|
1
|
Stefano GB and Kream R: Psychiatric
disorders involving mitochondrial processes. Psychol Obs. 1:1–6.
2015.
|
|
2
|
Stefano GB, Mantione KJ, Casares FM and
Kream RM: Anaerobically functioning mitochondria: Evolutionary
perspective on modulation of energy metabolism in Mytilus edulis.
Invertebrate Surviv J. 12:22–28. 2015.
|
|
3
|
Snyder C and Stefano GB: Mitochondria and
chloroplasts shared in animal and plant tissues: Significance of
communication. Med Sci Monit. 21:1507–1511. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mantione K, Kream RM and Stefano GB:
Variations in critical morphine biosynthesis genes and their
potential to influence human health. Neuro Endocrinol Lett.
31:11–18. 2010.PubMed/NCBI
|
|
5
|
Esch T and Stefano G: Proinflammation: A
common denominator or initiator of different pathophysiological
disease processes. Med Sci Monit. 8:HY1–HY9. 2002.PubMed/NCBI
|
|
6
|
Takahashi E and Sato M: Anaerobic
respiration sustains mitochondrial membrane potential in a prolyl
hydroxylase pathway-activated cancer cell line in a hypoxic
microenvironment. Am J Physiol Cell Physiol. 306:C334–C342. 2014.
View Article : Google Scholar
|
|
7
|
Gonzalez MJ, Miranda Massari JR, Duconge
J, Riordan NH, Ichim T, Quintero-Del-Rio AI and Ortiz N: The
bio-energetic theory of carcinogenesis. Med Hypotheses. 79:433–439.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chen Z and Stamler JS: Bioactivation of
nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends
Cardiovasc Med. 16:259–265. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Müller M, Mentel M, van Hellemond JJ,
Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG
and Martin WF: Biochemistry and evolution of anaerobic energy
metabolism in eukaryotes. Microbiol Mol Biol Rev. 76:444–495. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Watt IN, Montgomery MG, Runswick MJ,
Leslie AG and Walker JE: Bioenergetic cost of making an adenosine
triphosphate molecule in animal mitochondria. Proc Natl Acad Sci
USA. 107:16823–16827. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Degli Esposti M: Bioenergetic evolution in
proteobacteria and mitochondria. Genome Biol Evol. 6:3238–3251.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Aliev G, Priyadarshini M, Reddy VP, Grieg
NH, Kaminsky Y, Cacabelos R, Ashraf GM, Jabir NR, Kamal MA,
Nikolenko VN, et al: Oxidative stress mediated mitochondrial and
vascular lesions as markers in the pathogenesis of Alzheimer
disease. Curr Med Chem. 21:2208–2217. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Carvalho C, Machado N, Mota PC, Correia
SC, Cardoso S, Santos RX, Santos MS, Oliveira CR and Moreira PI:
Type 2 diabetic and Alzheimer's disease mice present similar
behavioral, cognitive, and vascular anomalies. J Alzheimers Dis.
35:623–635. 2013.PubMed/NCBI
|
|
14
|
Chong ZZ, Li F and Maiese K: Oxidative
stress in the brain: Novel cellular targets that govern survival
during neurodegenerative disease. Prog Neurobiol. 75:207–246. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ebadi M, Govitrapong P, Sharma S,
Muralikrishnan D, Shavali S, Pellett L, Schafer R, Albano C and
Eken J: Ubiquinone (coenzyme q10) and mitochondria in oxidative
stress of Parkinson's disease. Biol Signals Recept. 10:224–253.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kream RM, Mantione KJ, Casares FM and
Stefano GB: Impaired expression of ATP-binding cassette transporter
genes in diabetic ZDF rat blood. Int J Diabetes Res. 3:49–55.
2014.
|
|
17
|
Kream RM, Mantione KJ, Casares FM and
Stefano GB: Concerted dysregulation of 5 major classes of blood
leukocyte genes in diabetic ZDF rats: A working translational
profile of comorbid rheumatoid arthritis progression. Int J Prev
Treat. 3:17–25. 2014.
|
|
18
|
Wang F, Guo X, Shen X, Kream RM, Mantione
KJ and Stefano GB: Vascular dysfunction associated with type 2
diabetes and Alzheimer's disease: A potential etiological linkage.
