|
1
|
Alberti KG and Zimmet PZ: Definition,
diagnosis and classification of diabetes mellitus and its
complications. Part 1: diagnosis and classification of diabetes
mellitus provisional report of a WHO consultation. Diabet Med.
15:539–553. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Balkau B and Charles MA: Comment on the
provisional report from the WHO consultation. European Group for
the Study of Insulin Resistance (EGIR). Diabet Med. 16:442–443.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Expert Panel on Detection, Evaluation, and
Treatment of High Blood Cholesterol in Adults: Executive Summary of
The Third Report of The National Cholesterol Education Program
(NCEP) Expert Panel on Detection, Evaluation, And Treatment of High
Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA.
285:2486–2497. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bloomgarden ZT: American Association of
Clinical Endocrinologists (AACE) consensus conference on the
insulin resistance syndrome: 25–26 August 2002, Washington, DC.
Diabetes Care. 26:933–939. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Alberti KG and Zimmet P: The metabolic
syndrome - a new worldwide definition. Lancet. 366:1059–1062. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Alberti KG, Eckel RH, Grundy SM, Zimmet
PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM and
Smith SC Jr; International Diabetes Federation Task Force on
Epidemiology and Prevention; Hational Heart, Lung, and Blood
Institute; American Heart Association; World Heart Federation;
International Atherosclerosis Society; International Association
for the Study of Obesity: Harmonizing the metabolic syndrome: a
joint interim statement of the International Diabetes Federation
Task Force on Epidemiology and Prevention; National Heart, Lung,
and Blood Institute; American Heart Association; World Heart
Federation; International Atherosclerosis Society; and
International Association for the Study of Obesity. Circulation.
120:1640–1645. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Beltrán-Sánchez H, Harhay MO, Harhay MM
and McElligott S: Prevalence and trends of metabolic syndrome in
the adult U.S. population, 1999–2010. J Am Coll Cardiol.
62:697–703. 2013. View Article : Google Scholar
|
|
8
|
Liu M, Wang J, Jiang B, Sun D, Wu L, Yang
S, Wang Y, Li X and He Y: Increasing prevalence of metabolic
syndrome in a Chinese elderly population: 2001–2010. PLoS One.
8:e662332013. View Article : Google Scholar
|
|
9
|
Wilson PW, D'Agostino RB, Parise H,
Sullivan L and Meigs JB: Metabolic syndrome as a precursor of
cardiovascular disease and type 2 diabetes mellitus. Circulation.
112:3066–3072. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mendonça FM, de Sousa FR, Barbosa AL,
Martins SC, Araújo RL, Soares R and Abreu C: Metabolic syndrome and
risk of cancer: Which link? Metabolism. 64:182–189. 2015.
View Article : Google Scholar
|
|
11
|
Mottillo S, Filion KB, Genest J, Joseph L,
Pilote L, Poirier P, Rinfret S, Schiffrin EL and Eisenberg MJ: The
metabolic syndrome and cardiovascular risk a systematic review and
meta-analysis. J Am Coll Cardiol. 56:1113–1132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Esposito K, Chiodini P, Capuano A,
Bellastella G, Maiorino MI, Rafaniello C, Panagiotakos DB and
Giugliano D: Colorectal cancer association with metabolic syndrome
and its components: a systematic review with meta-analysis.
Endocrine. 44:634–647. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Blaho VA and Hla T: Regulation of
mammalian physiology, development, and disease by the sphingosine
1-phosphate and lysophosphatidic acid receptors. Chem Rev.
111:6299–6320. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Maceyka M and Spiegel S: Sphingolipid
metabolites in inflammatory disease. Nature. 510:58–67. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chan H and Pitson SM: Post-translational
regulation of sphingosine kinases. Biochim Biophys Acta.
1831:147–156. 2013. View Article : Google Scholar
|
|
16
|
Escalante-Alcalde D, Hernandez L, Le
Stunff H, Maeda R, Lee HS, Gang-Cheng Jr, Sciorra VA, Daar I,
Spiegel S, Morris AJ and Stewart CL: The lipid phosphatase LPP3
regulates extra-embryonic vasculogenesis and axis patterning.
