Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2016 Volume 38 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2016 Volume 38 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review)

  • Authors:
    • Hongyan Zhou
    • Wensong Zhang
    • Miaomiao Bi
    • Jie Wu
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1003-1011
    |
    Published online on: August 4, 2016
       https://doi.org/10.3892/ijmm.2016.2699
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Corneal alkali burns (CAB) are characterized by injury-induced inflammation, fibrosis and neovascularization (NV), and may lead to blindness. This review evaluates the current knowledge of the molecular mechanisms responsible for CAB. The processes of cytokine production, chemotaxis, inflammatory responses, immune response, cell signal transduction, matrix metalloproteinase production and vascular factors in CAB are discussed. Previous evidence indicates that peroxisome proliferator-activated receptor γ (PPAR-γ) agonists suppress immune responses, inflammation, corneal fibrosis and NV. This review also discusses the role of PPAR-γ as an anti-inflammatory, anti-fibrotic and anti-angiogenic agent in the treatment of CAB, as well as the potential role of PPAR-γ in the pathological process of CAB. There have been numerous studies evaluating the clinical profiles of CAB, and the aim of this systematic review was to summarize the evidence regarding the treatment of CAB with PPAR-γ agonists.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Leong YY and Tong L: Barrier function in the ocular surface: From conventional paradigms to new opportunities. Ocul Surf. 13:103–109. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Cabalag MS, Wasiak J, Syed Q, Paul E, Hall AJ and Cleland H: Early and late complications of ocular burn injuries. J Plast Reconstr Aesthet Surg. 68:356–361. 2015. View Article : Google Scholar

3 

Saika S, Yamanaka O, Okada Y, Miyamoto T, Kitano A, Flanders KC, Ohnishi Y, Nakajima Y, Kao WW and Ikeda K: Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice. Am J Physiol Cell Physiol. 293:C75–C86. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Pargament JM, Armenia J and Nerad JA: Physical and chemical injuries to eyes and eyelids. Clin Dermatol. 33:234–237. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Zhang S, Gu H and Hu N: Role of Peroxisome Proliferator-Activated Receptor γ in Ocular Diseases. J Ophthalmol. 2015:2754352015. View Article : Google Scholar

6 

Hsu CC, Peng CH, Hung KH, Lee YY, Lin TC, Jang SF, Liu JH, Chen YT, Woung LC, Wang CY, et al: Stem cell therapy for corneal regeneration medicine and contemporary nanomedicine for corneal disorders. Cell Transplant. 24:1915–1930. 2015. View Article : Google Scholar

7 

Mittal V, Jain R, Mittal R, Vashist U and Narang P: Successful management of severe unilateral chemical burns in children using simple limbal epithelial transplantation (SLET). Br J Ophthalmol. 2015:3071792015.

8 

Movahedan A, Genereux BM, Darvish-Zargar M, Shah KJ and Holland EJ: Long-term management of severe ocular surface injury due to methamphetamine production accidents. Cornea. 34:433–437. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Kafle PA, Singh SK, Sarkar I and Surin L: Amniotic membrane transplantation with and without limbal stem cell transplantation in chemical eye injury. Nepal J Ophthalmol. 7:52–55. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Scholz SL, Thomasen H, Hestermann K, Dekowski D, Steuhl KP and Meller D: Long-term results of autologous transplantation of limbal epithelium cultivated ex vivo for limbal stem cell deficiency. Ophthalmologe. 113:321–329. 2016.In German. View Article : Google Scholar

11 

Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, Petrakis S, Nakos I, Gounari E and Karampatakis V: Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol. 253:1121–1135. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, Chudickova M and Cejkova J: Comparative Study of the Therapeutic Potential of Mesenchymal Stem Cells and Limbal Epithelial Stem Cells for Ocular Surface Reconstruction. Stem Cells Transl Med. 4:1052–1063. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Sotozono C, Inatomi T, Nakamura T, Koizumi N, Yokoi N, Ueta M, Matsuyama K, Kaneda H, Fukushima M and Kinoshita S: Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmol. 92:e447–e453. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Rudnisky CJ, Belin MW, Guo R and Ciolino JB: Boston Type 1 Keratoprosthesis Study Group: Visual Acuity Outcomes of the Boston Keratoprosthesis Type 1: Multicenter Study Results. Am J Ophthalmol. 162:89–98. 2016. View Article : Google Scholar

