Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2017 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2017 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress

  • Authors:
    • Shanglong Ning
    • Zhongqiang Chen
    • Dongwei Fan
    • Chuiguo Sun
    • Chi Zhang
    • Yan Zeng
    • Weishi Li
    • Xiaofei Hou
    • Xiaochen Qu
    • Yunlong Ma
    • Huilei Yu
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China, Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
    Copyright: © Ning et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 135-143
    |
    Published online on: November 16, 2016
       https://doi.org/10.3892/ijmm.2016.2803
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non‑TOLF and single‑ and multiple‑level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis‑related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt‑related transcription factor‑2 (Runx‑2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple‑level than in the single‑level TOLF group, whereas no changes were observed in the non‑TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple‑level as compared to the single‑level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple‑level as compared to the non‑TOLF group. The osterix and ALP protein levels were higher in the multiple‑level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single‑ and multiple‑level TOLF that may be related to the different pathogenesis and genetic background.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Sato T, Kokubun S, Tanaka Y and Ishii Y: Thoracic myelopathy in the Japanese: Epidemiological and clinical observations on the cases in Miyagi Prefecture. Tohoku J Exp Med. 184:1–11. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Guo JJ, Luk KD, Karppinen J, Yang H and Cheung KM: Prevalence, distribution, and morphology of ossification of the ligamentum flavum: A population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. Spine. 35:51–56. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Kudo S, Ono M and Russell WJ: Ossification of thoracic ligamenta flava. AJR Am J Roentgenol. 141:117–121. 1983. View Article : Google Scholar : PubMed/NCBI

4 

Lang N, Yuan HS, Wang HL, Liao J, Li M, Guo FX, Shi S and Chen ZQ: Epidemiological survey of ossification of the ligamentum flavum in thoracic spine: CT imaging observation of 993 cases. Eur Spine J. 22:857–862. 2013. View Article : Google Scholar :

5 

Mobbs RJ and Dvorak M: Ossification of the ligamentum flavum: diet and genetics. J Clin Neurosci. 14:703–705. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Fan D, Chen Z, Chen Y and Shang Y: Mechanistic roles of leptin in osteogenic stimulation in thoracic ligament flavum cells. J Biol Chem. 282:29958–29966. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Uchida K, Yayama T, Cai HX, Nakajima H, Sugita D, Guerrero AR, Kobayashi S, Yoshida A, Chen KB and Baba H: Ossification process involving the human thoracic ligamentum flavum: Role of transcription factors. Arthritis Res Ther. 13:R1442011. View Article : Google Scholar : PubMed/NCBI

8 

Okada K, Oka S, Tohge K, Ono K, Yonenobu K and Hosoya T: Thoracic myelopathy caused by ossification of the ligamentum flavum. Clinicopathologic study and surgical treatment. Spine. 16:280–287. 1991. View Article : Google Scholar : PubMed/NCBI

9 

Maigne JY, Ayral X and Guérin-Surville H: Frequency and size of ossifications in the caudal attachments of the ligamentum flavum of the thoracic spine. Role of rotatory strains in their development. An anatomic study of 121 spines. Surg Radiol Anat. 14:119–124. 1992. View Article : Google Scholar : PubMed/NCBI

10 

Fan D, Chen Z, Wang D, Guo Z, Qiang Q and Shang Y: Osterix is a key target for mechanical signals in human thoracic ligament flavum cells. J Cell Physiol. 211:577–584. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Gao R, Yuan W, Yang L, Shi G and Jia L: Clinical features and surgical outcomes of patients with thoracic myelopathy caused by multilevel ossification of the ligamentum flavum. Spine J. 13:1032–1038. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Kawaguchi Y, Yasuda T, Seki S, Nakano M, Kanamori M, Sumi S and Kimura T: Variables affecting postsurgical prognosis of thoracic myelopathy caused by ossification of the ligamentum flavum. Spine J. 13:1095–1107. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Li F, Chen Q and Xu K: Surgical treatment of 40 patients with thoracic ossification of the ligamentum flavum. J Neurosurg Spine. 4:191–197. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Yayama T, Uchida K, Kobayashi S, Kokubo Y, Sato R, Nakajima H, Takamura T, Bangirana A, Itoh H and Baba H: Thoracic ossification of the human ligamentum flavum: Histopathological and immunohistochemical findings around the ossified lesion. J Neurosurg Spine. 7:184–193. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Cai HX, Yayama T, Uchida K, Nakajima H, Sugita D, Guerrero AR, Yoshida A and Baba H: Cyclic tensile strain facilitates the ossification of ligamentum flavum through β-catenin signaling pathway: In vitro analysis. Spine. 37:E639–E646. 2012. View Article : Google Scholar