Development. 130:4623–4637. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Knapp M, Lisowska A, Zabielski P, Musiał W
and Baranowski M: Sustained decrease in plasma
sphingosine-1-phosphate concentration and its accumulation in blood
cells in acute myocardial infarction. Prostaglandins Other Lipid
Mediat. 106:53–61. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Baranowski M, Charmas M, Długołęcka B and
Górski J: Exercise increases plasma levels of sphingoid base-1
phosphates in humans. Acta Physiol (Oxf). 203:373–380. 2011.
View Article : Google Scholar
|
|
19
|
Knapp M, Baranowski M, Lisowska A and
Musiał W: Decreased free sphingoid base concentration in the plasma
of patients with chronic systolic heart failure. Adv Med Sci.
57:100–105. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Knapp M, Lisowska A, Knapp P and
Baranowski M: Dose-dependent effect of aspirin on the level of
sphingolipids in human blood. Adv Med Sci. 58:274–281. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Baranowski M, Górski J, Klapcinska B,
Waskiewicz Z and Sadowska-Krepa E: Ultramarathon run markedly
reduces plasma sphingosine-1-phosphate concentration. Int J Sport
Nutr Exerc Metab. 24:148–156. 2014. View Article : Google Scholar
|
|
22
|
Pappu R, Schwab SR, Cornelissen I, Pereira
JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG and
Coughlin SR: Promotion of lymphocyte egress into blood and lymph by
distinct sources of sphingosine-1-phosphate. Science. 316:295–298.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Venkataraman K, Lee YM, Michaud J,
Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C and Hla T:
Vascular endothelium as a contributor of plasma sphingosine
1-phosphate. Circ Res. 102:669–676. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pham TH, Baluk P, Xu Y, Grigorova I,
Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR and
Cyster JG: Lymphatic endothelial cell sphingosine kinase activity
is required for lymphocyte egress and lymphatic patterning. J Exp
Med. 207:17–27. 2010. View Article : Google Scholar :
|
|
25
|
Mendoza A, Bréart B, Ramos-Perez WD, Pitt
LA, Gobert M, Sunkara M, Lafaille JJ, Morris AJ and Schwab SR: The
transporter Spns2 is required for secretion of lymph but not plasma
sphingosine-1-phosphate. Cell Rep. 2:1104–1110. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fukuhara S, Simmons S, Kawamura S, Inoue
A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, et
al: The sphingosine-1-phosphate transporter Spns2 expressed on
endothelial cells regulates lymphocyte trafficking in mice. J Clin
Invest. 122:1416–1426. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kobayashi N, Kobayashi N, Yamaguchi A and
Nishi T: Characterization of the ATP-dependent sphingosine
1-phosphate transporter in rat erythrocytes. J Biol Chem.
284:21192–21200. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Christoffersen C, Obinata H, Kumaraswamy
SB, Galvani S, Ahnström J, Sevvana M, Egerer-Sieber C, Muller YA,
Hla T, Nielsen LB and Dahlbäck B: Endothelium-protective
sphingosine-1-phosphate provided by HDL-associated apolipoprotein
M. Proc Natl Acad Sci USA. 108:9613–9618. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Okajima F: Plasma lipoproteins behave as
carriers of extracellular sphingosine 1-phosphate: is this an
atherogenic mediator or an antiatherogenic mediator? Biochim
Biophys Acta. 1582:132–137. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lee MJ, Van Brocklyn JR, Thangada S, Liu
CH, Hand AR, Menzeleev R, Spiegel S and Hla T:
Sphingosine-1-phosphate as a ligand for the G protein-coupled
receptor EDG-1. Science. 279:1552–1555. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rosen H, Stevens RC, Hanson M, Roberts E
and Oldstone MB: Sphingosine-1-phosphate and its receptors:
structure, signaling, and influence. Annu Rev Biochem. 82:637–662.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Windh RT, Lee MJ, Hla T, An S, Barr AJ and
Manning DR: Differential coupling of the sphingosine 1-phosphate
receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12)
families of heterotrimeric G proteins. J Biol Chem.