15 

Kammerdiener LL, Speiser JL, Aquavella JV, Harissi-Dagher M, Dohlman CH, Chodosh J and Ciolino JB: Protective effect of soft contact lenses after Boston keratoprosthesis. Br J Ophthalmol. 100:549–552. 2016. View Article : Google Scholar

16 

Iyer G, Srinivasan B, Rishi E, Rishi P, Agarwal S and Subramanian N: Large lamellar corneoscleral grafts: Tectonic role in initial management of severe ocular chemical injuries. Eur J Ophthalmol. 26:12–17. 2016. View Article : Google Scholar

17 

Prockop DJ: Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol. 51:7–13. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, Rojewski M, Schrezenmeier H, Vander Beken S, Wlaschek M, et al: TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol. 134:526–537. 2014. View Article : Google Scholar

19 

Prockop DJ and Oh JY: Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther. 20:14–20. 2012. View Article : Google Scholar :

20 

Moreira PB, Magalhães RS, Pereira NC, Oliveira LA and Sousa LB: Limbal transplantation at a tertiary hospital in Brazil: A retrospective study. Arq Bras Oftalmol. 78:207–211. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Schimke MM, Marozin S and Lepperdinger G: Patient-Specific age: The other side of the coin in advanced mesenchymal stem cell therapy. Front Physiol. 6:3622015. View Article : Google Scholar : PubMed/NCBI

22 

Lamm V, Hara H, Mammen A, Dhaliwal D and Cooper DK: Corneal blindness and xenotransplantation. Xenotransplantation. 21:99–114. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Heindl LM and Cursiefen C: Split-cornea transplantation-a novel concept to reduce corneal donor shortage. Klin Monbl Augenheilkd. 229:608–614. 2012.In German. PubMed/NCBI

24 

Li X, Zhou Q, Hanus J, Anderson C, Zhang H, Dellinger M, Brekken R and Wang S: Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model. Mol Pharm. 10:307–318. 2013. View Article : Google Scholar :

25 

Bakunowicz-Łazarczyk A and Urban B: Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation. Adv Med Sci. 61:101–112. 2016. View Article : Google Scholar

26 

Atiba A, Wasfy T, Abdo W, Ghoneim A, Kamal T and Shukry M: Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats. Clin Ophthalmol. 9:2019–2026. 2015.PubMed/NCBI

27 

Rho CR, Choi JS, Seo M, Lee SK and Joo CK: Inhibition of lymphangiogenesis and hemangiogenesis in corneal inflammation by subconjunctival Prox1 siRNA injection in rats. Invest Ophthalmol Vis Sci. 56:5871–5879. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Sijnave D, Van Bergen T, Castermans K, Kindt N, Vandewalle E, Stassen JM, Moons L and Stalmans I: Inhibition of Rho-associated kinase prevents pathological wound healing and neovascularization after corneal trauma. Cornea. 34:1120–1129. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Lima TB, Ribeiro AP, Conceição LF, Bandarra M, Manrique WG and Laus JL: Ketorolac eye drops reduce inflammation and delay re-epithelization in response to corneal alkali burn in rabbits, without affecting iNOS or MMP-9. Arq Bras Oftalmol. 78:67–72. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Cai J, Dou G, Zheng L, Yang T, Jia X, Tang L, Huang Y, Wu W, Li X and Wang X: Pharmacokinetics of topically applied recombinant human keratinocyte growth factor-2 in alkali-burned and intact rabbit eye. Exp Eye Res. 136:93–99. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Shadmani A, Kazemi K, Khalili MR and Eghtedari M: Omental transposition in treatment of severe ocular surface alkaline burn: An experimental study. Med Hypothesis Discov Innov Ophthalmol. 3:57–61. 2014.