Med Sci Monit Basic Res. 20:118–129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang F, Stefano GB and Kream RM:
Epigenetic modification of DRG neuronal gene expression subsequent
to nerve injury: Etiological contribution to complex regional pain
syndromes (Part I). Med Sci Monit. 20:1067–1077. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang F, Stefano GB and Kream RM:
Epigenetic modification of DRG neuronal gene expression subsequent
to nerve injury: Etiological contribution to complex regional pain
syndromes (Part II). Med Sci Monit. 20:1188–1200. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Panksepp J, Herman B, Conner R, Bishop P
and Scott JP: The biology of social attachments: Opiates alleviate
separation distress. Biol Psychiatry. 13:607–618. 1978.PubMed/NCBI
|
|
22
|
Pierce RC and Kumaresan V: The mesolimbic
dopamine system: The final common pathway for the reinforcing
effect of drugs of abuse? Neurosci Biobehav Rev. 30:215–238. 2006.
View Article : Google Scholar
|
|
23
|
Schmauss C and Emrich HM: Dopamine and the
action of opiates: A reevaluation of the dopamine hypothesis of
schizophrenia. With special consideration of the role of endogenous
opioids in the pathogenesis of schizophrenia. Biol Psychiatry.
20:1211–1231. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stępień A, Stępień M, Wlazeł RN,
Paradowski M, Banach M and Rysz J: Assessment of the relationship
between lipid parameters and obesity indices in non-diabetic obese
patients: A preliminary report. Med Sci Monit. 20:2683–2688. 2014.
View Article : Google Scholar
|
|
25
|
Göhring I, Sharoyko VV, Malmgren S,
Andersson LE, Spégel P, Nicholls DG and Mulder H: Chronic high
glucose and pyruvate levels differentially affect mitochondrial
bioenergetics and fuel-stimulated insulin secretion from clonal
INS-1 832/13 cells. J Biol Chem. 289:3786–3798. 2014. View Article : Google Scholar :
|
|
26
|
Mantione KJ, Kream RM, Kuzelova H, Ptacek
R, Raboch J, Samuel JM and Stefano GB: Comparing bioinformatic gene
expression profiling methods: Microarray and RNA-Seq. Med Sci Monit
Basic Res. 20:138–142. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kram KE and Finkel SE: Culture volume and
vessel affect long-term survival, mutation frequency, and oxidative
stress of Escherichia coli. Appl Environ Microbiol. 80:1732–1738.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stefano GB and Kream RM: Hypoxia defined
as a common culprit/initiation factor in mitochondrial-mediated
proinflammatory processes. Med Sci Monit. 21:1478–1484. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Guo R, Li W, Liu B, Li S, Zhang B and Xu
Y: Resveratrol protects vascular smooth muscle cells against high
glucose-induced oxidative stress and cell proliferation in vitro.
Med Sci Monit Basic Res. 20:82–92. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yildirim V, Doganci S, Yesildal F, Kaya E,
Ince ME, Ozkan G, Gumusel B, Avcu F and Ozgurtas T: Sodium nitrite
provides angiogenic and proliferative effects in vivo and in vitro.
Med Sci Monit Basic Res. 21:41–46. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Davila AF and Zamorano P: Mitochondria and
the evolutionary roots of cancer. Phys Biol. 10:0260082013.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Doeller JE, Grieshaber MK and Kraus DW:
Chemolithoheterotrophy in a metazoan tissue: Thiosulfate production
matches ATP demand in ciliated mussel gills. J Exp Biol.
204:3755–3764. 2001.PubMed/NCBI
|
|
33
|
Doeller JE, Kraus DW, Shick JM and Gnaiger
E: Heat flux, oxygen flux, and mitochondrial redox state as a
function of oxygen availability and ciliary activity in excised
gills of Mytilus edulis. J Exp Zool. 265:1–8. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tan DX, Manchester LC, Liu X,
Rosales-Corral SA, Acuna-Castroviejo D and Reiter RJ: Mitochondria
and chloroplasts as the original sites of melatonin synthesis: A
hypothesis related to melatonin's primary function and evolution in
eukaryotes. J Pineal Res. 54:127–138. 2013. View Article : Google Scholar
|
|
35
|
Stefano GB, Snyder C and Kream RM:
Mitochondria, chloroplasts in animal and plant cells: Significance
of conformational matching. Med Sci Monit. 21:2073–2078. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cruz S, Calado R, Serôdio J and Cartaxana
P: Crawling leaves: Photosynthesis in sacoglossan sea slugs. J Exp
Bot. 64:3999–4009. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Serôdio J, Cruz S, Cartaxana P and Calado
R: Photophysiology of kleptoplasts: Photosynthetic use of light by
chloroplasts living in animal cells. Philos Trans R Soc Lond B Biol
Sci. 369:201302422014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
de Vries J, Christa G and Gould SB:
Plastid survival in the cytosol of animal cells. Trends Plant Sci.