274:27351–27358. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yamazaki Y, Kon J, Sato K, Tomura H, Sato
M, Yoneya T, Okazaki H, Okajima F and Ohta H: Edg-6 as a putative
sphingosine 1-phosphate receptor coupling to Ca(2+) signaling
pathway. Biochem Biophys Res Commun. 268:583–589. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Im DS, Heise CE, Ancellin N, O'Dowd BF,
Shei GJ, Heavens RP, Rigby MR, Hla T, Mandala S, McAllister G, et
al: Characterization of a novel sphingosine 1-phosphate receptor,
Edg-8. J Biol Chem. 275:14281–14286. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ye D and Lin F: S1pr2/Gα13 signaling
controls myocardial migration by regulating endoderm convergence.
Development. 140:789–799. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Singleton PA, Dudek SM, Chiang ET and
Garcia JG: Regulation of sphingosine 1-phosphate-induced
endothelial cytoskeletal rearrangement and barrier enhancement by
S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J.
19:1646–1656. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ishimaru N, Yamada A, Nitta T, Arakaki R,
Lipp M, Takahama Y and Hayashi Y: CCR7 with S1P1 signaling through
AP-1 for migration of Foxp3+ regulatory T-cells controls
autoimmune exocrinopathy. Am J Pathol. 180:199–208. 2012.
View Article : Google Scholar
|
|
38
|
Mendelson K, Evans T and Hla T:
Sphingosine 1-phosphate signalling. Development. 141:5–9. 2014.
View Article : Google Scholar :
|
|
39
|
Waeber C; Sphingosine 1-phosphate (S1P)
signaling and the vasculature: Lysophospholipid Receptors:
Signaling and Biochemistry. Chun J, Hla T, Spiegel S and Moolenaar
W: John Wiley and Sons, Inc; Hoboken, NJ: pp. 313–347. 2013,
View Article : Google Scholar
|
|
40
|
Parham KA, Zebol JR, Tooley KL, Sun WY,
Moldenhauer LM, Cockshell MP, Gliddon BL, Moretti PA, Tigyi G,
Pitson SM and Bonder CS: Sphingosine 1-phosphate is a ligand for
peroxisome proliferator-activated receptor-γ that regulates
neoangiogenesis. FASEB J. 29:3638–3653. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hait NC, Allegood J, Maceyka M, Strub GM,
Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S
and Spiegel S: Regulation of histone acetylation in the nucleus by
sphingosine-1-phosphate. Science. 325:1254–1257. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Strub GM, Paillard M, Liang J, Gomez L,
Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC, et
al: Sphingosine-1-phosphate produced by sphingosine kinase 2 in
mitochondria interacts with prohibitin 2 to regulate complex IV
assembly and respiration. FASEB J. 25:600–612. 2011. View Article : Google Scholar :
|
|
43
|
Alvarez SE, Harikumar KB, Hait NC,
Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T,
et al: Sphingosine-1-phosphate is a missing cofactor for the E3
ubiquitin ligase TRAF2. Nature. 465:1084–1088. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ito S, Iwaki S, Koike K, Yuda Y, Nagasaki
A, Ohkawa R, Yatomi Y, Furumoto T, Tsutsui H, Sobel BE and Fujii S:
Increased plasma sphingosine-1-phosphate in obese individuals and
its capacity to increase the expression of plasminogen activator
inhibitor-1 in adipocytes. Coron Artery Dis. 24:642–650.
2013.PubMed/NCBI
|
|
45
|
Kowalski GM, Carey AL, Selathurai A,
Kingwell BA and Bruce CR: Plasma sphingosine-1-phosphate is
elevated in obesity. PLoS One. 8:e724492013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Silva VR, Micheletti TO, Pimentel GD,
Katashima CK, Lenhare L, Morari J, Mendes MC, Razolli DS, Rocha GZ,
de Souza CT, et al: Hypothalamic S1P/S1PR1 axis controls energy
homeostasis. Nat Commun. 5:48592014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Moon MH, Jeong JK, Lee YJ, Seol JW and
Park SY: Sphingosine-1-phosphate inhibits the adipogenic
differentiation of 3T3-L1 preadipocytes. Int J Mol Med.