32 

Dvashi Z, Sar Shalom H, Shohat M, Ben-Meir D, Ferber S, Satchi-Fainaro R, Ashery-Padan R, Rosner M, Solomon AS and Lavi S: Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. Am J Pathol. 184:2936–2950. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Crooke A, Guzman-Aranguez A, Mediero A, Alarma-Estrany P, Carracedo G, Pelaez T, Peral A and Pintor J: Effect of melatonin and analogues on corneal wound healing: Involvement of Mt2 melatonin receptor. Curr Eye Res. 40:56–65. 2015. View Article : Google Scholar

34 

Iannetti L, Abbouda A, Fabiani C, Zito R and Campanella M: Treatment of corneal neovascularization in ocular chemical injury with an off-label use of subconjunctival bevacizumab: A case report. J Med Case Reports. 7:1992013. View Article : Google Scholar

35 

Ozdemir O, Altintas O, Altintas L, Ozkan B, Akdag C and Yüksel N: Comparison of the effects of subconjunctival and topical anti-VEGF therapy (bevacizumab) on experimental corneal neovascularization. Arq Bras Oftalmol. 77:209–213. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Taira BR, Singer AJ, McClain SA, Lin F, Rooney J, Zimmerman T and Clark RA: Rosiglitazone, a PPAR-gamma ligand, reduces burn progression in rats. J Burn Care Res. 30:499–504. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Pershadsingh HA and Moore DM: PPARgamma Agonists: Potential as Therapeutics for Neovascular Retinopathies. PPAR Res. 2008:1642732008. View Article : Google Scholar : PubMed/NCBI

38 

Gelman L, Fruchart JC and Auwerx J: An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell Mol Life Sci. 55:932–943. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Chinetti G, Fruchart JC and Staels B: Peroxisome proliferator-activated receptors and inflammation: From basic science to clinical applications. Int J Obes Relat Metab Disord. 27(Suppl 3): S41–S45. 2003. View Article : Google Scholar

40 

Kostadinova R, Wahli W and Michalik L: PPARs in diseases: Control mechanisms of inflammation. Curr Med Chem. 12:2995–3009. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Chen M, Matsuda H, Wang L, Watanabe T, Kimura MT, Igarashi J, Wang X, Sakimoto T, Fukuda N, Sawa M, et al: Pretranscriptional regulation of Tgf-β1 by PI polyamide prevents scarring and accelerates wound healing of the cornea after exposure to alkali. Mol Ther. 18:519–527. 2010. View Article : Google Scholar

42 

Uchiyama M, Shimizu A, Masuda Y, Nagasaka S, Fukuda Y and Takahashi H: An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model. Mol Vis. 19:2135–2150. 2013.PubMed/NCBI

43 

Sener G, Sehirli AO, Gedik N and Dülger GA: Rosiglitazone, a PPAR-gamma ligand, protects against burn-induced oxidative injury of remote organs. Burns. 33:587–593. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Pershadsingh HA, Benson SC, Marshall, Kurtz TW, Pravenec M, King JC, Stopa EG and Famiglietti EV: Ocular diseases and peroxisome proliferator-activated receptor-γ (PPAR-γ) in mammalian eye. Soc Neurosci Abstr. 25:21931999.

45 

Balachandar S and Katyal A: Peroxisome proliferator activating receptor (PPAR) in cerebral malaria (CM): A novel target for an additional therapy. Eur J Clin Microbiol Infect Dis. 30:483–498. 2011. View Article : Google Scholar

46 

Pan H, Chen J, Xu J, Chen M and Ma R: Antifibrotic effect by activation of peroxisome proliferator-activated receptor-γ in corneal fibroblasts. Mol Vis. 15:2279–2286. 2009.PubMed/NCBI

47 

Kaul D, Anand PK and Khanna A: Functional genomics of PPAR-gamma in human immunomodulatory cells. Mol Cell Biochem. 290:211–215. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Paterson HM, Murphy TJ, Purcell EJ, Shelley O, Kriynovich SJ, Lien E, Mannick JA and Lederer JA: Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol. 171:1473–1483. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Bashir S, Sharma Y, Elahi A and Khan F: Macrophage polarization: The link between inflammation and related diseases. Inflamm Res. 65:1–11. 2016. View Article : Google Scholar

50 

Valvis SM, Waithman J, Wood FM, Fear MW and Fear VS: The Immune Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse Model of Burn and Excision. J Invest Dermatol. 135:2119–2128. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Fletcher HA, Keyser A, Bowmaker M, Sayles PC, Kaplan G, Hussey G, Hill AV and Hanekom WA: Transcriptional profiling of mycobacterial antigen-induced responses in infants vaccinated with BCG at birth. BMC Med Genomics. 2:102009. View Article : Google Scholar : PubMed/NCBI

52 

D'Arpa N, D'Amelio L, Accardo-Palumbo A, Pileri D, Mogavero R, Amato G, Napoli B, Alessandro G, Lombardo C and Conte F: Skin dendritic cells in burn patients. Ann Burns Fire Disasters. 22:175–178. 2009.PubMed/NCBI