19:347–350. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pennisi E: Microbiology. Modern symbionts
inside cells mimic organelle evolution. Science. 346:532–533. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Händeler K, Wägele H, Wahrmund U, Rüdinger
M and Knoop V: Slugs' last meals: Molecular identification of
sequestered chloroplasts from different algal origins in Sacoglossa
(Opisthobranchia, Gastropoda). Mol Ecol Resour. 10:968–978. 2010.
View Article : Google Scholar
|
|
41
|
Stefano GB: Conformational matching: a
possible evolutionary force in the evolvement of signal systems.
CRC Handbook of Comparative Opioid and Related Neuropeptide
Mechanisms. Stefano GB: CRC Press Inc; Boca Raton: pp. 271–277.
1986
|
|
42
|
Kerney R, Kim E, Hangarter RP, Heiss AA,
Bishop CD and Hall BK: Intracellular invasion of green algae in a
salamander host. Proc Natl Acad Sci USA. 108:6497–6502. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kao WC and Hunte C: The molecular
evolution of the Qo motif. Genome Biol Evol.
6:1894–1910. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Renato M, Pateraki I, Boronat A and
Azcón-Bieto J: Tomato fruit chromoplasts behave as respiratory
bioenergetic organelles during ripening. Plant Physiol.
166:920–933. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bailey-Serres J and Voesenek LA: Flooding
stress: Acclimations and genetic diversity. Annu Rev Plant Biol.
59:313–339. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gibbs DJ, Lee SC, Isa NM, Gramuglia S,
Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL,
Bailey-Serres J and Holdsworth MJ: Homeostatic response to hypoxia
is regulated by the N-end rule pathway in plants. Nature.
479:415–418. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xu K, Xu X, Fukao T, Canlas P,
Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald
PC and Mackill DJ: Sub1A is an ethylene-response-factor-like gene
that confers submergence tolerance to rice. Nature. 442:705–708.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fukao T, Yeung E and Bailey-Serres J: The
submergence tolerance regulator SUB1A mediates crosstalk between
submergence and drought tolerance in rice. Plant Cell. 23:412–427.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
van Dongen JT and Licausi F: Oxygen
sensing and signaling. Annu Rev Plant Biol. 66:345–367. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gibbs DJ, Conde JV, Berckhan S, Prasad G,
Mendiondo GM and Holdsworth MJ: Group VII ethylene response factors
coordinate oxygen and nitric oxide signal transduction and stress
responses in plants. Plant Physiol. 169:23–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kleine T and Leister D: Emerging functions
of mammalian and plant mTERFs. Biochim Biophys Acta. 1847:786–797.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Maier UG, Zauner S, Woehle C, Bolte K,
Hempel F, Allen JF and Martin WF: Massively convergent evolution
for ribosomal protein gene content in plastid and mitochondrial
genomes. Genome Biol Evol. 5:2318–2329. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Coates AR, Halls G and Hu Y: Novel classes
of antibiotics or more of the same? Br J Pharmacol. 163:184–194.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kalghatgi S, Spina CS, Costello JC, Liesa
M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS and
Collins JJ: Bactericidal antibiotics induce mitochondrial
dysfunction and oxidative damage in Mammalian cells. Sci Transl
Med. 5:192ra852013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dwyer DJ, Belenky PA, Yang JH, MacDonald
IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz
EG, et al: Antibiotics induce redox-related physiological
alterations as part of their lethality. Proc Natl Acad Sci USA.
111:E2100–E2109. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gray MW, Burger G and Lang BF: The origin
and early evolution of mitochondria. Genome Biol.
2:reviews1018.1–reviews1018.5. 2001. View Article : Google Scholar
|
|
57
|
Zimorski V, Ku C, Martin WF and Gould SB:
Endosymbiotic theory for organelle origins. Curr Opin Microbiol.
22:38–48. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Powers JH: Antimicrobial drug development
- the past, the present, and the future. Clin Microbiol Infect.
10(Suppl 4): 23–31. 2004. View Article : Google Scholar
|
|
59
|
Prezant TR, Agapian JV, Bohlman MC, Bu X,
Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI, et
al: Mitochondrial ribosomal RNA mutation associated with both
antibiotic-induced and non-syndromic deafness. Nat Genet.
4:289–294. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Desa D, Nichols MG and Jensen Smith H: The
role of complex I in mitochondrial reactive oxygen species
formation in cochlear sensory and supporting cells during ototoxic
aminoglycoside exposure. Biophys J. 108:611a2015. View Article : Google Scholar
|
|
61
|
Katsi V, Katsimichas T, Kallistratos MS,
Tsekoura D, Makris T, Manolis AJ, Tousoulis D, Stefanadis C and
Kallikazaros I: The association of Restless Legs Syndrome with
hypertension and cardiovascular disease. Med Sci Monit. 20:654–659.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Stefano GB and Kream RM: Nitric oxide
regulation of mitochondrial processes: Commonality in medical
disorders. Ann Transplant. 20:402–407. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jones CN, Miller C, Tenenbaum A, Spremulli
LL and Saada A: Antibiotic effects on mitochondrial translation and
in patients with mitochondrial translational defects.