34:1153–1158. 2014.PubMed/NCBI
|
|
48
|
Moon MH, Jeong JK, Lee JH, Park YG, Lee
YJ, Seol JW and Park SY: Antiobesity activity of a sphingosine
1-phosphate analogue FTY720 observed in adipocytes and obese mouse
model. Exp Mol Med. 44:603–614. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Esser N, Legrand-Poels S, Piette J, Scheen
AJ and Paquot N: Inflammation as a link between obesity, metabolic
syndrome and type 2 diabetes. Diabetes Res Clin Pract. 105:141–150.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Majumdar I and Mastrandrea LD: Serum
sphingolipids and inflammatory mediators in adolescents at risk for
metabolic syndrome. Endocrine. 41:442–449. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Samad F, Hester KD, Yang G, Hannun YA and
Bielawski J: Altered adipose and plasma sphingolipid metabolism in
obesity: a potential mechanism for cardiovascular and metabolic
risk. Diabetes. 55:2579–2587. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang J, Badeanlou L, Bielawski J, Ciaraldi
TP and Samad F: Sphingosine kinase 1 regulates adipose
proinflammatory responses and insulin resistance. Am J Physiol
Endocrinol Metab. 306:E756–E768. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Qi Y, Chen J, Lay A, Don A, Vadas M and
Xia P: Loss of sphingosine kinase 1 predisposes to the onset of
diabetes via promoting pancreatic β-cell death in diet-induced
obese mice. FASEB J. 27:4294–4304. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cantrell Stanford J, Morris AJ, Sunkara M,
Popa GJ, Larson KL and Özcan S: Sphingosine 1-phosphate (S1P)
regulates glucose-stimulated insulin secretion in pancreatic beta
cells. J Biol Chem. 287:13457–13464. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bruce CR, Risis S, Babb JR, Yang C,
Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K,
Takuwa Y, et al: Overexpression of sphingosine kinase 1 prevents
ceramide accumulation and ameliorates muscle insulin resistance in
high-fat diet-fed mice. Diabetes. 61:3148–3155. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mikłosz A, Łukaszuk B, Baranowski M,
Górski J and Chabowski A: Effects of inhibition of serine
palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on
palmitate induced insulin resistance in L6 myotubes. PLoS One.
8:e855472013. View Article : Google Scholar
|
|
57
|
Ma MM, Chen JL, Wang GG, Wang H, Lu Y, Li
JF, Yi J, Yuan YJ, Zhang QW, Mi J, et al: Sphingosine kinase 1
participates in insulin signalling and regulates glucose metabolism
and homeostasis in KK/Ay diabetic mice. Diabetologia. 50:891–900.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rapizzi E, Taddei ML, Fiaschi T, Donati C,
Bruni P and Chiarugi P: Sphingosine 1-phosphate increases glucose
uptake through trans-activation of insulin receptor. Cell Mol Life
Sci. 66:3207–3218. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fayyaz S, Henkel J, Japtok L, Krämer S,
Damm G, Seehofer D, Püschel GP and Kleuser B: Involvement of
sphingosine 1-phosphate in palmitate-induced insulin resistance of
hepatocytes via the S1P2 receptor subtype. Diabetologia.
57:373–382. 2014. View Article : Google Scholar
|
|
60
|
Randriamboavonjy V, Badenhoop K, Schmidt
H, Geisslinger G, Fisslthaler B and Fleming I: The S1P(2) receptor
expressed in human platelets is linked to the RhoA-Rho kinase
pathway and is down regulated in type 2 diabetes. Basic Res
Cardiol. 104:333–340. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhao Z, Choi J, Zhao C and Ma ZA: FTY720
normalizes hyperglycemia by stimulating β-cell in vivo regeneration
in db/db mice through regulation of cyclin D3 and p57(KIP2). J Biol
Chem. 287:5562–5573. 2012. View Article : Google Scholar
|
|
62
|
Awad AS, Rouse MD, Khutsishvili K, Huang
L, Bolton WK, Lynch KR and Okusa MD: Chronic sphingosine
1-phosphate 1 receptor activation attenuates early-stage diabetic
nephropathy independent of lymphocytes. Kidney Int. 79:1090–1098.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kawanabe T, Kawakami T, Yatomi Y, Shimada
S and Soma Y: Sphingosine 1-phosphate accelerates wound healing in
diabetic mice. J Dermatol Sci. 48:53–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
El-Shewy HM, Sohn M, Wilson P, Lee MH,
Hammad SM, Luttrell LM and Jaffa AA: Low-density lipoprotein
induced expression of connective tissue growth factor via
transactivation of sphingosine 1-phosphate receptors in mesangial
cells. Mol Endocrinol. 26:833–845. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu W, Lan T, Xie X, Huang K, Peng J,
Huang J, Shen X, Liu P and Huang H: S1P2 receptor mediates
sphingosine-1-phosphate-induced fibronectin expression via MAPK
signaling pathway in mesangial cells under high glucose condition.
