|
1
|
Leong YY and Tong L: Barrier function in
the ocular surface: From conventional paradigms to new
opportunities. Ocul Surf. 13:103–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cabalag MS, Wasiak J, Syed Q, Paul E, Hall
AJ and Cleland H: Early and late complications of ocular burn
injuries. J Plast Reconstr Aesthet Surg. 68:356–361. 2015.
View Article : Google Scholar
|
|
3
|
Saika S, Yamanaka O, Okada Y, Miyamoto T,
Kitano A, Flanders KC, Ohnishi Y, Nakajima Y, Kao WW and Ikeda K:
Effect of overexpression of PPARgamma on the healing process of
corneal alkali burn in mice. Am J Physiol Cell Physiol.
293:C75–C86. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pargament JM, Armenia J and Nerad JA:
Physical and chemical injuries to eyes and eyelids. Clin Dermatol.
33:234–237. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang S, Gu H and Hu N: Role of Peroxisome
Proliferator-Activated Receptor γ in Ocular Diseases. J Ophthalmol.
2015:2754352015. View Article : Google Scholar
|
|
6
|
Hsu CC, Peng CH, Hung KH, Lee YY, Lin TC,
Jang SF, Liu JH, Chen YT, Woung LC, Wang CY, et al: Stem cell
therapy for corneal regeneration medicine and contemporary
nanomedicine for corneal disorders. Cell Transplant. 24:1915–1930.
2015. View Article : Google Scholar
|
|
7
|
Mittal V, Jain R, Mittal R, Vashist U and
Narang P: Successful management of severe unilateral chemical burns
in children using simple limbal epithelial transplantation (SLET).
Br J Ophthalmol. 2015:3071792015.
|
|
8
|
Movahedan A, Genereux BM, Darvish-Zargar
M, Shah KJ and Holland EJ: Long-term management of severe ocular
surface injury due to methamphetamine production accidents. Cornea.
34:433–437. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kafle PA, Singh SK, Sarkar I and Surin L:
Amniotic membrane transplantation with and without limbal stem cell
transplantation in chemical eye injury. Nepal J Ophthalmol.
7:52–55. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Scholz SL, Thomasen H, Hestermann K,
Dekowski D, Steuhl KP and Meller D: Long-term results of autologous
transplantation of limbal epithelium cultivated ex vivo for limbal
stem cell deficiency. Ophthalmologe. 113:321–329. 2016.In German.
View Article : Google Scholar
|
|
11
|
Almaliotis D, Koliakos G, Papakonstantinou
E, Komnenou A, Thomas A, Petrakis S, Nakos I, Gounari E and
Karampatakis V: Mesenchymal stem cells improve healing of the
cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol.
253:1121–1135. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Holan V, Trosan P, Cejka C, Javorkova E,
Zajicova A, Hermankova B, Chudickova M and Cejkova J: Comparative
Study of the Therapeutic Potential of Mesenchymal Stem Cells and
Limbal Epithelial Stem Cells for Ocular Surface Reconstruction.
Stem Cells Transl Med. 4:1052–1063. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sotozono C, Inatomi T, Nakamura T, Koizumi
N, Yokoi N, Ueta M, Matsuyama K, Kaneda H, Fukushima M and
Kinoshita S: Cultivated oral mucosal epithelial transplantation for
persistent epithelial defect in severe ocular surface diseases with
acute inflammatory activity. Acta Ophthalmol. 92:e447–e453. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rudnisky CJ, Belin MW, Guo R and Ciolino
JB: Boston Type 1 Keratoprosthesis Study Group: Visual Acuity
Outcomes of the Boston Keratoprosthesis Type 1: Multicenter Study
Results. Am J Ophthalmol. 162:89–98. 2016. View Article : Google Scholar
|
|
15
|
Kammerdiener LL, Speiser JL, Aquavella JV,
Harissi-Dagher M, Dohlman CH, Chodosh J and Ciolino JB: Protective
effect of soft contact lenses after Boston keratoprosthesis. Br J
Ophthalmol. 100:549–552. 2016. View Article : Google Scholar
|
|
16
|
Iyer G, Srinivasan B, Rishi E, Rishi P,
Agarwal S and Subramanian N: Large lamellar corneoscleral grafts:
Tectonic role in initial management of severe ocular chemical
injuries. Eur J Ophthalmol. 26:12–17. 2016. View Article : Google Scholar
|
|
17
|
Prockop DJ: Inflammation, fibrosis, and
modulation of the process by mesenchymal stem/stromal cells. Matrix
Biol. 51:7–13. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qi Y, Jiang D, Sindrilaru A, Stegemann A,
Schatz S, Treiber N, Rojewski M, Schrezenmeier H, Vander Beken S,
Wlaschek M, et al: TSG-6 released from intradermally injected
mesenchymal stem cells accelerates wound healing and reduces tissue
fibrosis in murine full-thickness skin wounds. J Invest Dermatol.
