Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2016 Volume 37 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2016 Volume 37 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)

  • Authors:
    • Xueyuan Li
    • Xinjie Bao
    • Renzhi Wang
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongdan, Dong Cheng, Beijing 100005, P.R. China
  • Pages: 271-283
    |
    Published online on: December 10, 2015
       https://doi.org/10.3892/ijmm.2015.2428
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Despite decades of laboratory and clinical research, Alzheimer's disease (AD) is still the leading cause of dementia in adults and there are no curative therapies currently available for this disease. This may be due to the pathological features of AD, which include extensive extracellular amyloid plaques and intracellular neurofibrillary tangles, as well as subsequent neuronal and synaptic loss, which begin to appear several years prior to memory loss and the damge is already irreversible and extensive at the time of clinical diagnosis. The poor therapeutic effects of current treatments necessitate the introduction of experimental models able to replicate AD pathology, particularly in the pre-symptomatic stage, and then to explore preventive and therapeutic strategies. In response to this necessity, various experimental models reproducing human AD pathology have been developed, which are also useful tools for therapeutic screening. Although none of these models fully reproduce the key features of human AD, the experimental models do provide important insight into the pathological changes which occur in AD. This review summarizes the commonly used experimental models of AD and also discusses how the models may be used to decipher the pathogenesis underlying AD and to screen novel therapies for this disease.
View Figures

Figure 1

Figure 2

View References

1 

Li XY, Bao XJ and Wang RZ: Potential of neural stem cell-based therapies for Alzheimer's disease. J Neurosci Res. 93:1313–1324. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al Dominantly Inherited Alzheimer Network: Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 367:795–804. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, Langbaum JB, Ayutyanont N, Roontiva A, Thiyyagura P, et al: Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. Lancet Neurol. 11:1057–1065. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Do Carmo S and Cuello AC: Modeling Alzheimer's disease in transgenic rats. Mol Neurodegener. 8:372013. View Article : Google Scholar : PubMed/NCBI

5 

Elder GA, Gama Sosa MA and De Gasperi R: Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med. 77:69–81. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Mattsson MO and Simkó M: Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology. 301:1–12. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Yankner BA, Duffy LK and Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 250:279–282. 1990. View Article : Google Scholar : PubMed/NCBI

8 

Itokazu Y, Kato-Negishi M, Nakatani Y, Ariga T and Yu RK: Effects of amyloid β-peptides and gangliosides on mouse neural stem cells. Neurochem Res. 38:2019–2027. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P and Grubeck-Loebenstein B: How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell. 3:169–176. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Schindowski K, Bretteville A, Leroy K, Bégard S, Brion JP, Hamdane M and Buée L: Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 169:599–616. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA and Katzman R: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 30:572–580. 1991. View Article : Google Scholar : PubMed/NCBI

12 

Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C and Garrido J: Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron. 16:881–891. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Alvarez A, Opazo C, Alarcón R, Garrido J and Inestrosa NC: Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol. 272:348–361. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Alvarez A, Alarcón R, Opazo C, Campos EO, Muñoz FJ, Calderón FH, Dajas F, Gentry MK, Doctor BP, De Mello FG and Inestrosa NC: Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci. 18:3213–3223. 1998.PubMed/NCBI

15 

Yamada K and Nabeshima T: Animal models of Alzheimer's disease and evaluation of anti-dementia drugs. Pharmacol Ther. 88:93–113. 2000. View Article : Google Scholar

16 

Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J and Mullan M: Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature. 353:844–846. 1991. View Article : Google Scholar : PubMed/NCBI

17 

Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, et al: Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 376:775–778. 1995. View Article : Google Scholar : PubMed/NCBI

18 

Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD and Schellenberg GD: A familial Alzheimer's disease locus on chromosome 1. Science. 269:970–973. 1995. View Article : Google Scholar : PubMed/NCBI

19 

Goedert M and Spillantini MG: Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease. Biochim Biophys Acta. 1502:110–121. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Levy-Lahad E, Lahad A, Wijsman EM, Bird TD and Schellenberg GD: Apolipoprotein E genotypes and age of onset in early-onset familial Alzheimer's disease. Ann Neurol. 38:678–680. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Neha, Sodhi RK, Jaggi AS and Singh N: Animal models of dementia and cognitive dysfunction. Life Sci. 109:73–86. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Liao A, Nitsch RM, Greenberg SM, Finckh U, Blacker D, Albert M, Rebeck GW, Gomez-Isla T, Clatworthy A, Binetti G, et al: Genetic association of an alpha2-macroglobulin (Val1000lle) polymorphism and Alzheimer's disease. Hum Mol Genet. 7:1953–1956. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Dahiyat M, Cumming A, Harrington C, Wischik C, Xuereb J, Corrigan F, Breen G, Shaw D and St Clair D: Association between Alzheimer's disease and the NOS3 gene. Ann Neurol. 46:664–667. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Lithner CU, Hedberg MM and Nordberg A: Transgenic mice as a model for Alzheimer's disease. Curr Alzheimer Res. 8:818–831. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Quon D, Wang Y, Catalano R, Scardina JM, Murakami K and Cordell B: Formation of beta-amyloid protein deposits in brains of transgenic mice. Nature. 352:239–241. 1991. View Article : Google Scholar : PubMed/NCBI