Exp Cell Res. 318:936–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lan T, Liu W, Xie X, Xu S, Huang K, Peng
J, Shen X, Liu P, Wang L, Xia P and Huang H: Sphingosine kinase-1
pathway mediates high glucose-induced fibronectin expression in
glomerular mesangial cells. Mol Endocrinol. 25:2094–2105. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tong X, Peng H, Liu D, Ji L, Niu C, Ren J,
Pan B, Hu J, Zheng L and Huang Y: High-density lipoprotein of
patients with type 2 diabetes mellitus upregulates cyclooxgenase-2
expression and prostacyclin I-2 release in endothelial cells:
relationship with HDL-associated sphingosine-1-phosphate.
Cardiovasc Diabetol. 12:272013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tong X, Lv P, Mathew AV, Liu D, Niu C,
Wang Y, Ji L, Li J, Fu Z, Pan B, et al: The compensatory enrichment
of sphingosine-1-phosphate harbored on glycated high-density
lipoprotein restores endothelial protective function in type 2
diabetes mellitus. Cardiovasc Diabetol. 13:822014. View Article : Google Scholar
|
|
69
|
Wang X, Zhang DM, Gu TT, Ding XQ, Fan CY,
Zhu Q, Shi YW, Hong Y and Kong LD: Morin reduces hepatic
inflammation-associated lipid accumulation in high fructose-fed
rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate
signaling pathway. Biochem Pharmacol. 86:1791–1804. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Son DJ, Lee HW, Shin HW, Lee JJ, Yoo HS,
Kim TJ, Yun YP and Hong JT: Enhanced release of
sphingosine-1-phosphate from hypercholesterolemic platelets: role
in development of hypercholesterolemic atherosclerosis.
Prostaglandins Leukot Essent Fatty Acids. 78:383–390. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Graham D, McBride MW, Gaasenbeek M, Gilday
K, Beattie E, Miller WH, McClure JD, Polke JM, Montezano A, Touyz
RM and Dominiczak AF: Candidate genes that determine response to
salt in the stroke-prone spontaneously hypertensive rat: congenic
analysis. Hypertension. 50:1134–1141. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Spijkers LJ, van den Akker RF, Janssen BJ,
Debets JJ, De Mey JG, Stroes ES, van den Born BJ, Wijesinghe DS,
Chalfant CE, MacAleese L, et al: Hypertension is associated with
marked alterations in sphingolipid biology: a potential role for
ceramide. PLoS One. 6:e218172011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dantas AP, Igarashi J and Michel T:
Sphingosine 1-phosphate and control of vascular tone. Am J Physiol
Heart Circ Physiol. 284:H2045–H2052. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fryer RM, Muthukumarana A, Harrison PC,
Nodop Mazurek S, Chen RR, Harrington KE, Dinallo RM, Horan JC,
Patnaude L, Modis LK and Reinhart GA: The clinically-tested S1P
receptor agonists, FTY720 and BAF312, demonstrate subtype-specific
bradycardia (S1P1) and hypertension (S1P3) in rat. PLoS One.
7:e529852012. View Article : Google Scholar
|
|
75
|
Tosaka M, Okajima F, Hashiba Y, Saito N,
Nagano T, Watanabe T, Kimura T and Sasaki T: Sphingosine
1-phosphate contracts canine basilar arteries in vitro and in vivo:
possible role in pathogenesis of cerebral vasospasm. Stroke.
32:2913–2919. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Salomone S, Yoshimura S, Reuter U, Foley
M, Thomas SS, Moskowitz MA and Waeber C: S1P3 receptors mediate the
potent constriction of cerebral arteries by
sphingosine-1-phosphate. Eur J Pharmacol. 469:125–134. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yogi A, Callera GE, Aranha AB, Antunes TT,
Graham D, McBride M, Dominiczak A and Touyz RM:
Sphingosine-1-phosphate-induced inflammation involves receptor
tyrosine kinase transactivation in vascular cells: Upregulation in
hypertension. Hypertension. 57:809–818. 2011. View Article : Google Scholar : PubMed/NCBI
|