed/NCBI

257 

Poduslo SE, Huang R and Spiro A III: A genome screen of successful aging without cognitive decline identifies LRP1B by haplotype analysis. Am J Med Genet B Neuropsychiatr Genet. 153B:114–119. 2010.

258 

Scheffer DI, Zhang DS, Shen J, Indzhykulian A, Karavitaki KD, Xu YJ, Wang Q, Lin JJ, Chen ZY and Corey DP: XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia. Cell Rep. 10:1811–1818. 2015. View Article : Google Scholar : PubMed/NCBI

259 

Francis SP, Krey JF, Krystofiak ES, Cui R, Nanda S, Xu W, Kachar B, Barr-Gillespie PG and Shin JB: A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci. 35:1999–2014. 2015. View Article : Google Scholar : PubMed/NCBI

260 

Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J and Kreek MJ: Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet. 20:207–214. 2010. View Article : Google Scholar : PubMed/NCBI

261 

McCalmon SA, Desjardins DM, Ahmad S, Davidoff KS, Snyder CM, Sato K, Ohashi K, Kielbasa OM, Mathew M, Ewen EP, et al: Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ Res. 106:952–960. 2010. View Article : Google Scholar : PubMed/NCBI

262 

Wang Q, Lin JL, Erives AJ, Lin CI and Lin JJ: New insights into the roles of Xin repeat-containing proteins in cardiac development, function, and disease. Int Rev Cell Mol Biol. 310:89–128. 2014. View Article : Google Scholar : PubMed/NCBI

263 

Matsuoka R, Abe S, Tokoro F, Arai M, Noda T, Watanabe S, Horibe H, Fujimaki T, Oguri M, Kato K, et al: Association of six genetic variants with myocardial infarction. Int J Mol Med. 35:1451–1459. 2015.PubMed/NCBI

264 

Roy A, Guatimosim S, Prado VF, Gros R and Prado MA: Cholinergic activity as a new target in diseases of the heart. Mol Med. 20:527–537. 2014.PubMed/NCBI

265 

Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, et al: Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 56:205–218. 2014. View Article : Google Scholar : PubMed/NCBI

266 

Treviño LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi SC, et al: Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 41:1001–1005. 2009. View Article : Google Scholar : PubMed/NCBI

267 

Seghatoleslam A, Monabati A, Bozorg-Ghalati F, Nikseresht M, Bordbar MR, Rahvar M and Owji AA: Expression of UBE2Q2, a putative member of the ubiquitin-conjugating enzyme family in pediatric acute lymphoblastic leukemia. Arch Iran Med. 15:352–355. 2012.PubMed/NCBI

268 

Velma V, Broome HJ and Hebert MD: Regulated specific proteolysis of the Cajal body marker protein coilin. Chromosoma. 121:629–642. 2012. View Article : Google Scholar : PubMed/NCBI

269 

Gubanova E, Brown B, Ivanov SV, Helleday T, Mills GB, Yarbrough WG and Issaeva N: Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival. Clin Cancer Res. 18:1257–1267. 2012. View Article : Google Scholar : PubMed/NCBI

270 

Diamond G, Cedar H and Marcus M: A temperature-sensitive mutation in asparaginyl-tRNA synthetase causes cell-cycle arrest in early S phase. Exp Cell Res. 184:53–60. 1989. View Article : Google Scholar : PubMed/NCBI

271 

Reitzer LJ and Magasanik B: Asparagine synthetases of Klebsiella aerogenes: Properties and regulation of synthesis. J Bacteriol. 151:1299–1313. 1982.PubMed/NCBI

272 

Srikhanta YN, Atack JM, Beacham IR and Jennings MP: Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli. Biochem Biophys Res Commun. 436:362–365. 2013. View Article : Google Scholar : PubMed/NCBI

273 

Brigotti M, Rambelli F, Nanetti A, Zamboni M, Sperti S and Montanaro L: Isolation of an inhibitor of cell-free protein synthesis from Salmonella enteritidis. Microbiologica. 13:55–60. 1990.PubMed/NCBI