53 

Rani M, Zhang Q, Scherer MR, Cap AP and Schwacha MG: Activated skin γδ T-cells regulate T-cell infiltration of the wound site after burn. Innate Immun. 21:140–150. 2015. View Article : Google Scholar

54 

Schwacha MG, Zhang Q, Rani M, Craig T and Oppeltz RF: Burn enhances toll-like receptor induced responses by circulating leukocytes. Int J Clin Exp Med. 5:136–144. 2012.PubMed/NCBI

55 

Yamada K, Ueta M, Sotozono C, Yokoi N, Inatomi T and Kinoshita S: Upregulation of Toll-like receptor 5 expression in the conjunctival epithelium of various human ocular surface diseases. Br J Ophthalmol. 98:1116–1119. 2014. View Article : Google Scholar : PubMed/NCBI

56 

West AP, Koblansky AA and Ghosh S: Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 22:409–437. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH and Harding CV: TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258:29–37. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Cornick SM, Noronha SA, Noronha SM, Cezillo MV, Ferreira LM and Gragnani A: Toll like receptors gene expression of human keratinocytes cultured of severe burn injury. Acta Cir Bras. 29(Suppl 3): 33–38. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Shupp JW, Nasabzadeh TJ, Rosenthal DS, Jordan MH, Fidler P and Jeng JC: A review of the local pathophysiologic bases of burn wound progression. J Burn Care Res. 31:849–873. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Kitano A, Okada Y, Yamanka O, Shirai K, Mohan RR and Saika S: Therapeutic potential of trichostatin A to control inflammatory and fibrogenic disorders of the ocular surface. Mol Vis. 16:2964–2973. 2010.

61 

Chistyakov DV, Aleshin SE, Astakhova AA, Sergeeva MG and Reiser G: Regulation of peroxisome proliferator-activated receptors (PPAR) a and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists. J Neurochem. 134:113–124. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Chistyakov DV, Aleshin S, Sergeeva MG and Reiser G: Regulation of peroxisome proliferator-activated receptor β/δ expression and activity levels by toll-like receptor agonists and MAP kinase inhibitors in rat astrocytes. J Neurochem. 130:563–574. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Ding JL, Zhou ZG, Zhou XY, Zhou B, Wang L, Wang R, Zhan L, Sun XF and Li Y: Attenuation of acute pancreatitis by peroxisome proliferator-activated receptor-α in rats: The effect on Toll-like receptor signaling pathways. Pancreas. 42:114–122. 2013. View Article : Google Scholar

64 

Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC and Gao C: Peroxisome proliferator-activated receptor gamma negatively regulates IFN-beta production in Toll-like receptor (TLR) 3- and TLR4-stimulated macrophages by preventing interferon regulatory factor 3 binding to the IFN-beta promoter. J Biol Chem. 286:5519–5528. 2011. View Article : Google Scholar

65 

Pan S, Lei L, Chen S, Li H and Yan F: Rosiglitazone impedes Porphyromonas gingivalis-accelerated atherosclerosis by down-regulating the TLR/NF-κB signaling pathway in atherosclerotic mice. Int Immunopharmacol. 23:701–708. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Lian M, Luo W, Sui Y, Li Z and Hua J: Dietary n-3 PUFA protects mice from Con A induced liver injury by modulating regulatory T cells and PPAR-γ expression. PLoS One. 10:e01327412015. View Article : Google Scholar

67 

Li T, Wang W, Zhao JH, Zhou X, Li YM and Chen H: Pseudolaric acid B inhibits T-cell mediated immune response in vivo via p38MAPK signal cascades and PPARγ activation. Life Sci. 121:88–96. 2015. View Article : Google Scholar

68 

Kraft CT, Agarwal S, Ranganathan K, Wong VW, Loder S, Li J, Delano MJ and Levi B: Trauma-induced heterotopic bone formation and the role of the immune system: A review. J Trauma Acute Care Surg. 80:156–165. 2016. View Article : Google Scholar