Mitochondrion. 9:429–437. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pacheu-Grau D, Gómez-Durán A, Iglesias E,
López-Gallardo E, Montoya J and Ruiz-Pesini E: Mitochondrial
antibiograms in personalized medicine. Hum Mol Genet. 22:1132–1139.
2013. View Article : Google Scholar
|
|
65
|
Moullan N, Mouchiroud L, Wang X, Ryu D,
Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM,
Deplancke B, et al: Tetracyclines disturb mitochondrial function
across eukaryotic models: A call for caution in biomedical
research. Cell Rep. 10:1681–1691. 2015. View Article : Google Scholar
|
|
66
|
Singh R, Sripada L and Singh R: Side
effects of antibiotics during bacterial infection: Mitochondria,
the main target in host cell. Mitochondrion. 16:50–54. 2014.
View Article : Google Scholar
|
|
67
|
Stevens DL: The role of vancomycin in the
treatment paradigm. Clin Infect Dis. 42(Suppl 1): S51–S57. 2006.
View Article : Google Scholar
|
|
68
|
Arimura Y, Yano T, Hirano M, Sakamoto Y,
Egashira N and Oishi R: Mitochondrial superoxide production
contributes to vancomycin-induced renal tubular cell apoptosis.
Free Radic Biol Med. 52:1865–1873. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dieterich C, Puey A, Lin S, Swezey R,
Furimsky A, Fairchild D, Mirsalis JC and Ng HH: Gene expression
analysis reveals new possible mechanisms of vancomycin-induced
nephrotoxicity and identifies gene markers candidates. Toxicol Sci.
107:258–269. 2009. View Article : Google Scholar :
|
|
70
|
Sanchez-Alvarez R, Martinez-Outschoorn UE,
Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Rubin E, Lisanti
MP and Sotgia F: Mitochondrial dysfunction in breast cancer cells
prevents tumor growth: Understanding chemoprevention with
metformin. Cell Cycle. 12:172–182. 2013. View Article : Google Scholar :
|
|
71
|
Lamb R, Harrison H, Hulit J, Smith DL,
Lisanti MP and Sotgia F: Mitochondria as new therapeutic targets
for eradicating cancer stem cells: Quantitative proteomics and
functional validation via MCT1/2 inhibition. Oncotarget.
5:11029–11037. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lamb R, Fiorillo M, Chadwick A, Ozsvari B,
Reeves KJ, Smith DL, Clarke RB, Howell SJ, Cappello AR,
Martinez-Outschoorn UE, et al: Doxycycline down-regulates DNA-PK
and radiosensitizes tumor initiating cells: Implications for more
effective radiation therapy. Oncotarget. 6:14005–14025. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jayaprakash AD, Benson EK, Gone S, Liang
R, Shim J, Lambertini L, Toloue MM, Wigler M, Aaronson SA and
Sachidanandam R: Stable heteroplasmy at the single-cell level is
facilitated by intercellular exchange of mtDNA. Nucleic Acids Res.
43:2177–2187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lamb R, Ozsvari B, Lisanti CL, Tanowitz
HB, Howell A, Martinez-Outschoorn UE, Sotgia F and Lisanti MP:
Antibiotics that target mitochondria effectively eradicate cancer
stem cells, across multiple tumor types: Treating cancer like an
infectious disease. Oncotarget. 6:4569–4584. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Leeman MF, Curran S and Murray GI: The
structure, regulation, and function of human matrix
metalloproteinase-13. Crit Rev Biochem Mol Biol. 37:149–166. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li CH, Cheng YW, Liao PL, Yang YT and Kang
JJ: Chloramphenicol causes mitochondrial stress, decreases ATP
biosynthesis, induces matrix metalloproteinase-13 expression, and
solid-tumor cell invasion. Toxicol Sci. 116:140–150. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Abouesh A, Stone C and Hobbs WR:
Antimicrobial-induced mania (antibiomania): A review of spontaneous
reports. J Clin Psychopharmacol. 22:71–81. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ben-Chetrit E, Rothstein N and Munter G:
Ciprofloxacin-induced psychosis. Antimicrob Agents Chemother.