274 

Bartalena L, Martino E, Antonelli A, Pacchiarotti A, Robbins J and Pinchera A: Effect of the antileukemic agent L-asparaginase on thyroxine-binding globulin and albumin synthesis in cultured human hepatoma (HEP G2) cells. Endocrinology. 119:1185–1188. 1986. View Article : Google Scholar : PubMed/NCBI

275 

Stahl PD and Wainszelbaum MJ: Human-specific genes may offer a unique window into human cell signaling. Sci Signal. 2:pe592009.PubMed/NCBI

276 

Kong C, Lange JJ, Samovski D, Su X, Liu J, Sundaresan S and Stahl PD: Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun. 434:388–393. 2013. View Article : Google Scholar : PubMed/NCBI

277 

Frasa MA, Koessmeier KT, Ahmadian MR and Braga VM: Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol. 13:67–73. 2012. View Article : Google Scholar : PubMed/NCBI

278 

Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S and Li J: PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res. 62:5420–5424. 2002.PubMed/NCBI

279 

Seaman MN, Harbour ME, Tattersall D, Read E and Bright N: Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci. 122:2371–2382. 2009. View Article : Google Scholar : PubMed/NCBI

280 

Popovic D and Dikic I: TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 15:392–401. 2014. View Article : Google Scholar : PubMed/NCBI

281 

Frittoli E, Palamidessi A, Pizzigoni A, Lanzetti L, Garrè M, Troglio F, Troilo A, Fukuda M, Di Fiore PP, Scita G, et al: The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell. 19:1304–1316. 2008. View Article : Google Scholar : PubMed/NCBI

282 

He Z, Tian T, Guo D, Wu H, Chen Y, Zhang Y, Wan Q, Zhao H, Wang C, Shen H, et al: Cytoplasmic retention of a nucleocytoplasmic protein TBC1D3 by microtubule network is required for enhanced EGFR signaling. PLoS One. 9:e941342014. View Article : Google Scholar : PubMed/NCBI

283 

Scheufele F, Wolf B, Kruse M, Hartmann T, Lempart J, Muehlich S, Pfeiffer AF, Field LJ, Charron MJ, Pan ZQ, et al: Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling. Cell Signal. 26:233–239. 2014. View Article : Google Scholar :

284 

Wainszelbaum MJ, Liu J, Kong C, Srikanth P, Samovski D, Su X and Stahl PD: TBC1D3, a hominoid-specific gene, delays IRS-1 degradation and promotes insulin signaling by modulating p70 S6 kinase activity. PLoS One. 7:e312252012. View Article : Google Scholar : PubMed/NCBI

285 

Copps KD and White MF: Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 55:2565–2582. 2012. View Article : Google Scholar : PubMed/NCBI

286 

Chantranupong L, Wolfson RL and Sabatini DM: Nutrient-sensing mechanisms across evolution. Cell. 161:67–83. 2015. View Article : Google Scholar : PubMed/NCBI

287 

Mirkin SM: Expandable DNA repeats and human disease. Nature. 447:932–940. 2007. View Article : Google Scholar : PubMed/NCBI

288 

Shaw G and Kamen R: A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 46:659–667. 1986. View Article : Google Scholar : PubMed/NCBI

289 

Uversky VN: Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J. 282:1182–1189. 2015. View Article : Google Scholar : PubMed/NCBI

290 

Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R and Peti W: Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol. 17:459–464. 2010. View Article : Google Scholar : PubMed/NCBI

291 

Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K, Satoh K, Nishioka H, Matsuura Y, Mizoguchi A and Takai Y: Neurabin: A novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol. 139:951–961. 1997. View Article : Google Scholar : PubMed/NCBI

292 

Chen Y, Liu Y, Cottingham C, McMahon L, Jiao K, Greengard P and Wang Q: Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. J Neurosci. 32:2683–2695. 2012. View Article : Google Scholar : PubMed/NCBI