69 

Xiu F and Jeschke MG: Perturbed mononuclear phagocyte system in severely burned and septic patients. Shock. 40:81–88. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Ferrari G, Bignami F, Giacomini C, Franchini S and Rama P: Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci. 54:1680–1688. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Yamada J, Dana MR, Sotozono C and Kinoshita S: Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res. 76:161–167. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Sotozono C, He J, Matsumoto Y, Kita M, Imanishi J and Kinoshita S: Cytokine expression in the alkali-burned cornea. Curr Eye Res. 16:670–676. 1997. View Article : Google Scholar : PubMed/NCBI

73 

Lu P, Li L, Liu G, Zhang X and Mukaida N: Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci. 50:4761–4768. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Sakimoto T, Yamada A, Kanno H and Sawa M: Upregulation of tumor necrosis factor receptor 1 and TNF-alpha converting enzyme during corneal wound healing. Jpn J Ophthalmol. 52:393–398. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Pattamatta U, Willcox M, Stapleton F and Garrett Q: Bovine lactoferrin promotes corneal wound healing and suppresses IL-1 expression in alkali wounded mouse cornea. Curr Eye Res. 38:1110–1117. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Shin YJ, Hyon JY, Choi WS, Yi K, Chung ES, Chung TY and Wee WR: Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation. Invest Ophthalmol Vis Sci. 54:4452–4458. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Ling S, Li W, Liu L, Zhou H, Wang T, Ye H, Liang L and Yuan J: Allograft survival enhancement using doxycycline in alkali-burned mouse corneas. Acta Ophthalmol. 91:e369–e378. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Xiao O, Xie ZL, Lin BW, Yin XF, Pi RB and Zhou SY: Minocycline inhibits alkali burn-induced corneal neovascularization in mice. PLoS One. 7:e418582012. View Article : Google Scholar : PubMed/NCBI

79 

Jeon HS, Yi K, Chung TY, Hyon JY, Wee WR and Shin YJ: Chemically injured keratocytes induce cytokine release by human peripheral mononuclear cells. Cytokine. 59:280–285. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Cairns B, Maile R, Barnes CM, Frelinger JA and Meyer AA: Increased Toll-like receptor 4 expression on T cells may be a mechanism for enhanced T cell response late after burn injury. J Trauma. 61:293–298; discussion 298–299. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Planck SR, Rich LF, Ansel JC, Huang XN and Rosenbaum JT: Trauma and alkali burns induce distinct patterns of cytokine gene expression in the rat cornea. Ocul Immunol Inflamm. 5:95–100. 1997. View Article : Google Scholar : PubMed/NCBI

82 

De Nuccio C, Bernardo A, Cruciani C, De Simone R, Visentin S and Minghetti L: Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation. Exp Neurol. 271:506–514. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Shimada K, Furukawa H, Wada K, Korai M, Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, et al: Protective Role of Peroxisome Proliferator-Activated Receptor-γ in the Development of Intracranial Aneurysm Rupture. Stroke. 46:1664–1672. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Mirza RE, Fang MM, Novak ML, Urao N, Sui A, Ennis WJ and Koh TJ: Macrophage PPARγ and impaired wound healing in type 2 diabetes. J Pathol. 236:433–444. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Lan LF, Zheng L, Yang X, Ji XT, Fan YH and Zeng JS: Peroxisome proliferator-activated receptor-γ agonist pioglitazone ameliorates white matter lesion and cognitive impairment in hypertensive rats. CNS Neurosci Ther. 21:410–416. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Wang RC and Jiang DM: PPAR-γ agonist pioglitazone affects rat gouty arthritis by regulating cytokines. Genet Mol Res. 13:6577–6581. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Cheng Y, Dong Z and Liu S: β-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 mice through CB2 receptor activation and the PPARγ pathway. Pharmacology. 94:1–12. 2014. View Article : Google Scholar

88 

Bhattarai G, Lee YH and Yi HK: Peroxisome proliferator activated receptor gamma loaded dental implant improves osteogenesis of rat mandible. J Biomed Mater Res B Appl Biomater. 103:587–595. 2015. View Article : Google Scholar

89 

Guri AJ, Mohapatra SK, Horne WT II, Hontecillas R and Bassaganya-Riera J: The role of T cell PPAR γ in mice with experimental inflammatory bowel disease. BMC Gastroenterol. 10:602010. View Article : Google Scholar

90 

Amparo F, Sadrai Z, Jin Y, Alfonso-Bartolozzi B, Wang H, Shikari H, Ciolino JB, Chodosh J, Jurkunas U, Schaumberg DA, et al: Safety and efficacy of the multitargeted receptor kinase inhibitor pazopanib in the treatment of corneal neovascularization. Invest Ophthalmol Vis Sci. 54:537–544. 2013. View Article : Google Scholar :