134:526–537. 2014. View Article : Google Scholar
|
|
19
|
Prockop DJ and Oh JY: Mesenchymal
stem/stromal cells (MSCs): Role as guardians of inflammation. Mol
Ther. 20:14–20. 2012. View Article : Google Scholar :
|
|
20
|
Moreira PB, Magalhães RS, Pereira NC,
Oliveira LA and Sousa LB: Limbal transplantation at a tertiary
hospital in Brazil: A retrospective study. Arq Bras Oftalmol.
78:207–211. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schimke MM, Marozin S and Lepperdinger G:
Patient-Specific age: The other side of the coin in advanced
mesenchymal stem cell therapy. Front Physiol. 6:3622015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lamm V, Hara H, Mammen A, Dhaliwal D and
Cooper DK: Corneal blindness and xenotransplantation.
Xenotransplantation. 21:99–114. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Heindl LM and Cursiefen C: Split-cornea
transplantation-a novel concept to reduce corneal donor shortage.
Klin Monbl Augenheilkd. 229:608–614. 2012.In German. PubMed/NCBI
|
|
24
|
Li X, Zhou Q, Hanus J, Anderson C, Zhang
H, Dellinger M, Brekken R and Wang S: Inhibition of multiple
pathogenic pathways by histone deacetylase inhibitor SAHA in a
corneal alkali-burn injury model. Mol Pharm. 10:307–318. 2013.
View Article : Google Scholar :
|
|
25
|
Bakunowicz-Łazarczyk A and Urban B:
Assessment of therapeutic options for reducing alkali burn-induced
corneal neovascularization and inflammation. Adv Med Sci.
61:101–112. 2016. View Article : Google Scholar
|
|
26
|
Atiba A, Wasfy T, Abdo W, Ghoneim A, Kamal
T and Shukry M: Aloe vera gel facilitates re-epithelialization of
corneal alkali burn in normal and diabetic rats. Clin Ophthalmol.
9:2019–2026. 2015.PubMed/NCBI
|
|
27
|
Rho CR, Choi JS, Seo M, Lee SK and Joo CK:
Inhibition of lymphangiogenesis and hemangiogenesis in corneal
inflammation by subconjunctival Prox1 siRNA injection in rats.
Invest Ophthalmol Vis Sci. 56:5871–5879. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sijnave D, Van Bergen T, Castermans K,
Kindt N, Vandewalle E, Stassen JM, Moons L and Stalmans I:
Inhibition of Rho-associated kinase prevents pathological wound
healing and neovascularization after corneal trauma. Cornea.
34:1120–1129. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lima TB, Ribeiro AP, Conceição LF,
Bandarra M, Manrique WG and Laus JL: Ketorolac eye drops reduce
inflammation and delay re-epithelization in response to corneal
alkali burn in rabbits, without affecting iNOS or MMP-9. Arq Bras
Oftalmol. 78:67–72. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cai J, Dou G, Zheng L, Yang T, Jia X, Tang
L, Huang Y, Wu W, Li X and Wang X: Pharmacokinetics of topically
applied recombinant human keratinocyte growth factor-2 in
alkali-burned and intact rabbit eye. Exp Eye Res. 136:93–99. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shadmani A, Kazemi K, Khalili MR and
Eghtedari M: Omental transposition in treatment of severe ocular
surface alkaline burn: An experimental study. Med Hypothesis Discov
Innov Ophthalmol. 3:57–61. 2014.
|
|
32
|
Dvashi Z, Sar Shalom H, Shohat M, Ben-Meir
D, Ferber S, Satchi-Fainaro R, Ashery-Padan R, Rosner M, Solomon AS
and Lavi S: Protein phosphatase magnesium dependent 1A governs the
wound healing-inflammation-angiogenesis cross talk on injury. Am J
Pathol. 184:2936–2950. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Crooke A, Guzman-Aranguez A, Mediero A,
Alarma-Estrany P, Carracedo G, Pelaez T, Peral A and Pintor J:
Effect of melatonin and analogues on corneal wound healing:
Involvement of Mt2 melatonin receptor. Curr Eye Res. 40:56–65.
2015. View Article : Google Scholar
|
|
34
|
Iannetti L, Abbouda A, Fabiani C, Zito R
and Campanella M: Treatment of corneal neovascularization in ocular
chemical injury with an off-label use of subconjunctival
bevacizumab: A case report. J Med Case Reports. 7:1992013.