293 

Kim SS, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ and Zhuo M: Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain. 4:62011. View Article : Google Scholar : PubMed/NCBI

294 

Hu XD, Huang Q, Roadcap DW, Shenolikar SS and Xia H: Actin-associated neurabin-protein phosphatase-1 complex regulates hippocampal plasticity. J Neurochem. 98:1841–1851. 2006. View Article : Google Scholar : PubMed/NCBI

295 

Hu XD, Huang Q, Yang X and Xia H: Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus. J Neurosci. 27:4674–4686. 2007. View Article : Google Scholar : PubMed/NCBI

296 

Allen PB, Zachariou V, Svenningsson P, Lepore AC, Centonze D, Costa C, Rossi S, Bender G, Chen G, Feng J, et al: Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience. 140:897–911. 2006. View Article : Google Scholar : PubMed/NCBI

297 

Wu LJ, Ren M, Wang H, Kim SS, Cao X and Zhuo M: Neurabin contributes to hippocampal long-term potentiation and contextual fear memory. PLoS One. 3:e14072008. View Article : Google Scholar : PubMed/NCBI

298 

Finalet Ferreiro J, Rouhigharabaei L, Urbankova H, van der Krogt JA, Michaux L, Shetty S, Krenacs L, Tousseyn T, De Paepe P, Uyttebroeck A, et al: Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One. 9:e1029772014. View Article : Google Scholar : PubMed/NCBI

299 

Rowell JP, Simpson KL, Stott K, Watson M and Thomas JO: HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure. 20:2014–2024. 2012. View Article : Google Scholar : PubMed/NCBI

300 

Teufel DP, Freund SM, Bycroft M and Fersht AR: Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci USA. 104:7009–7014. 2007. View Article : Google Scholar : PubMed/NCBI

301 

Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, Seyfried NT, Hu WT, Liu Z, Wang JZ, et al: Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nat Med. 20:1254–1262. 2014. View Article : Google Scholar : PubMed/NCBI

302 

Hsieh JJ, Cheng EH and Korsmeyer SJ: Taspase1: A threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell. 115:293–303. 2003. View Article : Google Scholar : PubMed/NCBI

303 

Aleksandrov AA, Kota P, Aleksandrov LA, He L, Jensen T, Cui L, Gentzsch M, Dokholyan NV and Riordan JR: Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR. J Mol Biol. 401:194–210. 2010. View Article : Google Scholar : PubMed/NCBI

304 

Lewis HA, Zhao X, Wang C, Sauder JM, Rooney I, Noland BW, Lorimer D, Kearins MC, Conners K, Condon B, et al: Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J Biol Chem. 280:1346–1353. 2005. View Article : Google Scholar

305 

Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, et al: X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 381:335–341. 1996. View Article : Google Scholar : PubMed/NCBI

306 

Dho SH, Deverman BE, Lapid C, Manson SR, Gan L, Riehm JJ, Aurora R, Kwon KS and Weintraub SJ: Control of cellular Bcl-xL levels by deamidation-regulated degradation. PLoS Biol. 11:e10015882013. View Article : Google Scholar : PubMed/NCBI

307 

Lee JC, Kang SU, Jeon Y, Park JW, You JS, Ha SW, Bae N, Lubec G, Kwon SH, Lee JS, et al: Protein L-isoaspartyl methyltransferase regulates p53 activity. Nat Commun. 3:9272012. View Article : Google Scholar : PubMed/NCBI

308 

Dawson R, Müller L, Dehner A, Klein C, Kessler H and Buchner J: The N-terminal domain of p53 is natively unfolded. J Mol Biol. 332:1131–1141. 2003. View Article : Google Scholar : PubMed/NCBI

309 

Schon O, Friedler A, Freund S and Fersht AR: Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. J Mol Biol. 336:197–202. 2004. View Article : Google Scholar : PubMed/NCBI