91 

Huang X, Han Y, Shao Y and Yi JL: Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol. 8:860–865. 2015.PubMed/NCBI

92 

Lee CM, Jung WK, Na G, Lee DS, Park SG, Seo SK, Yang JW, Yea SS, Lee YM, Park WS, et al: Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization. Cutan Ocul Toxicol. 34:53–60. 2015. View Article : Google Scholar

93 

Giacomini C, Ferrari G, Bignami F and Rama P: Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: An overview of two common animal models of corneal neovascularization. Exp Eye Res. 121:1–4. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Bignami F, Giacomini C, Lorusso A, Aramini A, Rama P and Ferrari G: NK1 receptor antagonists as a new treatment for corneal neovascularization. Invest Ophthalmol Vis Sci. 55:6783–6794. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Koenig Y, Bock F, Kruse FE, Stock K and Cursiefen C: Angioregressive pretreatment of mature corneal blood vessels before keratoplasty: Fine-needle vessel coagulation combined with anti-VEGFs. Cornea. 31:887–892. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Zhou AY, Bai YJ, Zhao M, Yu WZ and Li XX: KH902, a recombinant human VEGF receptor fusion protein, reduced the level of placental growth factor in alkali burn induced-corneal neovascularization. Ophthalmic Res. 50:180–186. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Xin X, Yang S, Kowalski J and Gerritsen ME: Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem. 274:9116–9121. 1999. View Article : Google Scholar : PubMed/NCBI

98 

Vucic E, Dickson SD, Calcagno C, Rudd JH, Moshier E, Hayashi K, Mounessa JS, Roytman M, Moon MJ, Lin J, et al: Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC Cardiovasc Imaging. 4:1100–1109. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Usui T, Sugisaki K, Iriyama A, Yokoo S, Yamagami S, Nagai N, Ishida S and Amano S: Inhibition of corneal neovascularization by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci. 49:4370–4376. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, Laforme AM, Chaponis DM, Folkman J and Kieran MW: PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA. 105:985–990. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Hao F, Mu JW, Zhang HJ, Kuang HY, Yu QX, Bai MM and Meng P: Damage to vascular endothelial cells by high insulin levels is associated with increased expression of ChemR23, and attenuated by PPAR-gamma agonist, rosiglitazone. Neuro Endocrinol Lett. 36:59–66. 2015.PubMed/NCBI

102 

Sarayba MA, Li L, Tungsiripat T, Liu NH, Sweet PM, Patel AJ, Osann KE, Chittiboyina A, Benson SC, Pershadsingh HA and Chuck RS: Inhibition of corneal neovascularization by a peroxisome proliferator-activated receptor-gamma ligand. Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar : PubMed/NCBI

Exp Eye Res. 80:435–442. 2005. View Article : Google Scholar

103 

Zhang H, Wei T, Jiang X, Li Z, Cui H, Pan J, Zhuang W, Sun T, Liu Z, Zhang Z and Dong H: PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL. Apoptosis. 21:60–68. 2016. View Article : Google Scholar

104 

Gronkiewicz KM, Giuliano EA, Kuroki K, Bunyak F, Sharma A, Teixeira LB, Hamm CW and Mohan RR: Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res. 143:75–88. 2016. View Article : Google Scholar

105 

Donnelly KS, Giuliano EA, Sharm A and Mohan RR: Suberoylanilide hydroxamic acid (vorinostat): Its role on equine corneal fibrosis and matrix metalloproteinase activity. Vet Ophthalmol. 17(Suppl 1): 61–68. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Zhou Q, Yang L, Qu M, Wang Y, Chen P, Wang Y and Shi W: Role of senescent fibroblasts on alkali-induced corneal neovascularization. J Cell Physiol. 227:1148–1156. 2012. View Article : Google Scholar

107 

Jeon KI, Phipps RP, Sime PJ and Huxlin KR: Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF expression in cat corneal fibroblasts. Exp Eye Res. 138:52–58. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS and Kang JL: PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol. 8:1031–1046. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Luo H, Zhu H, Zhou B, Xiao X and Zuo X: MicroRNA-130b regulates scleroderma fibrosis by targeting peroxisome proliferator-activated receptor γ. Mod Rheumatol. 25:595–602. 2015. View Article : Google Scholar

