Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2015 Volume 36 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2015 Volume 36 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a

  • Authors:
    • Lirui Zhang
    • Xiaofeng Yang
    • Xu Li
    • Chen Li
    • Le Zhao
    • Yuanyuan Zhou
    • Huilian Hou
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China, Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China, Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 957-966
    |
    Published online on: August 24, 2015
       https://doi.org/10.3892/ijmm.2015.2324
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Drug resistance remains a major challenge in cancer therapy. Butein, a polyphenolic compound, has been shown to exhibit anticancer activity through the inhibition of the activation of the protein kinase B (PKB/AKT) and mitogen-activated protein kinase (MAPK) pathways, which are two pathways known to be involved in resistance to cisplatin. Hence, we hypotheiszed that butein may be a chemosensitizer to cisplatin. In the present study, we demonstrated that butein synergistically enhanced the growth inhibitory and apoptosis-inducing effects of cisplatin on HeLa cells. Moreover, the combination of butein and cisplatin led to G1 phase arrest. We then aimed to explore the underlying mechanisms. We found that butein inhibited the activation of AKT, extracellular signal-regulated kinase (ERKs) and p38 kinases in the presence of cisplatin. The use of the AKT inhibitor, LY294002, in combination with cisplatin, induced an increase in apoptosis compared to treatment with cisplatin alone, although this effect was not as prominent as that exerted by butein in combination with cisplatin. Of note, the inhibition of ERK or p38 MAPK by U0126 or SB203580, respectively, decreased the apoptosis induced by cisplatin; however, enhanced apoptotic effects were observed with the use of ERK/p38 MAPK inhibitor in combination with butein. These data suggest that the AKT and ERK/p38 MAPK pathways are involved in the synergistic effects of butein and cisplatin. Furthermore, co-treatment with butein and cisplatin promoted the nuclear translocation and expression of forkhead box O3a (FoxO3 or FoxO3a). FoxO3a may be the key molecule on which these pathways converge and is thus implicated in the synergistic effects of butein and cisplatin. This was further confirmed by the RNAi-mediated suppression of FoxO3a. FoxO3a target genes involved in cell cycle progression and apoptosis were also investigated, and combined treatment with butein and cisplatin resulted in the downregulation of cyclin D1 and Bcl-2 and the upregulation of p27 and Bax. In addition, the combination of both agents markedly inhibited tumor growth and increased the expression of FoxO3a in mouse tumor xenograft models of cervical cancer. Taken together, to the best of our knowledge, our results reveal for the first time that butein sensitizes cervical cancer cells to cisplatin in vitro and in vivo, and these effects of butien may be related to the inhibition of the activation of the AKT and ERK/p38 MAPK pathways by targeting FoxO3a.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Basu A and Krishnamurthy S: Cellular responses to cisplatin-induced DNA damage. J Nuleic Acids 2010: Article ID 201367. 2010.

2 

Brozovic A and Osmak M: Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett. 251:1–16. 2007. View Article : Google Scholar

3 

Wang Z, Hou J, Lu L, Qi Z, Sun J, Gao W, Meng J, Wang Y, Sun H, Gu H, et al: Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One. 8:e791172013. View Article : Google Scholar : PubMed/NCBI

4 

Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D and Anto RJ: Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem. 280:6301–6308. 2005. View Article : Google Scholar

5 

Kang DG, Lee AS, Mun YJ, Woo WH, Kim YC, Sohn EJ, Moon MK and Lee HS: Butein ameliorates renal concentrating ability in cisplatin-induced acute renal failure in rats. Biol Pharm Bull. 27:366–370. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Wang Y, Chan FL, Chen S and Leung LK: The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase. Life Sci. 77:39–51. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Cho SG, Woo SM and Ko SG: Butein suppresses breast cancer growth by reducing a production of intracellular reactive oxygen species. J Exp Clin Cancer Res. 33(51)2014. View Article : Google Scholar : PubMed/NCBI

8 

Yit CC and Das NP: Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation. Cancer Lett. 82:65–72. 1994. View Article : Google Scholar : PubMed/NCBI