310 

Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al: The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 295:L240–L263. 2008. View Article : Google Scholar : PubMed/NCBI

311 

Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, et al: Inflammation and Host Response to Injury, Large Scale Collaborative Research Program: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 110:3507–3512. 2013. View Article : Google Scholar

312 

Patterson PH: Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res. 204:313–321. 2009. View Article : Google Scholar : PubMed/NCBI

313 

Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K, Oda K, Motoyama N and Nakajima T: A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ. 6:314–325. 1999. View Article : Google Scholar : PubMed/NCBI

314 

Zhang J, Loyd MR, Randall MS, Waddell MB, Kriwacki RW and Ney PA: A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy. 8:1325–1332. 2012. View Article : Google Scholar : PubMed/NCBI

315 

Perutz M: Polar zippers: their role in human disease. Protein Sci. 3:1629–1637. 1994. View Article : Google Scholar : PubMed/NCBI

316 

Perutz MF, Pope BJ, Owen D, Wanker EE and Scherzinger E: Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA. 99:5596–5600. 2002. View Article : Google Scholar : PubMed/NCBI

317 

Simon M and Hancock JM: Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol. 10:R592009. View Article : Google Scholar : PubMed/NCBI

318 

Tompa P: Intrinsically unstructured proteins evolve by repeat expansion. Bioessays. 25:847–855. 2003. View Article : Google Scholar : PubMed/NCBI

319 

Li L and Moore PK: An overview of the biological significance of endogenous gases: New roles for old molecules. Biochem Soc Trans. 35:1138–1141. 2007. View Article : Google Scholar : PubMed/NCBI

320 

Levine SM, Rosen A and Casciola-Rosen LA: Anti-aminoacyl tRNA synthetase immune responses: Insights into the pathogenesis of the idiopathic inflammatory myopathies. Curr Opin Rheumatol. 15:708–713. 2003. View Article : Google Scholar : PubMed/NCBI

321 

Beaulande M, Tarbouriech N and Härtlein M: Human cytosolic asparaginyl-tRNA synthetase: cDNA sequence, functional expression in Escherichia coli and characterization as human autoantigen. Nucleic Acids Res. 26:521–524. 1998. View Article : Google Scholar : PubMed/NCBI

322 

Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Härtlein M, Kron M, Yang D, et al: Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med. 196:781–791. 2002. View Article : Google Scholar : PubMed/NCBI

323 

Park SJ, Kim SH, Choi HS, Rhee Y and Lim SK: Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone. 45:994–1003. 2009. View Article : Google Scholar : PubMed/NCBI

324 

Kron MA, Wang C, Vodanovic-Jankovic S, Howard OM and Kuhn LA: Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase. Mol Biochem Parasitol. 185:66–69. 2012. View Article : Google Scholar : PubMed/NCBI

325 

Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C and De Virgilio C: Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 46:105–110. 2012. View Article : Google Scholar : PubMed/NCBI

326 

Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A and Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 296:E592–E602. 2009. View Article : Google Scholar :

327 

Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C and Avruch J: Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 273:14484–14494. 1998. View Article : Google Scholar : PubMed/NCBI

328 

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 347:188–194. 2015. View Article : Google Scholar : PubMed/NCBI

329 

Rebsamen M, Pochini L, Stasyk T, de Araújo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, et al: SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 519:477–481. 2015. View Article : Google Scholar : PubMed/NCBI

330 

Bar-Peled L and Sabatini DM: Regulation of mTORC1 by amino acids. Trends Cell Biol. 24:400–406. 2014. View Article : Google Scholar : PubMed/NCBI

331 

Efeyan A, Zoncu R and Sabatini DM: Amino acids and mTORC1: From lysosomes to disease. Trends Mol Med. 18:524–533. 2012. View Article : Google Scholar : PubMed/NCBI

332 

Abraham RT: Cell biology. Making sense of amino acid sensing. Science. 347:128–129. 2015. View Article : Google Scholar : PubMed/NCBI