View Article : Google Scholar
|
|
35
|
Ozdemir O, Altintas O, Altintas L, Ozkan
B, Akdag C and Yüksel N: Comparison of the effects of
subconjunctival and topical anti-VEGF therapy (bevacizumab) on
experimental corneal neovascularization. Arq Bras Oftalmol.
77:209–213. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Taira BR, Singer AJ, McClain SA, Lin F,
Rooney J, Zimmerman T and Clark RA: Rosiglitazone, a PPAR-gamma
ligand, reduces burn progression in rats. J Burn Care Res.
30:499–504. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pershadsingh HA and Moore DM: PPARgamma
Agonists: Potential as Therapeutics for Neovascular Retinopathies.
PPAR Res. 2008:1642732008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Gelman L, Fruchart JC and Auwerx J: An
update on the mechanisms of action of the peroxisome
proliferator-activated receptors (PPARs) and their roles in
inflammation and cancer. Cell Mol Life Sci. 55:932–943. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chinetti G, Fruchart JC and Staels B:
Peroxisome proliferator-activated receptors and inflammation: From
basic science to clinical applications. Int J Obes Relat Metab
Disord. 27(Suppl 3): S41–S45. 2003. View Article : Google Scholar
|
|
40
|
Kostadinova R, Wahli W and Michalik L:
PPARs in diseases: Control mechanisms of inflammation. Curr Med
Chem. 12:2995–3009. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen M, Matsuda H, Wang L, Watanabe T,
Kimura MT, Igarashi J, Wang X, Sakimoto T, Fukuda N, Sawa M, et al:
Pretranscriptional regulation of Tgf-β1 by PI polyamide prevents
scarring and accelerates wound healing of the cornea after exposure
to alkali. Mol Ther. 18:519–527. 2010. View Article : Google Scholar
|
|
42
|
Uchiyama M, Shimizu A, Masuda Y, Nagasaka
S, Fukuda Y and Takahashi H: An ophthalmic solution of a peroxisome
proliferator-activated receptor gamma agonist prevents corneal
inflammation in a rat alkali burn model. Mol Vis. 19:2135–2150.
2013.PubMed/NCBI
|
|
43
|
Sener G, Sehirli AO, Gedik N and Dülger
GA: Rosiglitazone, a PPAR-gamma ligand, protects against
burn-induced oxidative injury of remote organs. Burns. 33:587–593.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pershadsingh HA, Benson SC, Marshall,
Kurtz TW, Pravenec M, King JC, Stopa EG and Famiglietti EV: Ocular
diseases and peroxisome proliferator-activated receptor-γ (PPAR-γ)
in mammalian eye. Soc Neurosci Abstr. 25:21931999.
|
|
45
|
Balachandar S and Katyal A: Peroxisome
proliferator activating receptor (PPAR) in cerebral malaria (CM): A
novel target for an additional therapy. Eur J Clin Microbiol Infect
Dis. 30:483–498. 2011. View Article : Google Scholar
|
|
46
|
Pan H, Chen J, Xu J, Chen M and Ma R:
Antifibrotic effect by activation of peroxisome
proliferator-activated receptor-γ in corneal fibroblasts. Mol Vis.
15:2279–2286. 2009.PubMed/NCBI
|
|
47
|
Kaul D, Anand PK and Khanna A: Functional
genomics of PPAR-gamma in human immunomodulatory cells. Mol Cell
Biochem. 290:211–215. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Paterson HM, Murphy TJ, Purcell EJ,
Shelley O, Kriynovich SJ, Lien E, Mannick JA and Lederer JA: Injury
primes the innate immune system for enhanced Toll-like receptor
reactivity. J Immunol. 171:1473–1483. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bashir S, Sharma Y, Elahi A and Khan F:
Macrophage polarization: The link between inflammation and related
diseases. Inflamm Res. 65:1–11. 2016. View Article : Google Scholar
|
|
50
|
Valvis SM, Waithman J, Wood FM, Fear MW
and Fear VS: The Immune Response to Skin Trauma Is Dependent on the
Etiology of Injury in a Mouse Model of Burn and Excision. J Invest
Dermatol. 135:2119–2128. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Fletcher HA, Keyser A, Bowmaker M, Sayles
PC, Kaplan G, Hussey G, Hill AV and Hanekom WA: Transcriptional
profiling of mycobacterial antigen-induced responses in infants
vaccinated with BCG at birth. BMC Med Genomics. 2:102009.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
D'Arpa N, D'Amelio L, Accardo-Palumbo A,
Pileri D, Mogavero R, Amato G, Napoli B, Alessandro G, Lombardo C
and Conte F: Skin dendritic cells in burn patients. Ann Burns Fire
Disasters. 22:175–178. 2009.PubMed/NCBI
|
|
53
|
Rani M, Zhang Q, Scherer MR, Cap AP and
Schwacha MG: Activated skin γδ T-cells regulate T-cell infiltration
of the wound site after burn. Innate Immun. 21:140–150. 2015.