26 

Higgins LS, Rodems JM, Catalano R, Quon D and Cordell B: Early Alzheimer disease-like histopathology increases in frequency with age in mice transgenic for beta-APP751. Proc Natl Acad Sci USA. 92:4402–4406. 1995. View Article : Google Scholar : PubMed/NCBI

27 

Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al: Alzheimer-type neuropathology in transgenic mice overex-pressing V717F beta-amyloid precursor protein. Nature. 373:523–527. 1995. View Article : Google Scholar : PubMed/NCBI

28 

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F and Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 274:99–102. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Calhoun ME, Wiederhold KH, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, Staufenbiel M, Sommer B and Jucker M: Neuron loss in APP transgenic mice. Nature. 395:755–756. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Richards JG, Higgins GA, Ouagazzal AM, Ozmen L, Kew JN, Bohrmann B, Malherbe P, Brockhaus M, Loetscher H, Czech C, et al: PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J Neurosci. 23:8989–9003. 2003.PubMed/NCBI

31 

Braidy N, Muñoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P and Guillemin GJ: Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm. 119:173–195. 2012. View Article : Google Scholar

32 

Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, et al: Enhanced neuro-fibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 293:1487–1491. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Götz J, Probst A, Spillantini MG, Schäfer T, Jakes R, Bürki K and Goedert M: Somatodendritic localization and hyperphos-phorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J. 14:1304–1313. 1995.

34 

James ND, Davis DR, Sindon J, Hanger DP, Brion JP, Miller CC, Rosenberg MP, Anderton BH and Propst F: Neurodegenerative changes including altered tau phosphorylation and neurofilament immunoreactivity in mice transgenic for the serine/threonine kinase Mos. Neurobiol Aging. 17:235–241. 1996. View Article : Google Scholar : PubMed/NCBI

35 

Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, et al: Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci. 22:9340–9351. 2002.PubMed/NCBI

36 

Forman MS, Lal D, Zhang B, Dabir DV, Swanson E, Lee VM and Trojanowski JQ: Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J Neurosci. 25:3539–3550. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Higuchi M, Zhang B, Forman MS, Yoshiyama Y, Trojanowski JQ and Lee VM: Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J Neurosci. 25:9434–9443. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Ribé EM, Pérez M, Puig B, Gich I, Lim F, Cuadrado M, Sesma T, Catena S, Sánchez B, Nieto M, et al: Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis. 20:814–822. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Götz J, Chen F, van Dorpe J and Nitsch RM: Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 293:1491–1495. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y and LaFerla FM: Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron. 39:409–421. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ and Bowers WJ: Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. J Neuroinflammation. 2:232005. View Article : Google Scholar : PubMed/NCBI

42 

Kimura R and Ohno M: Impairments in remote memory stabi-lization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 33:229–235. 2009. View Article : Google Scholar :

43 

Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, et al: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: Potential factors in amyloid plaque formation. J Neurosci. 26:10129–10140. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M and Jolkkonen J: Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci. 26:1845–1852. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Flood DG, Lin YG, Lang DM, Trusko SP, Hirsch JD, Savage MJ, Scott RW and Howland DS: A transgenic rat model of Alzheimer's disease with extracellular Abeta deposition. Neurobiol Aging. 30:1078–1090. 2009. View Article : Google Scholar

46 

Ruiz-Opazo N, Kosik KS, Lopez LV, Bagamasbad P, Ponce LR and Herrera VL: Attenuated hippocampus-dependent learning and memory decline in transgenic TgAPPswe Fischer-344 rats. Mol Med. 10:36–44. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Filipcik P, Zilka N, Bugos O, Kucerak J, Koson P, Novak P and Novak M: First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiol Aging. 33:1448–1456. 2012. View Article : Google Scholar

48 

Van Dam D and De Deyn PP: Animal models in the drug discovery pipeline for Alzheimer's disease. Br J Pharmacol. 164:1285–1300. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y and Saido TC: Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 6:143–150. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR and Selkoe DJ: Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci. 20:1657–1665. 2000.PubMed/NCBI