333 

Weng L, Quinlivan E, Gong Y, Beitelshees AL, Shahin MH, Turner ST, Chapman AB, Gums JG, Johnson JA, Frye RF, et al: Association of branched and aromatic amino acids levels with metabolic syndrome and impaired fasting glucose in hypertensive patients. Metab Syndr Relat Disord. 13:195–202. 2015. View Article : Google Scholar : PubMed/NCBI

334 

Björkegren JL, Kovacic JC, Dudley JT and Schadt EE: Genome-wide significant loci: How important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol. 65:830–845. 2015. View Article : Google Scholar : PubMed/NCBI

335 

Zhang X, Bailey SD and Lupien M: Laying a solid foundation for Manhattan - 'setting the functional basis for the post-GWAS era'. Trends Genet. 30:140–149. 2014. View Article : Google Scholar : PubMed/NCBI

336 

Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Gregersen PK, Worthington J, Klareskog L, Raychaudhuri S, et al: Quantifying missing heritability at known GWAS loci. PLoS Genet. 9:e10039932013. View Article : Google Scholar

337 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al: Finding the missing heritability of complex diseases. Nature. 461:747–753. 2009. View Article : Google Scholar : PubMed/NCBI

338 

Cross-Disorder Group of the Psychiatric Genomics Consortium: Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet. 381:1371–1379. 2013. View Article : Google Scholar : PubMed/NCBI

339 

Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, Bibel M and Barde YA: Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 467:59–63. 2010. View Article : Google Scholar : PubMed/NCBI

340 

Yoon K, Jang HD and Lee SY: Direct interaction of Smac with NADE promotes TRAIL-induced apoptosis. Biochem Biophys Res Commun. 319:649–654. 2004. View Article : Google Scholar : PubMed/NCBI

341 

Zhang CK, Stein PB, Liu J, Wang Z, Yang R, Cho JH, Gregersen PK, Aerts JM, Zhao H, Pastores GM, et al: Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hematol. 87:377–383. 2012. View Article : Google Scholar : PubMed/NCBI

342 

Bultron G, Kacena K, Pearson D, Boxer M, Yang R, Sathe S, Pastores G and Mistry PK: The risk of Parkinson's disease in type 1 Gaucher disease. J Inherit Metab Dis. 33:167–173. 2010. View Article : Google Scholar : PubMed/NCBI

343 

Urano M, Nagao T, Miyabe S, Ishibashi K, Higuchi K and Kuroda M: Characterization of mammary analogue secretory carcinoma of the salivary gland: Discrimination from its mimics by the presence of the ETV6-NTRK3 translocation and novel surrogate markers. Hum Pathol. 46:94–103. 2015. View Article : Google Scholar

344 

Lannon CL and Sorensen PH: ETV6-NTRK3: A chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol. 15:215–223. 2005. View Article : Google Scholar : PubMed/NCBI

345 

Genevois AL, Ichim G, Coissieux MM, Lambert MP, Lavial F, Goldschneider D, Jarrosson-Wuilleme L, Lepinasse F, Gouysse G, Herceg Z, et al: Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci USA. 110:3017–3022. 2013. View Article : Google Scholar : PubMed/NCBI

346 

Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD and Grady WM: NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet. 9:e10035522013. View Article : Google Scholar : PubMed/NCBI

347 

Ivanov SV, Panaccione A, Brown B, Guo Y, Moskaluk CA, Wick MJ, Brown JL, Ivanova AV, Issaeva N, El-Naggar AK, et al: TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene. 32:3698–3710. 2013. View Article : Google Scholar

348 

Kim MS, Kim GM, Choi YJ, Kim HJ, Kim YJ and Jin W: TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1. Mol Cells. 36:177–184. 2013. View Article : Google Scholar : PubMed/NCBI

349 

Weinkauf C, Salvador R and Pereiraperrin M: Neurotrophin receptor TrkC is an entry receptor for Trypanosoma cruzi in neural, glial, and epithelial cells. Infect Immun. 79:4081–4087. 2011. View Article : Google Scholar : PubMed/NCBI