View Article : Google Scholar
|
|
54
|
Schwacha MG, Zhang Q, Rani M, Craig T and
Oppeltz RF: Burn enhances toll-like receptor induced responses by
circulating leukocytes. Int J Clin Exp Med. 5:136–144.
2012.PubMed/NCBI
|
|
55
|
Yamada K, Ueta M, Sotozono C, Yokoi N,
Inatomi T and Kinoshita S: Upregulation of Toll-like receptor 5
expression in the conjunctival epithelium of various human ocular
surface diseases. Br J Ophthalmol. 98:1116–1119. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
West AP, Koblansky AA and Ghosh S:
Recognition and signaling by toll-like receptors. Annu Rev Cell Dev
Biol. 22:409–437. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Drage MG, Pecora ND, Hise AG, Febbraio M,
Silverstein RL, Golenbock DT, Boom WH and Harding CV: TLR2 and its
co-receptors determine responses of macrophages and dendritic cells
to lipoproteins of Mycobacterium tuberculosis. Cell Immunol.
258:29–37. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cornick SM, Noronha SA, Noronha SM,
Cezillo MV, Ferreira LM and Gragnani A: Toll like receptors gene
expression of human keratinocytes cultured of severe burn injury.
Acta Cir Bras. 29(Suppl 3): 33–38. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shupp JW, Nasabzadeh TJ, Rosenthal DS,
Jordan MH, Fidler P and Jeng JC: A review of the local
pathophysiologic bases of burn wound progression. J Burn Care Res.
31:849–873. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kitano A, Okada Y, Yamanka O, Shirai K,
Mohan RR and Saika S: Therapeutic potential of trichostatin A to
control inflammatory and fibrogenic disorders of the ocular
surface. Mol Vis. 16:2964–2973. 2010.
|
|
61
|
Chistyakov DV, Aleshin SE, Astakhova AA,
Sergeeva MG and Reiser G: Regulation of peroxisome
proliferator-activated receptors (PPAR) a and -γ of rat brain
astrocytes in the course of activation by toll-like receptor
agonists. J Neurochem. 134:113–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chistyakov DV, Aleshin S, Sergeeva MG and
Reiser G: Regulation of peroxisome proliferator-activated receptor
β/δ expression and activity levels by toll-like receptor agonists
and MAP kinase inhibitors in rat astrocytes. J Neurochem.
130:563–574. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ding JL, Zhou ZG, Zhou XY, Zhou B, Wang L,
Wang R, Zhan L, Sun XF and Li Y: Attenuation of acute pancreatitis
by peroxisome proliferator-activated receptor-α in rats: The effect
on Toll-like receptor signaling pathways. Pancreas. 42:114–122.
2013. View Article : Google Scholar
|
|
64
|
Zhao W, Wang L, Zhang M, Wang P, Zhang L,
Yuan C, Qi J, Qiao Y, Kuo PC and Gao C: Peroxisome
proliferator-activated receptor gamma negatively regulates IFN-beta
production in Toll-like receptor (TLR) 3- and TLR4-stimulated
macrophages by preventing interferon regulatory factor 3 binding to
the IFN-beta promoter. J Biol Chem. 286:5519–5528. 2011. View Article : Google Scholar
|
|
65
|
Pan S, Lei L, Chen S, Li H and Yan F:
Rosiglitazone impedes Porphyromonas gingivalis-accelerated
atherosclerosis by down-regulating the TLR/NF-κB signaling pathway
in atherosclerotic mice. Int Immunopharmacol. 23:701–708. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lian M, Luo W, Sui Y, Li Z and Hua J:
Dietary n-3 PUFA protects mice from Con A induced liver injury by
modulating regulatory T cells and PPAR-γ expression. PLoS One.
10:e01327412015. View Article : Google Scholar
|
|
67
|
Li T, Wang W, Zhao JH, Zhou X, Li YM and
Chen H: Pseudolaric acid B inhibits T-cell mediated immune response
in vivo via p38MAPK signal cascades and PPARγ activation. Life Sci.