110 

Zoccal KF, Paula-Silva FW, Bitencourt CS, Sorgi CA, Bordon KC, Arantes EC and Faccioli LH: PPAR-γ activation by Tityus serrulatus venom regulates lipid body formation and lipid mediator production. Toxicon. 93:90–97. 2015. View Article : Google Scholar

111 

Wang C, Zeng L, Zhang T, Liu J and Wang W: Tenuigenin prevents IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing pi3k/akt/nf-κb signaling pathway. Inflammation. 39:807–812. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Poon MW, Yan L, Jiang D, Qin P, Tse HF, Wong IY, Wong DS, Tergaonkar V and Lian Q: Inhibition of RAP1 enhances corneal recovery following alkali injury. Invest Ophthalmol Vis Sci. 56:711–721. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Saika S, Miyamoto T, Yamanaka O, Kato T, Ohnishi Y, Flanders KC, Ikeda K, Nakajima Y, Kao WW, Sato M, et al: Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-κB, in treatment of corneal alkali burns in mice. Am J Pathol. 166:1393–1403. 2005. View Article : Google Scholar : PubMed/NCBI

114 

Ma Z, Piao T, Wang Y and Liu J: Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting nf-κb and MAPK activation. Int Immunopharmacol. 25:83–87. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Shen M, Yuan F, Jin J and Yuan Y: The effect of TC14012 on alkali burn-induced corneal neovascularization in mice. Ophthalmic Res. 52:17–24. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Gardner JC, Noel JG, Nikolaidis NM, Karns R, Aronow BJ, Ogle CK and McCormack FX: G-CSF drives a posttraumatic immune program that protects the host from infection. J Immunol. 192:2405–2417. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Choo J, Lee Y, Yan XJ, Noh TH, Kim SJ, Son S, Pothoulakis C, Moon HR, Jung JH and Im E: A Novel Peroxisome Proliferator-activated Receptor (PPAR)γ Agonist 2-Hydroxyethyl 5-chloro-4,5-didehydrojasmonate Exerts Anti-Inflammatory Effects in Colitis. J Biol Chem. 290:25609–25619. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Pires AS, Souza VC, Paula RS, Toledo JO, Lins TC, Moraes CF, Córdova C, Pereira RW and Nóbrega OT: Pro-inflammatory cytokines correlate with classical risk factors for atherosclerosis in the admixed Brazilian older women. Arch Gerontol Geriatr. 60:142–146. 2015. View Article : Google Scholar

119 

Zhang F, Sun D, Chen J, Guan N, Huo X and Xi H: Simvastatin attenuates angiotensin II-induced inflammation and oxidative stress in human mesangial cells. Mol Med Rep. 11:1246–1251. 2015.

120 

Xu S, Song H, Huang M, Wang K, Xu C and Xie L: Telmisartan inhibits the proinflammatory effects of homocysteine on human endothelial cells through activation of the peroxisome proliferator-activated receptor-δ pathway. Int J Mol Med. 34:828–834. 2014.PubMed/NCBI

121 

Qin L, Gong C, Chen AM, Guo FJ, Xu F, Ren Y and Liao H: Peroxisome proliferator-activated receptor γ agonist rosiglitazone inhibits migration and invasion of prostate cancer cells through inhibition of the CXCR4/CXCL12 axis. Mol Med Rep. 10:695–700. 2014.PubMed/NCBI

122 

Dong W, Wang X, Bi S, Pan Z, Liu S, Yu H, Lu H, Lin X, Wang X, Ma T and Zhang W: Inhibitory effects of resveratrol on foam cell formation are mediated through monocyte chemotactic protein-1 and lipid metabolism-related proteins. Int J Mol Med. 33:1161–1168. 2014.PubMed/NCBI

123 

Higashihara H, Kokura S, Imamoto E, Ueda M, Naito Y, Yoshida N and Yoshikawa T: Hypoxia-reoxygenation enhances interleukin-8 production from U937 human monocytic cells. Redox Rep. 9:365–369. 2004. View Article : Google Scholar

124 

Akahori T, Sho M, Hamada K, Suzaki Y, Kuzumoto Y, Nomi T, Nakamura S, Enomoto K, Kanehiro H and Nakajima Y: Importance of peroxisome proliferator-activated receptor-gamma in hepatic ischemia/reperfusion injury in mice. J Hepatol. 47:784–792. 2007. View Article : Google Scholar : PubMed/NCBI