51 

Solà C, García-Ladona FJ, Sarasa M, Mengod G, Probst A, Palacios G and Palacios JM: Beta APP gene expression is increased in the rat brain after motor neuron axotomy. Eur J Neurosci. 5:795–808. 1993. View Article : Google Scholar : PubMed/NCBI

52 

Gonzalo-Ruiz A, González I and Sanz-Anquela JM: Effects of beta-amyloid protein on serotoninergic, noradrenergic, and cholinergic markers in neurons of the pontomesencephalic tegmentum in the rat. J Chem Neuroanat. 26:153–169. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Du P, Wood KM, Rosner MH, Cunningham D, Tate B and Geoghegan KF: Dominance of amyloid precursor protein sequence over host cell secretases in determining beta-amyloid profiles studies of interspecies variation and drug action by internally standardized immunoprecipitation/mass spectrometry. J Pharmacol Exp Ther. 320:1144–1152. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Beck M, Bigl V and Rossner S: Guinea pigs as a nontransgenic model for APP processing in vitro and in vivo. Neurochem Res. 28:637–644. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, Yu X, Cheng S, Yan R, Wang Q, et al: β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res. 1552:41–54. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H and Shimizu K: A new murine model of accelerated senescence. Mech Ageing Dev. 17:183–194. 1981. View Article : Google Scholar : PubMed/NCBI

57 

Flood JF and Morley JE: Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev. 22:1–20. 1998. View Article : Google Scholar : PubMed/NCBI

58 

Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV, Rudnitskaya EA, Korbolina EE, Muraleva NA and Kolosova NG: Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle. 13:898–909. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Stefanova NA, Muraleva NA, Skulachev VP and Kolosova NG: Alzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. J Alzheimers Dis. 38:681–694. 2014.

60 

Poon HF, Calabrese V, Scapagnini G and Butterfield DA: Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci. 59:478–493. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Bosch MN, Pugliese M, Gimeno-Bayón J, Rodríguez MJ and Mahy N: Dogs with cognitive dysfunction syndrome: A natural model of Alzheimer's disease. Curr Alzheimer Res. 9:298–314. 2012. View Article : Google Scholar

62 

Head E, Callahan H, Muggenburg BA, Cotman CW and Milgram NW: Visual-discrimination learning ability and beta-amyloid accumulation in the dog. Neurobiol Aging. 19:415–425. 1998. View Article : Google Scholar

63 

Head E, McCleary R, Hahn FF, Milgram NW and Cotman CW: Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging. 21:89–96. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Hou Y, White RG, Bobik M, Marks JS and Russell MJ: Distribution of beta-amyloid in the canine brain. Neuroreport. 8:1009–1012. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Satou T, Cummings BJ, Head E, Nielson KA, Hahn FF, Milgram NW, Velazquez P, Cribbs DH, Tenner AJ and Cotman CW: The progression of beta-amyloid deposition in the frontal cortex of the aged canine. Brain Res. 774:35–43. 1997. View Article : Google Scholar

66 

Cuyckens F, Balcaen LI, De Wolf K, De Samber B, Van Looveren C, Hurkmans R and Vanhaecke F: Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development. Anal Bioanal Chem. 390:1717–1729. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Head E: Combining an antioxidant-fortified diet with behavioral enrichment leads to cognitive improvement and reduced brain pathology in aging canines: strategies for healthy aging. Ann NY Acad Sci. 1114:398–406. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Papaioannou N, Tooten PC, van Ederen AM, Bohl JR, Rofina J, Tsangaris T and Gruys E: Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid. 8:11–21. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Pugliese M, Mascort J, Mahy N and Ferrer I: Diffuse beta-amyloid plaques and hyperphosphorylated tau are unrelated processes in aged dogs with behavioral deficits. Acta Neuropathol. 112:175–183. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Languille S, Blanc S, Blin O, Canale CI, Dal-Pan A, Devau G, Dhenain M, Dorieux O, Epelbaum J, Gomez D, et al: The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev. 11:150–162. 2012. View Article : Google Scholar

71 

Bons N, Rieger F, Prudhomme D, Fisher A and Krause KH: Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease? Genes Brain Behav. 5:120–130. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Kraska A, Dorieux O, Picq JL, Petit F, Bourrin E, Chenu E, Volk A, Perret M, Hantraye P, Mestre-Frances N, et al: Age-associated cerebral atrophy in mouse lemur primates. Neurobiol Aging. 32:894–906. 2011. View Article : Google Scholar