57:40792013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mulhall JP and Bergmann LS:
Ciprofloxacin-induced acute psychosis. Urology. 46:102–103. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Reeves RR: Ciprofloxacin-induced
psychosis. Ann Pharmacother. 26:930–931. 1992.PubMed/NCBI
|
|
81
|
Koul S, Bhan-Kotwal S, Jenkins HS and
Carmaciu CD: Organic psychosis induced by ofloxacin and
metronidazole. Br J Hosp Med (Lond). 70:236–237. 2009. View Article : Google Scholar
|
|
82
|
Dinca EB, Skinner A, Dinca RV and Tudose
C: The dangers of gastritis: A case of clarithromycin-associated
brief psychotic episode. J Nerv Ment Dis. 203:149–151. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Jiménez-Pulido I, Navarro-Ruiz A, Sendra
P, Martínez-Ramírez M, Garcia-Motos C and Montesinos-Ros A:
Hallucinations with therapeutic doses of clarithromycin. Int J Clin
Pharmacol Ther. 40:20–22. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Korde AS and Maragos WF: Identification of
an N-methyl-D-aspartate receptor in isolated nervous system
mitochondria. J Biol Chem. 287:35192–35200. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Schmuck G, Schürmann A and Schlüter G:
Determination of the excitatory potencies of fluoroquinolones in
the central nervous system by an in vitro model. Antimicrob Agents
Chemother. 42:1831–1836. 1998.PubMed/NCBI
|
|
86
|
Accardi MV, Daniels BA, Brown PM, Fritschy
JM, Tyagarajan SK and Bowie D: Mitochondrial reactive oxygen
species regulate the strength of inhibitory GABA-mediated synaptic
transmission. Nat Commun. 5:31682014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kawakami J, Yamamoto K, Asanuma A,
Yanagisawa K, Sawada Y and Iga T: Inhibitory effect of new
quinolones on GABA(A) receptor-mediated response and its
potentiation with felbinac in Xenopus oocytes injected with
mouse-brain mRNA: Correlation with convulsive potency in vivo.
Toxicol Appl Pharmacol. 145:246–254. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang HYMB, McPherson BC, Liu H, Baman TS,
Rock P and Yao Z: H(2)O(2) opens mitochondrial K(ATP) channels and
inhibits GABA receptors via protein kinase C-epsilon in
cardio-myocytes. Am J Physiol Heart Circ Physiol. 282:H1395–H1403.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Grill MF and Maganti RK: Neurotoxic
effects associated with antibiotic use: Management considerations.
Br J Clin Pharmacol. 72:381–393. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Stuhec M:
Trimethoprim-sulfamethoxazole-related hallucinations. Gen Hosp
Psychiatry. 36:230.e237–e238. 2014. View Article : Google Scholar
|
|
91
|
Weis S, Karagülle D, Kornhuber J and
Bayerlein K: Cotrimoxazole-induced psychosis: A case report and
review of literature. Pharmacopsychiatry. 39:236–237. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee KY, Huang CH, Tang HJ, Yang CJ, Ko WC,
Chen YH, Lee YC and Hung CC: Acute psychosis related to use of
trimethoprim/sulfamethoxazole in the treatment of HIV-infected
patients with Pneumocystis jirovecii pneumonia: A multicentre,
retrospective study. J Antimicrob Chemother. 67:2749–2754. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Quandt-Herrera P, Suarez-Jesus J and
Yelmo-Cruz S: Antibiomania: Secondary mania associated with
ceftazidime. J Clin Psychopharmacol. 35:619–621. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Landais A, Marty N, Bessis D, Pages M and
Blard JM: Hoigne syndrome following an intravenous injection of
ceftriaxone: A case report. Rev Med Interne. 35:199–201. 2014.In
French. View Article : Google Scholar
|
|
95
|
Stefano GB, Kim C, Mantione K, Casares F
and Kream RM: Targeting mitochondrial biogenesis for promoting
health. Med Sci Monit. 18:SC1–SC3. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Michel TM, Pülschen D and Thome J: The
role of oxidative stress in depressive disorders. Curr Pharm Des.
18:5890–5899. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Regenold WT, Pratt M, Nekkalapu S, Shapiro
PS, Kristian T and Fiskum G: Mitochondrial detachment of hexokinase
1 in mood and psychotic disorders: Implications for brain energy
metabolism and neurotrophic signaling. J Psychiatr Res. 46:95–104.
2012. View Article : Google Scholar
|
|
98
|
Tobe EH: Mitochondrial dysfunction,
oxidative stress, and major depressive disorder. Neuropsychiatr Dis
Treat. 9:567–573. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hovatta I, Juhila J and Donner J:
Oxidative stress in anxiety and comorbid disorders. Neurosci Res.