350 

Capewell P, Cooper A, Clucas C, Weir W and Macleod A: A co-evolutionary arms race: Trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology. 142(Suppl 1): S108–S119. 2015. View Article : Google Scholar : PubMed/NCBI

351 

Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N and Marks AR: PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell. 101:365–376. 2000. View Article : Google Scholar : PubMed/NCBI

352 

Zhou L, He M, Mo Z, Wu C, Yang H, Yu D, Yang X, Zhang X, Wang Y, Sun J, et al: A genome wide association study identifies common variants associated with lipid levels in the Chinese population. PLoS One. 8:e824202013. View Article : Google Scholar

353 

Del-Aguila JL, Beitelshees AL, Cooper-Dehoff RM, Chapman AB, Gums JG, Bailey K, Gong Y, Turner ST, Johnson JA and Boerwinkle E: Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J. 14:35–40. 2014. View Article : Google Scholar

354 

Jeong SW, Chung M, Park SJ, Cho SB and Hong KW: Genome-wide association study of metabolic syndrome in koreans. Genomics Inform. 12:187–194. 2014. View Article : Google Scholar

355 

Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 447:661–678. 2007. View Article : Google Scholar : PubMed/NCBI

356 

Eirís N, González-Lara L, Santos-Juanes J, Queiro R, Coto E and Coto-Segura P: Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J Dermatol Sci. 75:167–172. 2014. View Article : Google Scholar : PubMed/NCBI

357 

Zhang M, Cai ZR, Zhang B, Cai X, Li W, Guo Z and Ma L: Functional polymorphisms in interleukin-23 receptor and susceptibility to coronary artery disease. DNA Cell Biol. 33:891–897. 2014. View Article : Google Scholar : PubMed/NCBI

358 

Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, Kawagoe T, Ito N, Kera J, Okada E, Yatsu K, et al: Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet's disease susceptibility loci. Nat Genet. 42:703–706. 2010. View Article : Google Scholar : PubMed/NCBI

359 

Daryabor G, Mahmoudi M, Jamshidi A, Nourijelyani K, Amirzargar A, Ahmadzadeh N, Farhadi E and Nicknam MH: Determination of IL-23 receptor gene polymorphism in Iranian patients with ankylosing spondylitis. Eur Cytokine Netw. 25:24–29. 2014.PubMed/NCBI

360 

Zhang F, Liu H, Chen S, Low H, Sun L, Cui Y, Chu T, Li Y, Fu X, Yu Y, et al: Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet. 43:1247–1251. 2011. View Article : Google Scholar : PubMed/NCBI

361 

Hornakova T, Staerk J, Royer Y, Flex E, Tartaglia M, Constantinescu SN, Knoops L and Renauld JC: Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers. J Biol Chem. 284:6773–6781. 2009. View Article : Google Scholar : PubMed/NCBI

362 

Leonard WJ: The defective gene in X-linked severe combined immunodeficiency encodes a shared interleukin receptor subunit: Implications for cytokine pleiotropy and redundancy. Curr Opin Immunol. 6:631–635. 1994. View Article : Google Scholar : PubMed/NCBI

363 

Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y, Ni M, Meyer CA, Igarashi K, Kanno J, et al: PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol. 13:668–675. 2011. View Article : Google Scholar : PubMed/NCBI

364 

Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JA, et al: Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 41:1006–1010. 2009. View Article : Google Scholar : PubMed/NCBI

365 

Chokkalingam AP, Hsu LI, Metayer C, Hansen HM, Month SR, Barcellos LF, Wiemels JL and Buffler PA: Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control. 24:1789–1795. 2013. View Article : Google Scholar : PubMed/NCBI

366 

Xu H, Cheng C, Devidas M, Pei D, Fan Y, Yang W, Neale G, Scheet P, Burchard EG, Torgerson DG, et al: ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol. 30:751–757. 2012. View Article : Google Scholar : PubMed/NCBI