73 

Giannakopoulos P, Silhol S, Jallageas V, Mallet J, Bons N, Bouras C and Delaère P: Quantitative analysis of tau protein-immunoreactive accumulations and beta amyloid protein deposits in the cerebral cortex of the mouse lemur, Microcebus murinus. Acta Neuropathol. 94:131–139. 1997. View Article : Google Scholar : PubMed/NCBI

74 

Laurijssens B, Aujard F and Rahman A: Animal models of Alzheimer's disease and drug development. Drug Discov Today Technol. 10:e319–e327. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Bélanger N, Grégoire L, Bédard PJ and Di Paolo T: DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol Aging. 27:1684–1693. 2006. View Article : Google Scholar

76 

Yue F, Lu C, Ai Y, Chan P and Zhang Z: Age-associated changes of cerebrospinal fluid amyloid-β and tau in cynomolgus monkeys. Neurobiol Aging. 35:1656–1659. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Molteni R, Barnard RJ, Ying Z, Roberts CK and Gómez-Pinilla F: A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 112:803–814. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Demetrius LA and Driver J: Alzheimer's as a metabolic disease. Biogerontology. 14:641–649. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Herculano B, Tamura M, Ohba A, Shimatani M, Kutsuna N and Hisatsune T: β-alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis. 33:983–997. 2013.

80 

Haley RW and Dietschy JM: Is there a connection between the concentration of cholesterol circulating in plasma and the rate of neuritic plaque formation in Alzheimer disease? Arch Neurol. 57:1410–1412. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Gibson Wood W, Eckert GP, Igbavboa U and Müller WE: Amyloid beta-protein interactions with membranes and cholesterol: Causes or casualties of Alzheimer's disease. Biochim Biophys Acta. 1610:281–290. 2003. View Article : Google Scholar : PubMed/NCBI

82 

Wu YY, Wang X, Tan L, Liu D, Liu XH, Wang Q, Wang JZ and Zhu LQ: Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3β and preservation of post-synaptic components. J Alzheimers Dis. 37:515–527. 2013.

83 

Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrançois D, Virgili J, Planel E, Giguere Y, et al: Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes. 63:4291–4301. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Pinton S, Brüning CA, Sartori Oliveira CE, Prigol M and Nogueira CW: Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer's type model in rats. J Nutr Biochem. 24:311–317. 2013. View Article : Google Scholar

85 

Nakamura S, Murayama N, Noshita T, Annoura H and Ohno T: Progressive brain dysfunction following intracerebroventricular infusion of beta(1-42)-amyloid peptide. Brain Res. 912:128–136. 2001. View Article : Google Scholar : PubMed/NCBI

86 

Winslow JT and Camacho F: Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology (Berl). 121:164–172. 1995. View Article : Google Scholar

87 

Sain H, Sharma B, Jaggi AS and Singh N: Pharmacological investigations on potential of peroxisome proliferator-activated receptor-gamma agonists in hyperhomocysteinemia-induced vascular dementia in rats. Neuroscience. 192:322–333. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Kamat PK, Rai S and Nath C: Okadaic acid induced neuro-toxicity: An emerging tool to study Alzheimer's disease pathology. Neurotoxicology. 37:163–172. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Zhang J, Li P and Wang Y, Liu J, Zhang Z, Cheng W and Wang Y: Ameliorative effects of a combination of baicalin, jasminoidin and cholic acid on ibotenic acid-induced dementia model in rats. PLoS One. 8:e566582013. View Article : Google Scholar : PubMed/NCBI

90 

Bonda DJ, Lee HG, Blair JA, Zhu X, Perry G and Smith MA: Role of metal dyshomeostasis in Alzheimer's disease. Metallomics. 3:267–270. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Squire LR and Zola-Morgan S: Memory: Brain systems and behavior. Trends Neurosci. 11:170–175. 1988. View Article : Google Scholar : PubMed/NCBI

92 

Liu J, Zhang Z, Li JT, Zhu YH, Zhou HL, Liu S and Wang TH: Effects of NT-4 gene modified fibroblasts transplanted into AD rats. Neurosci Lett. 466:1–5. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Savage LM, Sweet AJ, Castillo R and Langlais PJ: The effects of lesions to thalamic lateral internal medullary lamina and posterior nuclei on learning, memory and habituation in the rat. Behav Brain Res. 82:133–147. 1997. View Article : Google Scholar : PubMed/NCBI

94 

Avaliani N, Sørensen AT, Ledri M, Bengzon J, Koch P, Brüstle O, Deisseroth K, Andersson M and Kokaia M: Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells. 32:3088–3098. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Green KN, Smith IF and Laferla FM: Role of calcium in the pathogenesis of Alzheimer's disease and transgenic models. Subcell Biochem. 45:507–521. 2007. View Article : Google Scholar