121:88–96. 2015. View Article : Google Scholar
|
|
68
|
Kraft CT, Agarwal S, Ranganathan K, Wong
VW, Loder S, Li J, Delano MJ and Levi B: Trauma-induced heterotopic
bone formation and the role of the immune system: A review. J
Trauma Acute Care Surg. 80:156–165. 2016. View Article : Google Scholar
|
|
69
|
Xiu F and Jeschke MG: Perturbed
mononuclear phagocyte system in severely burned and septic
patients. Shock. 40:81–88. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ferrari G, Bignami F, Giacomini C,
Franchini S and Rama P: Safety and efficacy of topical infliximab
in a mouse model of ocular surface scarring. Invest Ophthalmol Vis
Sci. 54:1680–1688. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yamada J, Dana MR, Sotozono C and
Kinoshita S: Local suppression of IL-1 by receptor antagonist in
the rat model of corneal alkali injury. Exp Eye Res. 76:161–167.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sotozono C, He J, Matsumoto Y, Kita M,
Imanishi J and Kinoshita S: Cytokine expression in the
alkali-burned cornea. Curr Eye Res. 16:670–676. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lu P, Li L, Liu G, Zhang X and Mukaida N:
Enhanced experimental corneal neovascularization along with
aberrant angiogenic factor expression in the absence of IL-1
receptor antagonist. Invest Ophthalmol Vis Sci. 50:4761–4768. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sakimoto T, Yamada A, Kanno H and Sawa M:
Upregulation of tumor necrosis factor receptor 1 and TNF-alpha
converting enzyme during corneal wound healing. Jpn J Ophthalmol.
52:393–398. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pattamatta U, Willcox M, Stapleton F and
Garrett Q: Bovine lactoferrin promotes corneal wound healing and
suppresses IL-1 expression in alkali wounded mouse cornea. Curr Eye
Res. 38:1110–1117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shin YJ, Hyon JY, Choi WS, Yi K, Chung ES,
Chung TY and Wee WR: Chemical injury-induced corneal opacity and
neovascularization reduced by rapamycin via TGF-β1/ERK pathways
regulation. Invest Ophthalmol Vis Sci. 54:4452–4458. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ling S, Li W, Liu L, Zhou H, Wang T, Ye H,
Liang L and Yuan J: Allograft survival enhancement using
doxycycline in alkali-burned mouse corneas. Acta Ophthalmol.
91:e369–e378. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xiao O, Xie ZL, Lin BW, Yin XF, Pi RB and
Zhou SY: Minocycline inhibits alkali burn-induced corneal
neovascularization in mice. PLoS One. 7:e418582012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jeon HS, Yi K, Chung TY, Hyon JY, Wee WR
and Shin YJ: Chemically injured keratocytes induce cytokine release
by human peripheral mononuclear cells. Cytokine. 59:280–285. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cairns B, Maile R, Barnes CM, Frelinger JA
and Meyer AA: Increased Toll-like receptor 4 expression on T cells
may be a mechanism for enhanced T cell response late after burn
injury. J Trauma. 61:293–298; discussion 298–299. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Planck SR, Rich LF, Ansel JC, Huang XN and
Rosenbaum JT: Trauma and alkali burns induce distinct patterns of
cytokine gene expression in the rat cornea. Ocul Immunol Inflamm.
5:95–100. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
De Nuccio C, Bernardo A, Cruciani C, De
Simone R, Visentin S and Minghetti L: Peroxisome proliferator
activated receptor-γ agonists protect oligodendrocyte progenitors
against tumor necrosis factor-alpha-induced damage: Effects on
mitochondrial functions and differentiation. Exp Neurol.
271:506–514. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shimada K, Furukawa H, Wada K, Korai M,
Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, et
al: Protective Role of Peroxisome Proliferator-Activated Receptor-γ
in the Development of Intracranial Aneurysm Rupture. Stroke.
46:1664–1672. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mirza RE, Fang MM, Novak ML, Urao N, Sui
A, Ennis WJ and Koh TJ: Macrophage PPARγ and impaired wound healing
in type 2 diabetes. J Pathol. 236:433–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lan LF, Zheng L, Yang X, Ji XT, Fan YH and
Zeng JS: Peroxisome proliferator-activated receptor-γ agonist
pioglitazone ameliorates white matter lesion and cognitive
impairment in hypertensive rats. CNS Neurosci Ther. 21:410–416.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang RC and Jiang DM: PPAR-γ agonist
pioglitazone affects rat gouty arthritis by regulating cytokines.
Genet Mol Res. 13:6577–6581. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Cheng Y, Dong Z and Liu S: β-Caryophyllene
ameliorates the Alzheimer-like phenotype in APP/PS1 mice through
CB2 receptor activation and the PPARγ pathway. Pharmacology.