68:261–275. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Andreazza AC: Combining redox-proteomics
and epigenomics to explain the involvement of oxidative stress in
psychiatric disorders. Mol Biosyst. 8:2503–2512. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gigante AD, Andreazza AC, Lafer B, Yatham
LN, Beasley CL and Young LT: Decreased mRNA expression of
uncoupling protein 2, a mitochondrial proton transporter, in
post-mortem prefrontal cortex from patients with bipolar disorder
and schizophrenia. Neurosci Lett. 505:47–51. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Rossignol DA and Frye RE: A review of
research trends in physiological abnormalities in autism spectrum
disorders: Immune dysregulation, inflammation, oxidative stress,
mitochondrial dysfunction and environmental toxicant exposures. Mol
Psychiatry. 17:389–401. 2012. View Article : Google Scholar :
|
|
103
|
Mehta SL, Kumari S, Mendelev N and Li PA:
Selenium preserves mitochondrial function, stimulates mitochondrial
biogenesis, and reduces infarct volume after focal cerebral
ischemia. BMC Neurosci. 13:792012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Badjatia N, Seres D, Carpenter A, Schmidt
JM, Lee K, Mayer SA, Claassen J, Connolly ES and Elkind MS: Free
fatty acids and delayed cerebral ischemia after subarachnoid
hemorrhage. Stroke. 43:691–696. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen G, Jing CH, Liu PP, Ruan D and Wang
L: Induction of autophagic cell death in the rat brain caused by
iron. Am J Med Sci. 345:369–374. 2013. View Article : Google Scholar
|
|
106
|
McCracken E, Valeriani V, Simpson C, Jover
T, McCulloch J and Dewar D: The lipid peroxidation by-product
4-hydroxynonenal is toxic to axons and oligodendrocytes. J Cereb
Blood Flow Metab. 20:1529–1536. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Cui J, Holmes EH, Greene TG and Liu PK:
Oxidative DNA damage precedes DNA fragmentation after experimental
stroke in rat brain. FASEB J. 14:955–967. 2000.PubMed/NCBI
|
|
108
|
Panov A, Dikalov S, Shalbuyeva N,
Hemendinger R, Greenamyre JT and Rosenfeld J: Species- and
tissue-specific relationships between mitochondrial permeability
transition and generation of ROS in brain and liver mitochondria of
rats and mice. Am J Physiol Cell Physiol. 292:C708–C718. 2007.
View Article : Google Scholar
|
|
109
|
Hansson MJ, Månsson R, Morota S, Uchino H,
Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A and Elmér
E: Calcium-induced generation of reactive oxygen species in brain
mitochondria is mediated by permeability transition. Free Radic
Biol Med. 45:284–294. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Opii WO, Nukala VN, Sultana R, Pandya JD,
Day KM, Merchant ML, Klein JB, Sullivan PG and Butterfield DA:
Proteomic identification of oxidized mitochondrial proteins
following experimental traumatic brain injury. J Neurotrauma.
24:772–789. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lemasters JJ, Theruvath TP, Zhong Z and
Nieminen AL: Mitochondrial calcium and the permeability transition
in cell death. Biochim Biophys Acta. 1787:1395–1401. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rasola A, Sciacovelli M, Pantic B and
Bernardi P: Signal transduction to the permeability transition
pore. FEBS Lett. 584:1989–1996. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Esch T, Stefano GB, Fricchione GL and
Benson H: The role of stress in neurodegenerative diseases and
mental disorders. Neuro Endocrinol Lett. 23:199–208.
2002.PubMed/NCBI
|
|
114
|
Halliwell B: Oxidative stress and
neurodegeneration: Where are we now? J Neurochem. 97:1634–1658.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tsaluchidu S, Cocchi M, Tonello L and Puri
BK: Fatty acids and oxidative stress in psychiatric disorders. BMC
Psychiatry. 8(Suppl 1): S52008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Masood A, Nadeem A, Mustafa SJ and
O'Donnell JM: Reversal of oxidative stress-induced anxiety by
inhibition of phosphodi-esterase-2 in mice. J Pharmacol Exp Ther.
326:369–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Arranz MJ and de Leon J: Pharmacogenetics
and pharmacoge-nomics of schizophrenia: A review of last decade of
research. Mol Psychiatry. 12:707–747. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Bouayed J, Rammal H, Younos C and
Soulimani R: Positive correlation between peripheral blood
granulocyte oxidative status and level of anxiety in mice. Eur J
Pharmacol. 564:146–149. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Bouayed J, Rammal H and Soulimani R:
Oxidative stress and anxiety: Relationship and cellular pathways.