367 

Gutiérrez-Camino Á, López-López E, Martín-Guerrero I, Sánchez-Toledo J, García de Ann N, Carboné Bañeres A, García-Miguel P, Navajas A and García-Orad Á: Intron 3 of the ARID5B gene: A hot spot for acute lymphoblastic leukemia susceptibility. J Cancer Res Clin Oncol. 139:1879–1886. 2013. View Article : Google Scholar : PubMed/NCBI

368 

Guo LM, Xi JS, Ma Y, Shao L, Nie CL and Wang GJ: ARID5B gene rs10821936 polymorphism is associated with childhood acute lymphoblastic leukemia: a meta-analysis based on 39,116 subjects. Tumour Biol. 35:709–713. 2014. View Article : Google Scholar

369 

Lin CY, Li MJ, Chang JG, Liu SC, Weng T, Wu KH, Yang SF, Huang FK, Lo WY and Peng CT: High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis. 52:140–145. 2014. View Article : Google Scholar

370 

Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysi PG, Ramdas WD, et al: NEIGHBOR Consortium: Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet. 45:155–163. 2013. View Article : Google Scholar : PubMed/NCBI

371 

Engel SM, Joubert BR, Wu MC, Olshan AF, Håberg SE, Ueland PM, Nystad W, Nilsen RM, Vollset SE, Peddada SD, et al: Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort. Am J Epidemiol. 179:834–842. 2014. View Article : Google Scholar : PubMed/NCBI

372 

Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, et al: Wellcome Trust Case Control Consortium: Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 41:666–676. 2009. View Article : Google Scholar : PubMed/NCBI

373 

Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Kawaguchi T, Stahl EA, Kurreeman FA, Nishida N, et al: Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet. 44:511–516. 2012. View Article : Google Scholar : PubMed/NCBI

374 

Drago A, Giegling I, Schäfer M, Hartmann AM, Konte B, Friedl M, Serretti A and Rujescu D: Genome-wide association study supports the role of the immunological system and of the neurodevelopmental processes in response to haloperidol treatment. Pharmacogenet Genomics. 24:314–319. 2014. View Article : Google Scholar : PubMed/NCBI

375 

Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, Hirankarn N, et al: Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet. 92:41–51. 2013. View Article : Google Scholar : PubMed/NCBI

376 

Whitson RH, Tsark W, Huang TH and Itakura K: Neonatal mortality and leanness in mice lacking the ARID transcription factor Mrf-2. Biochem Biophys Res Commun. 312:997–1004. 2003. View Article : Google Scholar : PubMed/NCBI

377 

Yamakawa T, Sugimoto K, Whitson RH and Itakura K: Modulator recognition factor-2 regulates triglyceride metabolism in adipocytes. Biochem Biophys Res Commun. 391:277–281. 2010. View Article : Google Scholar

378 

Wang G, Watanabe M, Imai Y, Hara K, Manabe I, Maemura K, Horikoshi M, Ozeki A, Itoh C, Sugiyama T, et al: Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population. J Hum Genet. 57:727–733. 2012. View Article : Google Scholar : PubMed/NCBI

379 

Urayama KY, Chokkalingam AP, Manabe A and Mizutani S: Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia. Int J Hematol. 97:3–19. 2013. View Article : Google Scholar

380 

Prakash T, Sharma VK, Adati N, Ozawa R, Kumar N, Nishida Y, Fujikake T, Takeda T and Taylor TD: Expression of conjoined genes: Another mechanism for gene regulation in eukaryotes. PLoS One. 5:e132842010. View Article : Google Scholar : PubMed/NCBI

381 

Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W and Bryant SH: The NCBI BioSystems database. Nucleic Acids Res. 38:D492–D496. 2010. View Article : Google Scholar :