96 

Nepovimova E, Uliassi E, Korabecny J, Peña-Altamira LE, Samez S, Pesaresi A, Garcia GE, Bartolini M, Andrisano V, Bergamini C, et al: Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J Med Chem. 57:8576–8589. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Akhter R, Sanphui P and Biswas SC: The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem. 289:10812–10822. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA and Lindquist S: Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci USA. 111:4013–4018. 2014. View Article : Google Scholar

99 

Gong CX, Lidsky T, Wegiel J, Grundke-Iqbal I and Iqbal K: Metabolically active rat brain slices as a model to study the regulation of protein phosphorylation in mammalian brain. Brain Res Brain Res Protoc. 6:134–140. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Roder S, Danober L, Pozza MF, Lingenhoehl K, Wiederhold KH and Olpe HR: Electrophysiological studies on the hippocampus and prefrontal cortex assessing the effects of amyloidosis in amyloid precursor protein 23 transgenic mice. Neuroscience. 120:705–720. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Li L, Sengupta A, Haque N, Grundke-Iqbal I and Iqbal K: Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett. 566:261–269. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Jang J, Yoo JE, Lee JA, Lee DR, Kim JY, Huh YJ, Kim DS, Park CY, Hwang DY, Kim HS, et al: Disease-specific induced pluripotent stem cells: A platform for human disease modeling and drug discovery. Exp Mol Med. 44:202–213. 2012. View Article : Google Scholar :

103 

Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H and Suzuki N: Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet. 20:4530–4539. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al: Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature. 482:216–220. 2012.PubMed/NCBI

105 

Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, et al: Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell. 12:487–496. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Macias MP, Gonzales AM, Siniard AL, Walker AW, Corneveaux JJ, Huentelman MJ, Sabbagh MN and Decourt B: A cellular model of amyloid precursor protein processing and amyloid-β peptide production. J Neurosci Methods. 223:114–122. 2014. View Article : Google Scholar :

107 

Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K, Tanaka H, Mimura J, et al: Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 94:1–9. 2015. View Article : Google Scholar

108 

Giunta S, Andriolo V and Castorina A: Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride. Int J Biochem Cell Biol. 54:122–136. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Denis PA: Alzheimer's disease: A gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery. Med Hypotheses. 81:976–987. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Minicozzi V, Chiaraluce R, Consalvi V, Giordano C, Narcisi C, Punzi P, Rossi GC and Morante S: Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils. J Biol Chem. 289:11242–11252. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Götz J and Ittner LM: Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci. 9:532–544. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Viet MH, Chen CY, Hu CK, Chen YR and Li MS: Discovery of dihydrochalcone as potential lead for Alzheimer's disease: In silico and in vitro study. PLoS One. 8:e791512013. View Article : Google Scholar : PubMed/NCBI

113 

Lo AC, Iscru E, Blum D, Tesseur I, Callaerts-Vegh Z, Buée L, De Strooper B, Balschun D and D'Hooge R: Amyloid and tau neuro-pathology differentially affect prefrontal synaptic plasticity and cognitive performance in mouse models of Alzheimer's disease. J Alzheimers Dis. 37:109–125. 2013.

114 

Okuma Y and Nomura Y: Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach. Jpn J Pharmacol. 78:399–404. 1998. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Bao X and Wang R: Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med 37: 271-283, 2016.
APA
Li, X., Bao, X., & Wang, R. (2016). Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). International Journal of Molecular Medicine, 37, 271-283. https://doi.org/10.3892/ijmm.2015.2428
MLA
Li, X., Bao, X., Wang, R."Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)". International Journal of Molecular Medicine 37.2 (2016): 271-283.
Chicago
Li, X., Bao, X., Wang, R."Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)". International Journal of Molecular Medicine 37, no. 2 (2016): 271-283. https://doi.org/10.3892/ijmm.2015.2428
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Bao X and Wang R: Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med 37: 271-283, 2016.
APA
Li, X., Bao, X., & Wang, R. (2016). Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review). International Journal of Molecular Medicine, 37, 271-283. https://doi.org/10.3892/ijmm.2015.2428
MLA
Li, X., Bao, X., Wang, R."Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)". International Journal of Molecular Medicine 37.2 (2016): 271-283.
Chicago
Li, X., Bao, X., Wang, R."Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening (Review)". International Journal of Molecular Medicine 37, no. 2 (2016): 271-283. https://doi.org/10.3892/ijmm.2015.2428
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team