125 

Sakimoto T and Ishimori A: Anti-inflammatory effect of topical administration of tofacitinib on corneal inflammation. Exp Eye Res. 145:110–117. 2016. View Article : Google Scholar

126 

Ma J, Zhou D, Fan M, Wang H, Huang C, Zhang Z, Wu Y, Li W, Chen Y and Liu Z: Keratocytes create stromal spaces to promote corneal neovascularization via MMP13 expression. Invest Ophthalmol Vis Sci. 55:6691–6703. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Zhang H, Li C and Baciu PC: Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 43:955–962. 2002.PubMed/NCBI

128 

Yang JW, Lee SM, Oh KH, Park SG, Choi IW and Seo SK: Effects of topical chondrocyte-derived extracellular matrix treatment on corneal wound healing, following an alkali burn injury. Mol Med Rep. 11:461–467. 2015.

129 

Iwanami H, Ishizaki M, Fukuda Y and Takahashi H: Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing. Curr Eye Res. 34:207–214. 2009. View Article : Google Scholar : PubMed/NCBI

130 

Bian F, Pelegrino FS, Tukler Henriksson JT, Pflugfelder SC, Volpe EA, Li DQ and de Paiva CS: Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf. 14:242–254. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Yang SJ, Jo H, Kim KA, Ahn HR, Kang SW and Jung SH: Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization. J Med Food. 19:106–109. 2016. View Article : Google Scholar

132 

Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C and Li X: Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS One. 10:e01197252015. View Article : Google Scholar : PubMed/NCBI

133 

Liu J, Lu H, Huang R, Lin D, Wu X, Lin Q, Wu X, Zheng J, Pan X, Peng J, et al: Peroxisome proliferator activated receptor-gamma ligands induced cell growth inhibition and its influence on matrix metalloproteinase activity in human myeloid leukemia cells. Cancer Chemother Pharmacol. 56:400–408. 2005. View Article : Google Scholar : PubMed/NCBI

134 

Motoki T, Kurobe H, Hirata Y, Nakayama T, Kinoshita H, Rocco KA, Sogabe H, Hori T, Sata M and Kitagawa T: PPAR-γ agonist attenuates inflammation in aortic aneurysm patients. Gen Thorac Cardiovasc Surg. 63:565–571. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Kato T, Saika S and Ohnishi Y: Effects of the matrix metalloproteinase inhibitor GM6001 on the destruction and alteration of epithelial basement membrane during the healing of post-alkali burn in rabbit cornea. Jpn J Ophthalmol. 50:90–95. 2006. View Article : Google Scholar : PubMed/NCBI

136 

Fini ME, Cui TY, Mouldovan A, Grobelny D, Galardy RE and Fisher SJ: An inhibitor of the matrix metalloproteinase synthesized by rabbit corneal epithelium. Invest Ophthalmol Vis Sci. 32:2997–3001. 1991.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou H, Zhang W, Bi M and Wu J: The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 38: 1003-1011, 2016.
APA
Zhou, H., Zhang, W., Bi, M., & Wu, J. (2016). The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). International Journal of Molecular Medicine, 38, 1003-1011. https://doi.org/10.3892/ijmm.2016.2699
MLA
Zhou, H., Zhang, W., Bi, M., Wu, J."The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review)". International Journal of Molecular Medicine 38.4 (2016): 1003-1011.
Chicago
Zhou, H., Zhang, W., Bi, M., Wu, J."The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review)". International Journal of Molecular Medicine 38, no. 4 (2016): 1003-1011. https://doi.org/10.3892/ijmm.2016.2699
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou H, Zhang W, Bi M and Wu J: The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 38: 1003-1011, 2016.
APA
Zhou, H., Zhang, W., Bi, M., & Wu, J. (2016). The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). International Journal of Molecular Medicine, 38, 1003-1011. https://doi.org/10.3892/ijmm.2016.2699
MLA
Zhou, H., Zhang, W., Bi, M., Wu, J."The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review)". International Journal of Molecular Medicine 38.4 (2016): 1003-1011.
Chicago
Zhou, H., Zhang, W., Bi, M., Wu, J."The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review)". International Journal of Molecular Medicine 38, no. 4 (2016): 1003-1011. https://doi.org/10.3892/ijmm.2016.2699
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team