Oxid Med Cell Longev. 2:63–67. 2009. View Article : Google Scholar :
|
|
120
|
Marazziti D, Baroni S, Picchetti M, Landi
P, Silvestri S, Vatteroni E and Catena Dell'Osso M: Psychiatric
disorders and mitochondrial dysfunctions. Eur Rev Med Pharmacol
Sci. 16:270–275. 2012.PubMed/NCBI
|
|
121
|
Ng F, Berk M, Dean O and Bush AI:
Oxidative stress in psychiatric disorders: Evidence base and
therapeutic implications. Int J Neuropsychopharmacol. 11:851–876.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kunz M, Gama CS, Andreazza AC, Salvador M,
Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M and Kapczinski
F: Elevated serum superoxide dismutase and thiobarbituric acid
reactive substances in different phases of bipolar disorder and in
schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.
32:167–1681. 2008. View Article : Google Scholar
|
|
123
|
Wass CE and Andreazza A: The Redox Brain
and Nitric Oxide: Implications for Psychiatric Illness. J Pharmacol
Clin Toxicol. 1:1008–1009. 2013.
|
|
124
|
Gubert C, Stertz L, Pfaffenseller B,
Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski
F and Kunz M: Mitochondrial activity and oxidative stress markers
in peripheral blood mononuclear cells of patients with bipolar
disorder, schizophrenia, and healthy subjects. J Psychiatr Res.
47:1396–1402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Emiliani FE, Sedlak TW and Sawa A:
Oxidative stress and schizophrenia: recent breakthroughs from an
old story. 27:185–190. 2014.
|
|
126
|
Andreazza AC, Kauer-Sant'anna M, Frey BN,
Bond DJ, Kapczinski F, Young LT and Yatham LN: Oxidative stress
markers in bipolar disorder: a meta-analysis. J Affect Disord.
111:135–144. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Scola G, Kim HK, Young LT and Andreazza
AC: A fresh look at complex I in microarray data: Clues to
understanding disease-specific mitochondrial alterations in bipolar
disorder. Biol Psychiatry. 73:e4–e5. 2013. View Article : Google Scholar
|
|
128
|
Boess FG, Hendrix M, van der Staay FJ, Erb
C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland
A and Koenig G: Inhibition of phosphodiesterase 2 increases
neuronal cGMP, synaptic plasticity and memory performance.
Neuropharmacology. 47:1081–1092. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Werner C, Raivich G, Cowen M, Strekalova
T, Sillaber I, Buters JT, Spanagel R and Hofmann F: Importance of
NO/cGMP signalling via cGMP-dependent protein kinase II for
controlling emotionality and neurobehavioural effects of alcohol.
Eur J Neurosci. 20:3498–3506. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang X, Pinto-Duarte A, Sejnowski TJ and
Behrens MM: How Nox2-containing NADPH oxidase affects cortical
circuits in the NMDA receptor antagonist model of schizophrenia.
Antioxid Redox Signal. 18:1444–1462. 2013. View Article : Google Scholar :
|
|
131
|
Gu F, Chauhan V, Kaur K, Brown WT, LaFauci
G, Wegiel J and Chauhan A: Alterations in mitochondrial DNA copy
number and the activities of electron transport chain complexes and
pyruvate dehydrogenase in the frontal cortex from subjects with
autism. Transl Psychiatry. 3:e2992013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ptacek R, Stefano GB, Weissenberger S, et
al: ADHD and eating disorders: risks and co-Morbidities. J
Neuropsychiatric Dis Treat. In press.
|
|
133
|
Ming X, Brimacombe M, Malek JH, Jani N and
Wagner GC: Autism spectrum disorders and identified toxic land
fills: Co-occurrence across States. Environ Health Insights.
2:55–59. 2008.PubMed/NCBI
|
|
134
|
Frye RE, Delatorre R, Taylor H, Slattery
J, Melnyk S, Chowdhury N and James SJ: Redox metabolism
abnormalities in autistic children associated with mitochondrial
disease. Transl Psychiatry. 3:e2732013. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Rose S, Melnyk S, Pavliv O, Bai S, Nick
TG, Frye RE and James SJ: Evidence of oxidative damage and
inflammation associated with low glutathione redox status in the
autism brain. Transl Psychiatry. 2:e1342012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Kulak A, Steullet P, Cabungcal JH, Werge
T, Ingason A, Cuenod M and Do KQ: Redox dysregulation in the
pathophysiology of schizophrenia and bipolar disorder: Insights
from animal models. Antioxid Redox Signal. 18:1428–1443. 2013.
View Article : Google Scholar
|
|
137
|
Kream RM and Stefano GB: De novo
biosynthesis of morphine in animal cells: An evidence-based model.
