Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2015 Volume 36 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2015 Volume 36 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression

  • Authors:
    • Bo Liu
    • Song Wu
    • Lihua Han
    • Chaoyue Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1572-1582
    |
    Published online on: October 20, 2015
       https://doi.org/10.3892/ijmm.2015.2382
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Both β-catenin (β-cat) and osterix (OSX) are known to be essential for embryonic and postnatal osteoblast differentiation and bone growth. In the present study, we explored the crosstalk between β-cat signaling and OSX, and assessed its effect on the osteoblastogenic differentiation of human pre-osteoblastic cells (MG-63) and bone marrow stromal cells (HS-27A). In the HS-27A and MG-63 cells, the selective β-cat signaling inhibitor, CCT031374, and the stable overexpression of a constitutively active β-cat mutant respectively decreased and increased the cytoplasmic/soluble β-cat levels, and respectively decreased and increased TOPflash reporter activity, the mRNA levels of β-cat signaling target genes c-Myc and c-Jun, as well as the mRNA and protein expression levels of OSX. Mutational analyses and electrophoretic mobility shift assays revealed that the increased binding activity of c-Jun at a putative c-Jun binding site (-858/-852 relative to the translation start codon, which was designated as +1) in the human OSX gene promoter was required for teh β-cat signaling-induced expression of OSX in the HS-27A and MG-63 cells. During osteoblastogenic culture, stimulating β-cat signaling activity by the stable overexpression of the active β-cat mutant markedly increased alkaline phosphatase (ALP) activity and calcium deposition in the HS-27A and MG-63 cells, which was abolished by knocking down OSX using shRNA. On the other hand, the inhibition of β-cat signaling activity with CCT031374 decreased the ALP activity and calcium deposition, which was completely reversed by the overexpression of OSX. On the whole, the findings of our study suggest that β-cat signaling upregulates the expression of OSX in human pre-osteoblastic and bone marrow stromal cells by trans-activating the OSX gene promoter mainly through increased c-Jun binding at a putative c-Jun binding site; OSX largely mediates β-cat signaling-induced osteoblastogenic differentiation. The present study provides new insight into the molecular mechanisms underlying osteoblast differentiation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H, Darnay BG and de Crombrugghe B: Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA. 107:12919–12924. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Rodda SJ and McMahon AP: Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 133:3231–3244. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Zhang C, Cho K, Huang Y, Lyons JP, Zhou X, Sinha K, McCrea PD and de Crombrugghe B: Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci USA. 105:6936–6941. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Timpson NJ, Tobias JH, Richards JB, Soranzo N, Duncan EL, Sims AM, Whittaker P, Kumanduri V, Zhai G, Glaser B, et al: Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum Mol Genet. 18:1510–1517. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Snorradóttir S, Center JR, et al: New sequence variants associated with bone mineral density. Nat Genet. 41:15–17. 2009. View Article : Google Scholar

6 

Chesire DR and Isaacs WB: Beta-catenin signaling in prostate cancer: an early perspective. Endocr Relat Cancer. 10:537–560. 2003. View Article : Google Scholar

7 

Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL and Williams BO: Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 280:21162–21168. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Liu Y and Jiang YG: Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation via β-catenin signaling. PLoS One. 9:e1113432014. View Article : Google Scholar

9 

Cawthorn WP, Heyd F, Hegyi K and Sethi JK: Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ. 14:1361–1373. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Sun P, Xiong H, Kim TH, Ren B and Zhang Z: Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin-1 signaling potentiates proliferation and survival of prostate cancer cells. Mol Pharmacol. 69:520–531. 2006. View Article : Google Scholar

11 

Messeguer X, Escudero R, Farré D, Núñez O, Martínez J and Albà MM: PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 18:333–334. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM and Messeguer X: Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31:3651–3653. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Wang H, Zhou M, Brand J and Huang L: Inflammation activates the interferon signaling pathways in taste bud cells. J Neurosci. 27:10703–10713. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Johnson DR, Levanat S and Bale AE: Direct molecular analysis of archival tumor tissue for loss of heterozygosity. Biotechniques. 19:190–192. 1995.PubMed/NCBI

15 

Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B and Yildirim-Ayan E: Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Biomed Mater. 8(045011)2013. View Article : Google Scholar : PubMed/NCBI

16 

Stratford EW, Daffinrud J, Munthe E, Castro R, Waaler J, Krauss S and Myklebost O: The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines. Cancer Med. 3:36–46. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Ferreira E, Porter RM, Wehling N, O'Sullivan RP, Liu F, Boskey A, Estok DM, Harris MB, Vrahas MS, Evans CH and Wells JW: Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem. 288:29494–29505. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Ewan K, Pajak B, Stubbs M, Todd H, Barbeau O, Quevedo C, Botfield H, Young R, Ruddle R, Samuel L, et al: A useful approach to identify novel small-molecule inhibitors of Wnt-dependent transcription. Cancer Res. 70:5963–5973. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA and Mikos AG: Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA. 100:14683–14688. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Dias NJ and Selcer KW: Steroid sulfatase mediated growth Sof human MG-63 pre-osteoblastic cells. Steroids. 88:77–82. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Kim HK, Kim MG and Leem KH: Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct. 5:573–578. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden DT, et al: A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia. 25:1174–1181. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Halazonetis TD, Georgopoulos K, Greenberg ME and Leder P: c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell. 55:917–924. 1988. View Article : Google Scholar : PubMed/NCBI

24 

Stein GS and Lian JB: Molecular mechanisms mediating developmental and hormone-regulated expression of genes in osteoblasts: an integrated relationship of cell growth and differentiation. Cellular and molecular biology of bone. Noda M: Academic Press; Tokyo: pp. 47–95. 1993

25 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR and de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu B, Wu S, Han L and Zhang C: β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. Int J Mol Med 36: 1572-1582, 2015.
APA
Liu, B., Wu, S., Han, L., & Zhang, C. (2015). β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. International Journal of Molecular Medicine, 36, 1572-1582. https://doi.org/10.3892/ijmm.2015.2382
MLA
Liu, B., Wu, S., Han, L., Zhang, C."β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression". International Journal of Molecular Medicine 36.6 (2015): 1572-1582.
Chicago
Liu, B., Wu, S., Han, L., Zhang, C."β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression". International Journal of Molecular Medicine 36, no. 6 (2015): 1572-1582. https://doi.org/10.3892/ijmm.2015.2382
Copy and paste a formatted citation
x
Spandidos Publications style
Liu B, Wu S, Han L and Zhang C: β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. Int J Mol Med 36: 1572-1582, 2015.
APA
Liu, B., Wu, S., Han, L., & Zhang, C. (2015). β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression. International Journal of Molecular Medicine, 36, 1572-1582. https://doi.org/10.3892/ijmm.2015.2382
MLA
Liu, B., Wu, S., Han, L., Zhang, C."β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression". International Journal of Molecular Medicine 36.6 (2015): 1572-1582.
Chicago
Liu, B., Wu, S., Han, L., Zhang, C."β-catenin signaling induces the osteoblastogenic differentiation of human pre-osteoblastic and bone marrow stromal cells mainly through the upregulation of osterix expression". International Journal of Molecular Medicine 36, no. 6 (2015): 1572-1582. https://doi.org/10.3892/ijmm.2015.2382
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team