94:1–12. 2014. View Article : Google Scholar
|
|
88
|
Bhattarai G, Lee YH and Yi HK: Peroxisome
proliferator activated receptor gamma loaded dental implant
improves osteogenesis of rat mandible. J Biomed Mater Res B Appl
Biomater. 103:587–595. 2015. View Article : Google Scholar
|
|
89
|
Guri AJ, Mohapatra SK, Horne WT II,
Hontecillas R and Bassaganya-Riera J: The role of T cell PPAR γ in
mice with experimental inflammatory bowel disease. BMC
Gastroenterol. 10:602010. View Article : Google Scholar
|
|
90
|
Amparo F, Sadrai Z, Jin Y,
Alfonso-Bartolozzi B, Wang H, Shikari H, Ciolino JB, Chodosh J,
Jurkunas U, Schaumberg DA, et al: Safety and efficacy of the
multitargeted receptor kinase inhibitor pazopanib in the treatment
of corneal neovascularization. Invest Ophthalmol Vis Sci.
54:537–544. 2013. View Article : Google Scholar :
|
|
91
|
Huang X, Han Y, Shao Y and Yi JL: Efficacy
of the nucleotide-binding oligomerzation domain 1 inhibitor
Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol.
8:860–865. 2015.PubMed/NCBI
|
|
92
|
Lee CM, Jung WK, Na G, Lee DS, Park SG,
Seo SK, Yang JW, Yea SS, Lee YM, Park WS, et al: Inhibitory effects
of the platelet-activating factor receptor antagonists, CV-3988 and
Ginkgolide B, on alkali burn-induced corneal neovascularization.
Cutan Ocul Toxicol. 34:53–60. 2015. View Article : Google Scholar
|
|
93
|
Giacomini C, Ferrari G, Bignami F and Rama
P: Alkali burn versus suture-induced corneal neovascularization in
C57BL/6 mice: An overview of two common animal models of corneal
neovascularization. Exp Eye Res. 121:1–4. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bignami F, Giacomini C, Lorusso A, Aramini
A, Rama P and Ferrari G: NK1 receptor antagonists as a new
treatment for corneal neovascularization. Invest Ophthalmol Vis
Sci. 55:6783–6794. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Koenig Y, Bock F, Kruse FE, Stock K and
Cursiefen C: Angioregressive pretreatment of mature corneal blood
vessels before keratoplasty: Fine-needle vessel coagulation
combined with anti-VEGFs. Cornea. 31:887–892. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhou AY, Bai YJ, Zhao M, Yu WZ and Li XX:
KH902, a recombinant human VEGF receptor fusion protein, reduced
the level of placental growth factor in alkali burn induced-corneal
neovascularization. Ophthalmic Res. 50:180–186. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xin X, Yang S, Kowalski J and Gerritsen
ME: Peroxisome proliferator-activated receptor gamma ligands are
potent inhibitors of angiogenesis in vitro and in vivo. J Biol
Chem. 274:9116–9121. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Vucic E, Dickson SD, Calcagno C, Rudd JH,
Moshier E, Hayashi K, Mounessa JS, Roytman M, Moon MJ, Lin J, et
al: Pioglitazone modulates vascular inflammation in atherosclerotic
rabbits noninvasive assessment with FDG-PET-CT and dynamic
contrast-enhanced MR imaging. JACC Cardiovasc Imaging. 4:1100–1109.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Usui T, Sugisaki K, Iriyama A, Yokoo S,
Yamagami S, Nagai N, Ishida S and Amano S: Inhibition of corneal
neovascularization by blocking the angiotensin II type 1 receptor.
Invest Ophthalmol Vis Sci. 49:4370–4376. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Panigrahy D, Kaipainen A, Huang S,
Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM,
Folkman J and Kieran MW: PPARalpha agonist fenofibrate suppresses
tumor growth through direct and indirect angiogenesis inhibition.
Proc Natl Acad Sci USA. 105:985–990. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hao F, Mu JW, Zhang HJ, Kuang HY, Yu QX,
Bai MM and Meng P: Damage to vascular endothelial cells by high
insulin levels is associated with increased expression of ChemR23,
and attenuated by PPAR-gamma agonist, rosiglitazone. Neuro
Endocrinol Lett. 36:59–66. 2015.PubMed/NCBI
|
|
102
|
Sarayba MA, Li L, Tungsiripat T, Liu NH,
Sweet PM, Patel AJ, Osann KE, Chittiboyina A, Benson SC,
Pershadsingh HA and Chuck RS: Inhibition of corneal
neovascularization by a peroxisome proliferator-activated
receptor-gamma ligand. Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar : PubMed/NCBI
Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar
|
|
103
|
Zhang H, Wei T, Jiang X, Li Z, Cui H, Pan
J, Zhuang W, Sun T, Liu Z, Zhang Z and Dong H: PEDF and 34-mer
inhibit angiogenesis in the heart by inducing tip cells apoptosis
via up-regulating PPAR-γ to increase surface FasL. Apoptosis.
21:60–68. 2016. View Article : Google Scholar
|
|
104
|
Gronkiewicz KM, Giuliano EA, Kuroki K,
Bunyak F, Sharma A, Teixeira LB, Hamm CW and Mohan RR: Development
of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res.