382 

Parge HE, Arvai AS, Murtari DJ, Reed SI and Tainer JA: Human CksHs2 atomic structure: A role for its hexameric assembly in cell cycle control. Science. 262:387–395. 1993. View Article : Google Scholar : PubMed/NCBI

383 

Liberal V, Martinsson-Ahlzén HS, Liberal J, Spruck CH, Widschwendter M, McGowan CH and Reed SI: Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. Proc Natl Acad Sci USA. 109:2754–2759. 2012. View Article : Google Scholar :

384 

Agirre X, Román-Gómez J, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Navarro G, Vázquez I, Zalacain M, Calasanz MJ, Heiniger A, et al: ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene. 25:1862–1870. 2006. View Article : Google Scholar

385 

Khattar V and Thottassery JV: Cks1: Structure, emerging roles and implications in multiple cancers. J Cancer Ther. 4:1341–1354. 2013. View Article : Google Scholar

386 

Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, et al: Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS. 122:206–214. 2014. View Article : Google Scholar

387 

Vigneron AM and Vousden KH: An indirect role for ASPP1 in limiting p53-dependent p21 expression and cellular senescence. EMBO J. 31:471–480. 2012. View Article : Google Scholar :

388 

Valaperta R, Rizzo V, Lombardi F, Verdelli C, Piccoli M, Ghiroldi A, Creo P, Colombo A, Valisi M, Margiotta E, et al: Adenine phosphoribosyltransferase (APRT) deficiency: Identification of a novel nonsense mutation. BMC Nephrol. 15:1022014. View Article : Google Scholar : PubMed/NCBI

389 

Ibrahim L, Aladle D, Mansour A, Hammad A, Al Wakeel AA and Abd El-Hameed SA: Expression and prognostic significance of livin/BIRC7 in childhood acute lymphoblastic leukemia. Med Oncol. 31:9412014. View Article : Google Scholar : PubMed/NCBI

390 

Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ and McLoughlin RM: Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 8:e10030922012. View Article : Google Scholar

391 

Hawkes WC, Wang TT, Alkan Z, Richter BD and Dawson K: Selenoprotein W modulates control of cell cycle entry. Biol Trace Elem Res. 131:229–244. 2009. View Article : Google Scholar : PubMed/NCBI

392 

Pekarsky Y, Drusco A, Kumchala P, Croce CM and Zanesi N: The long journey of TCL1 transgenic mice: Lessons learned in the last 15 years. Gene Expr. 16:129–135. 2015. View Article : Google Scholar : PubMed/NCBI

393 

Chalouhi N, Theofanis T, Starke RM, Zanaty M, Jabbour P, Dooley SA and Hasan D: Potential role of granulocyte-monocyte colony-stimulating factor in the progression of intracranial aneurysms. DNA Cell Biol. 34:78–81. 2015. View Article : Google Scholar

394 

Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin SY, Richards HB, Soranzo N, et al: GIANT Consortium; MAGIC Investigators; DIAGRAM Consortium; MuTHER Consortium: Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 43:561–564. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Banerji J: Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 36: 607-626, 2015.
APA
Banerji, J. (2015). Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). International Journal of Molecular Medicine, 36, 607-626. https://doi.org/10.3892/ijmm.2015.2285
MLA
Banerji, J."Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)". International Journal of Molecular Medicine 36.3 (2015): 607-626.
Chicago
Banerji, J."Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)". International Journal of Molecular Medicine 36, no. 3 (2015): 607-626. https://doi.org/10.3892/ijmm.2015.2285
Copy and paste a formatted citation
x
Spandidos Publications style
Banerji J: Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 36: 607-626, 2015.
APA
Banerji, J. (2015). Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). International Journal of Molecular Medicine, 36, 607-626. https://doi.org/10.3892/ijmm.2015.2285
MLA
Banerji, J."Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)". International Journal of Molecular Medicine 36.3 (2015): 607-626.
Chicago
Banerji, J."Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)". International Journal of Molecular Medicine 36, no. 3 (2015): 607-626. https://doi.org/10.3892/ijmm.2015.2285
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team