Med Sci Monit. 12:RA207–RA219. 2006.PubMed/NCBI
|
|
138
|
Kream RM, Sheehan M, Cadet P, Mantione KJ,
Zhu W, Casares F and Stefano GB: Persistence of evolutionary
memory: Primordial six-transmembrane helical domain mu opiate
receptors selectively linked to endogenous morphine signaling. Med
Sci Monit. 13:SC5–SC6. 2007.PubMed/NCBI
|
|
139
|
Stefano GB, Mantione KJ, Capellan L,
Casares FM, Challenger S, Ramin R, Samuel JM, Snyder C and Kream
RM: Morphine stimulates nitric oxide release in human mitochondria.
J Bioenerg Biomembr. 47:409–417. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Kream RM, Stefano GB and Rtacek R:
Psychiatric implications of endogenous morphine: up-to-date review.
Folia Biol (Praha). 56:231–241. 2010.
|
|
141
|
Kream RM, Mantione KJ, Sheehan M and
Stefano GB: Morphine's chemical messenger status in animals.
Activitas Nerv Super Rediviva. 51:153–161. 2009.
|
|
142
|
Mantione KJ, Cadet P, Zhu W, Kream RM,
Sheehan M, Fricchione GL, Goumon Y, Esch T and Stefano GB:
Endogenous morphine signaling via nitric oxide regulates the
expression of CYP2D6 and COMT: Autocrine/paracrine feedback
inhibition. Addict Biol. 13:118–123. 2008. View Article : Google Scholar
|
|
143
|
Stefano GB, Cadet P, Kream RM and Zhu W:
The presence of endogenous morphine signaling in animals. Neurochem
Res. 33:1933–1939. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Stefano GB, Ptacek R, Kuzelova H and Kream
RM: Endogenous morphine: Up-to-date review 2011. Folia Biologica. J
Cell Mol Biol. 58:49–56. 2012.
|
|
145
|
Stefano GB and Scharrer B: Endogenous
morphine and related opiates, a new class of chemical messengers.
Adv Neuroimmunol. 4:57–67. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Stefano GB: The evolvement of signal
systems: Conformational matching a determining force stabilizing
families of signal molecules. Comp Biochem Physiol C. 90:287–294.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Stefano GB: Stereospecificity as a
determining force stabilizing families of signal molecules within
the context of evolution. Comparative Aspects of Neuropeptide
Function. Stefano GB and Florey E: University of Manchester Press;
Manchester: pp. 14–28. 1991
|
|
148
|
Otten AB and Smeets HJ: Evolutionary
defined role of the mitochondrial DNA in fertility, disease and
ageing. Hum Reprod Update. 21:671–689. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Hedges SB, Chen H, Kumar S, Wang DY,
Thompson AS and Watanabe H: A genomic timescale for the origin of
eukaryotes. BMC Evol Biol. 1:42001. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Xavier JM, Rodrigues CM and Solá S:
Mitochondria: Major Regulators of Neural Development.
Neuroscientist. May 6–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Dinan TG, Stilling RM, Stanton C and Cryan
JF: Collective unconscious: How gut microbes shape human behavior.
J Psychiatr Res. 63:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Wood JP: Communication between the
minibrain in gut and enteric immune system. News Physiol Sci
(NIPS). 6:64–69. 1991.
|
|
153
|
Snyder C, Kream RM, Ptacek R and Stefano
GB: Mitochondria, microbiome and their potential psychiatric
modulation. Autism Open Access. In press.
|
|
154
|
Lackner JM, Ma CX, Keefer L, Brenner DM,
Gudleski GD, Satchidanand N, Firth R, Sitrin MD, Katz L, Krasner
SS, et al: Type, rather than number, of mental and physical
comorbidities increases the severity of symptoms in patients with
irritable bowel syndrome. Clin Gastroenterol Hepatol. 11:1147–1157.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Guinane CM and Cotter PD: Role of the gut
microbiota in health and chronic gastrointestinal disease:
Understanding a hidden metabolic organ. Therap Adv Gastroenterol.
6:295–308. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Peterson CT, Sharma V, Elmén L and
Peterson SN: Immune homeostasis, dysbiosis and therapeutic
modulation of the gut microbiota. Clin Exp Immunol. 179:363–377.
2015. View Article : Google Scholar
|
|
157
|
Stefano GB, Bilfinger TV and Fricchione
GL: The immune-neuro-link and the macrophage: Postcardiotomy
delirium, HIV-associated dementia and psychiatry. Prog Neurobiol.
42:475–488. 1994. View Article : Google Scholar : PubMed/NCBI
|