143:75–88. 2016. View Article : Google Scholar
|
|
105
|
Donnelly KS, Giuliano EA, Sharm A and
Mohan RR: Suberoylanilide hydroxamic acid (vorinostat): Its role on
equine corneal fibrosis and matrix metalloproteinase activity. Vet
Ophthalmol. 17(Suppl 1): 61–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhou Q, Yang L, Qu M, Wang Y, Chen P, Wang
Y and Shi W: Role of senescent fibroblasts on alkali-induced
corneal neovascularization. J Cell Physiol. 227:1148–1156. 2012.
View Article : Google Scholar
|
|
107
|
Jeon KI, Phipps RP, Sime PJ and Huxlin KR:
Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF
expression in cat corneal fibroblasts. Exp Eye Res. 138:52–58.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS
and Kang JL: PPARγ activation following apoptotic cell instillation
promotes resolution of lung inflammation and fibrosis via
regulation of efferocytosis and proresolving cytokines. Mucosal
Immunol. 8:1031–1046. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Luo H, Zhu H, Zhou B, Xiao X and Zuo X:
MicroRNA-130b regulates scleroderma fibrosis by targeting
peroxisome proliferator-activated receptor γ. Mod Rheumatol.
25:595–602. 2015. View Article : Google Scholar
|
|
110
|
Zoccal KF, Paula-Silva FW, Bitencourt CS,
Sorgi CA, Bordon KC, Arantes EC and Faccioli LH: PPAR-γ activation
by Tityus serrulatus venom regulates lipid body formation and lipid
mediator production. Toxicon. 93:90–97. 2015. View Article : Google Scholar
|
|
111
|
Wang C, Zeng L, Zhang T, Liu J and Wang W:
Tenuigenin prevents IL-1β-induced inflammation in human
osteoarthritis chondrocytes by suppressing pi3k/akt/nf-κb signaling
pathway. Inflammation. 39:807–812. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Poon MW, Yan L, Jiang D, Qin P, Tse HF,
Wong IY, Wong DS, Tergaonkar V and Lian Q: Inhibition of RAP1
enhances corneal recovery following alkali injury. Invest
Ophthalmol Vis Sci. 56:711–721. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Saika S, Miyamoto T, Yamanaka O, Kato T,
Ohnishi Y, Flanders KC, Ikeda K, Nakajima Y, Kao WW, Sato M, et al:
Therapeutic effect of topical administration of SN50, an inhibitor
of nuclear factor-κB, in treatment of corneal alkali burns in mice.
Am J Pathol. 166:1393–1403. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ma Z, Piao T, Wang Y and Liu J: Astragalin
inhibits IL-1β-induced inflammatory mediators production in human
osteoarthritis chondrocyte by inhibiting nf-κb and MAPK activation.
Int Immunopharmacol. 25:83–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Shen M, Yuan F, Jin J and Yuan Y: The
effect of TC14012 on alkali burn-induced corneal neovascularization
in mice. Ophthalmic Res. 52:17–24. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Gardner JC, Noel JG, Nikolaidis NM, Karns
R, Aronow BJ, Ogle CK and McCormack FX: G-CSF drives a
posttraumatic immune program that protects the host from infection.
J Immunol. 192:2405–2417. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Choo J, Lee Y, Yan XJ, Noh TH, Kim SJ, Son
S, Pothoulakis C, Moon HR, Jung JH and Im E: A Novel Peroxisome
Proliferator-activated Receptor (PPAR)γ Agonist 2-Hydroxyethyl
5-chloro-4,5-didehydrojasmonate Exerts Anti-Inflammatory Effects in
Colitis. J Biol Chem. 290:25609–25619. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Pires AS, Souza VC, Paula RS, Toledo JO,
Lins TC, Moraes CF, Córdova C, Pereira RW and Nóbrega OT:
Pro-inflammatory cytokines correlate with classical risk factors
for atherosclerosis in the admixed Brazilian older women. Arch
Gerontol Geriatr. 60:142–146. 2015. View Article : Google Scholar
|
|
119
|
Zhang F, Sun D, Chen J, Guan N, Huo X and
Xi H: Simvastatin attenuates angiotensin II-induced inflammation
and oxidative stress in human mesangial cells. Mol Med Rep.
11:1246–1251. 2015.
|
|
120
|
Xu S, Song H, Huang M, Wang K, Xu C and
Xie L: Telmisartan inhibits the proinflammatory effects of
homocysteine on human endothelial cells through activation of the
peroxisome proliferator-activated receptor-δ pathway. Int J Mol
Med. 34:828–834. 2014.PubMed/NCBI
|
|
121
|
Qin L, Gong C, Chen AM, Guo FJ, Xu F, Ren
Y and Liao H: Peroxisome proliferator-activated receptor γ agonist
rosiglitazone inhibits migration and invasion of prostate cancer
cells through inhibition of the CXCR4/CXCL12 axis. Mol Med Rep.