9 

Ma CY, Ji WT, Chueh FS, Yang JS, Chen PY, Yu CC and Chung JG: Butein inhibits the migration and invasion of SK-HEP-1 human hepatocarcinoma cells through suppressing the ERK, JNK, p38, and uPA signaling multiple pathways. J Agric Food Chem. 59:9032–9038. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Zhang L, Chen W and Li X: A novel anticancer effect of butein: Inhibition of invasion through the ERK1/2 and NF-kappa B signaling pathways in bladder cancer cells. FEBS Lett. 582:1821–1828. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Lau GT, Huang H, Lin SM and Leung LK: Butein downregulates phorbol 12-myristate 13-acetate-induced COX-2 transcriptional activity in cancerous and non-cancerous breast cells. Eur J Pharmacol. 648:24–30. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Khan N, Adhami VM, Afaq F and Mukhtar H: Butein induces apoptosis and inhibits prostate tumor growth in vitro and in vivo. Antioxid Redox Signal. 16:1195–1204. 2012. View Article : Google Scholar :

13 

Jin ZJ: About the evaluation of drug combination. Acta Pharmacol Sin. 25:146–147. 2004.PubMed/NCBI

14 

Moon DO, Kim MO, Choi YH, Hyun JW, Chang WY and Kim GY: Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett. 288:204–213. 2010. View Article : Google Scholar

15 

Shiota M, Yokomizo A, Kashiwagi E, Tada Y, Inokuchi J, Tatsugami K, Kuroiwa K, Uchiumi T, Seki N and Naito S: Foxo3a expression and acetylation regulate cancer cell growth and sensitivity to cisplatin. Cancer Sci. 101:1177–1185. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Khatri S, Yepiskoposyan H, Gallo CA, Tandon P and Plas DR: FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. J Biol Chem. 285:15960–15965. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Yang W, Dolloff NG and El-Deiry WS: ERK and MDM2 prey on FOXO3a. Nat Cell Biol. 10:125–126. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Germani A, Matrone A, Grossi V, Peserico A, Sanese P, Liuzzi M, Palermo R, Murzilli S, Campese AF, Ingravallo G, et al: Targeted therapy against chemoresistant colorectal cancers: Inhibition of p38α modulates the effect of cisplatin in vitro and in vivo through the tumor suppressor FoxO3A. Cancer Lett. 344:110–118. 2014. View Article : Google Scholar

19 

Quast SA, Berger A, Plötz M and Eberle J: Sensitization of melanoma cells for TRAIL-induced apoptosis by activation of mitochondrialpathways via Bax. Eur J Cell Biol. 93:42–48. 2014. View Article : Google Scholar

20 

Kim MJ, Yun HS, Hong EH, Lee SJ, Baek JH, Lee CW, Yim JH, Kim JS, Park JK, Um HD and Hwang SG: Depletion of end-binding protein 1 (EB1) promotes apoptosis of human non-small-cell lung cancer cells via reactive oxygen species and Bax-mediated mitochondrial dysfunction. Cancer Lett. 339:15–24. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Hsu HH, Cheng LH, Ho TJ, Kuo WW, Lin YM, Chen MC, Lee NH, Tsai FJ, Tsai KH and Huang CY: Apicidin-resistant HA22T hepato-cellular carcinoma cells massively promote pro-survival capability via IGF-IR/PI3K/Akt signaling pathway activation. Tumour Biol. 35:303–313. 2014. View Article : Google Scholar

22 

Persons DL, Yazlovitskaya EM, Cui W and Pelling JC: Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: Inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res. 5:1007–1014. 1999.PubMed/NCBI

23 

Wang J, Zhou JY and Wu GS: Bim protein degradation contributes to cisplatin resistance. J Biol Chem. 286:22384–22392. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Wang X, Martindale JL and Holbrook NJ: Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem. 275:39435–39443. 2000. View Article : Google Scholar : PubMed/NCBI

25 

Wang X, Govind S, Sajankila SP, Mi L, Roy R and Chung FL: Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol Nutr Food Res. 55:1572–1581. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Sheridan C, Brumatti G, Elgendy M, Brunet M and Martin SJ: An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. Oncogene. 29:6428–6441. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Guégan JP, Ezan F, Théret N, Langouët S and Baffet G: MAPK signaling in cisplatin-induced death: Predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis. 34:38–47. 2013. View Article : Google Scholar

28 

Wang Y, Lin B, Wu J, Zhang H and Wu B: Metformin inhibits the proliferation of A549/CDDP cells by activating p38 mitogen-activated protein kinase. Oncol Lett. 8:1269–1274. 2014.PubMed/NCBI

29 

Pereira L, Igea A, Canovas B, Dolado I and Nebreda AR: Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med. 5:1759–1774. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Feng R, Zhai WL, Yang HY, Jin H and Zhang QX: Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK. Biochem Biophys Res Commun. 406:299–304. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Esteva FJ, Sahin AA, Smith TL, Yang Y, Pusztai L, Nahta R, Buchholz TA, Buzdar AU, Hortobagyi GN and Bacus SS: Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer. 100:499–506. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Wang SN, Lee KT, Tsai CJ, Chen YJ and Yeh YT: Phosphorylated p38 and JNK MAPK proteins in hepatocellular carcinoma. Eur J Clin Invest. 42:1295–1301. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A and Nebreda AR: p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell. 11:191–205. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Voisset E, Oeztuerk-Winder F, Ruiz EJ and Ventura JJ: p38α negatively regulates survival and malignant selection of transformed bronchioalveolar stem cells. PLoS One. 8:e789112013. View Article : Google Scholar

35 

Piaggi S, Raggi C, Corti A, Pitzalis E, Mascherpa MC, Saviozzi M, Pompella A and Casini AF: Glutathione transferase omega 1–1 (GSTO1–1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity. Carcinogenesis. 31:804–811. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Ishitsuka A, Fujine E, Mizutani Y, Tawada C, Kanoh H, Banno Y and Seishima M: FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the down-regulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. Int J Mol Med. 34:1169–1174. 2014.PubMed/NCBI

37 

Berra E, Diaz-Meco MT and Moscat J: The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem. 273:10792–10797. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Chiacchiera F, Grossi V, Cappellari M, Peserico A, Simonatto M, Germani A, Russo S, Moyer MP, Resta N, Murzilli S, et al: Blocking p38/ERK crosstalk affects colorectal cancer growth by inducing apoptosis in vitro and in preclinical mouse models. Cancer Lett. 324:98–108. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, et al: IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 117:225–237. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, et al: ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol. 10:138–148. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Chiacchiera F, Matrone A, Ferrari E, Ingravallo G, Lo Sasso G, Murzilli S, Petruzzelli M, Salvatore L, Moschetta A and Simone C: p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ. 16:1203–1214. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Chiacchiera F and Simone C: Inhibition of p38alpha unveils an AMPK-FoxO3A axis linking autophagy to cancer-specific metabolism. Autophagy. 5:1030–1033. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Zhang X, Tang N, Hadden TJ and Rishi AK: Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813:1978–1986. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Ho KK, Myatt SS and Lam EW: Many forks in the path: Cycling with FoxO. Oncogene. 27:2300–2311. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM and Medema RH: Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 22:7842–7852. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Massagué J: G1 cell-cycle control and cancer. Nature. 432:298–306. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Lee MT, Ho SM, Tarapore P, Chung I and Leung YK: Estrogen receptor β isoform 5 confers sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis through interaction with Bcl2L12. Neoplasia. 15:1262–1271. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Kiyoshima T1, Yoshida H, Wada H, Nagata K, Fujiwara H, Kihara M, Hasegawa K, Someya H and Sakai H: Chemoresistance to concanamycin A1 in human oral squamous cell carcinoma is attenuated by an HDAC inhibitor partly via suppression of Bcl-2 expression. PLoS One. 8:e809982013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang L, Yang X, Li X, Li C, Zhao L, Zhou Y and Hou H: Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. Int J Mol Med 36: 957-966, 2015.
APA
Zhang, L., Yang, X., Li, X., Li, C., Zhao, L., Zhou, Y., & Hou, H. (2015). Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. International Journal of Molecular Medicine, 36, 957-966. https://doi.org/10.3892/ijmm.2015.2324
MLA
Zhang, L., Yang, X., Li, X., Li, C., Zhao, L., Zhou, Y., Hou, H."Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a". International Journal of Molecular Medicine 36.4 (2015): 957-966.
Chicago
Zhang, L., Yang, X., Li, X., Li, C., Zhao, L., Zhou, Y., Hou, H."Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a". International Journal of Molecular Medicine 36, no. 4 (2015): 957-966. https://doi.org/10.3892/ijmm.2015.2324
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang L, Yang X, Li X, Li C, Zhao L, Zhou Y and Hou H: Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. Int J Mol Med 36: 957-966, 2015.
APA
Zhang, L., Yang, X., Li, X., Li, C., Zhao, L., Zhou, Y., & Hou, H. (2015). Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. International Journal of Molecular Medicine, 36, 957-966. https://doi.org/10.3892/ijmm.2015.2324
MLA
Zhang, L., Yang, X., Li, X., Li, C., Zhao, L., Zhou, Y., Hou, H."Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a". International Journal of Molecular Medicine 36.4 (2015): 957-966.
Chicago
Zhang, L., Yang, X., Li, X., Li, C., Zhao, L., Zhou, Y., Hou, H."Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a". International Journal of Molecular Medicine 36, no. 4 (2015): 957-966. https://doi.org/10.3892/ijmm.2015.2324
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team