10:695–700. 2014.PubMed/NCBI
|
|
122
|
Dong W, Wang X, Bi S, Pan Z, Liu S, Yu H,
Lu H, Lin X, Wang X, Ma T and Zhang W: Inhibitory effects of
resveratrol on foam cell formation are mediated through monocyte
chemotactic protein-1 and lipid metabolism-related proteins. Int J
Mol Med. 33:1161–1168. 2014.PubMed/NCBI
|
|
123
|
Higashihara H, Kokura S, Imamoto E, Ueda
M, Naito Y, Yoshida N and Yoshikawa T: Hypoxia-reoxygenation
enhances interleukin-8 production from U937 human monocytic cells.
Redox Rep. 9:365–369. 2004. View Article : Google Scholar
|
|
124
|
Akahori T, Sho M, Hamada K, Suzaki Y,
Kuzumoto Y, Nomi T, Nakamura S, Enomoto K, Kanehiro H and Nakajima
Y: Importance of peroxisome proliferator-activated receptor-gamma
in hepatic ischemia/reperfusion injury in mice. J Hepatol.
47:784–792. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sakimoto T and Ishimori A:
Anti-inflammatory effect of topical administration of tofacitinib
on corneal inflammation. Exp Eye Res. 145:110–117. 2016. View Article : Google Scholar
|
|
126
|
Ma J, Zhou D, Fan M, Wang H, Huang C,
Zhang Z, Wu Y, Li W, Chen Y and Liu Z: Keratocytes create stromal
spaces to promote corneal neovascularization via MMP13 expression.
Invest Ophthalmol Vis Sci. 55:6691–6703. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhang H, Li C and Baciu PC: Expression of
integrins and MMPs during alkaline-burn-induced corneal
angiogenesis. Invest Ophthalmol Vis Sci. 43:955–962.
2002.PubMed/NCBI
|
|
128
|
Yang JW, Lee SM, Oh KH, Park SG, Choi IW
and Seo SK: Effects of topical chondrocyte-derived extracellular
matrix treatment on corneal wound healing, following an alkali burn
injury. Mol Med Rep. 11:461–467. 2015.
|
|
129
|
Iwanami H, Ishizaki M, Fukuda Y and
Takahashi H: Expression of matrix metalloproteinases (MMP)-12 by
myofibroblasts during alkali-burned corneal wound healing. Curr Eye
Res. 34:207–214. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Bian F, Pelegrino FS, Tukler Henriksson
JT, Pflugfelder SC, Volpe EA, Li DQ and de Paiva CS: Differential
Effects of Dexamethasone and Doxycycline on Inflammation and MMP
Production in Murine Alkali-Burned Corneas Associated with Dry Eye.
Ocul Surf. 14:242–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yang SJ, Jo H, Kim KA, Ahn HR, Kang SW and
Jung SH: Diospyros kaki Extract Inhibits Alkali Burn-Induced
Corneal Neovascularization. J Med Food. 19:106–109. 2016.
View Article : Google Scholar
|
|
132
|
Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C and
Li X: Polysaccharide hydrogel combined with mesenchymal stem cells
promotes the healing of corneal alkali burn in rats. PLoS One.
10:e01197252015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Liu J, Lu H, Huang R, Lin D, Wu X, Lin Q,
Wu X, Zheng J, Pan X, Peng J, et al: Peroxisome proliferator
activated receptor-gamma ligands induced cell growth inhibition and
its influence on matrix metalloproteinase activity in human myeloid
leukemia cells. Cancer Chemother Pharmacol. 56:400–408. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Motoki T, Kurobe H, Hirata Y, Nakayama T,
Kinoshita H, Rocco KA, Sogabe H, Hori T, Sata M and Kitagawa T:
PPAR-γ agonist attenuates inflammation in aortic aneurysm patients.
Gen Thorac Cardiovasc Surg. 63:565–571. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Kato T, Saika S and Ohnishi Y: Effects of
the matrix metalloproteinase inhibitor GM6001 on the destruction
and alteration of epithelial basement membrane during the healing
of post-alkali burn in rabbit cornea. Jpn J Ophthalmol. 50:90–95.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Fini ME, Cui TY, Mouldovan A, Grobelny D,
Galardy RE and Fisher SJ: An inhibitor of the matrix
metalloproteinase synthesized by rabbit corneal epithelium. Invest
Ophthalmol Vis Sci. 32:2997–3001. 1991.PubMed/NCBI
|