16 

Kim HN, Min WK, Jeong JH, Kim SG, Kim JR, Kim SY, Choi JY and Park BC: Combination of Runx2 and BMP2 increases conversion of human ligamentum flavum cells into osteoblastic cells. BMB Rep. 44:446–451. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Kong Q, Ma X, Li F, Guo Z, Qi Q, Li W, Yuan H, Wang Z and Chen Z: COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine. 32:2834–2838. 2007. View Article : Google Scholar

18 

Liu Y, Zhao Y, Chen Y, Shi G and Yuan W: RUNX2 polymorphisms associated with OPLL and OLF in the Han population. Clin Orthop Relat Res. 468:3333–3341. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Kudo H, Furukawa K, Yokoyama T, Ono A, Numasawa T, Wada K, Tanaka S, Asari T, Ueyama K, Motomura S and Toh S: Genetic differences in the osteogenic differentiation potency according to the classification of ossification of the posterior longitudinal ligament of the cervical spine. Spine. 36:951–957. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Chen ZQ, Dang GT, Liu XG and Cai QL: The choice of treatment for ossification of ligamentum flavum of the thoracic spine. Chin J Orthop. 19:197–200. 1999.In Chinese.

21 

Yin X, Chen Z, Guo Z, Liu X and Yu H: Tissue transglutaminase expression and activity in human ligamentum flavum cells derived from thoracic ossification of ligamentum flavum. Spine. 35:E1018–E1024. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Ahn DK, Lee S, Moon SH, Boo KH, Chang BK and Lee JI: Ossification of the ligamentum flavum. Asian Spine J. 8:89–96. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Tsukamoto N, Maeda T, Miura H, Jingushi S, Hosokawa A, Harimaya K, Higaki H, Kurata K and Iwamoto Y: Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: A possible role of mechanical stress in the development of ossification of the spinal ligaments. J Neurosurg Spine. 5:234–242. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Iwasawa T, Iwasaki K, Sawada T, Okada A, Ueyama K, Motomura S, Harata S, Inoue I, Toh S and Furukawa KI: Pathophysiological role of endothelin in ectopic ossification of human spinal ligaments induced by mechanical stress. Calcif Tissue Int. 79:422–430. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Nakatani T, Marui T, Hitora T, Doita M, Nishida K and Kurosaka M: Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-beta1. J Orthop Res. 20:1380–1386. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Hoshi K, Amizuka N, Sakou T, Kurokawa T and Ozawa H: Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: Morphological examinations for ossification of spinal ligaments. Bone. 21:155–162. 1997. View Article : Google Scholar : PubMed/NCBI

27 

Iwasaki K, Furukawa KI, Tanno M, Kusumi T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S and Motomura S: Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int. 74:448–457. 2004. View Article : Google Scholar

28 

Ishida Y and Kawai S: Characterization of cultured cells derived from ossification of the posterior longitudinal ligament of the spine. Bone. 14:85–91. 1993. View Article : Google Scholar : PubMed/NCBI

29 

Zhong ZM and Chen JT: Phenotypic characterization of ligamentum flavum cells from patients with ossification of ligamentum flavum. Yonsei Med J. 50:375–379. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Tanno M, Furukawa KI, Ueyama K, Harata S and Motomura S: Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone. 33:475–484. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Ohishi H, Furukawa K, Iwasaki K, Ueyama K, Okada A, Motomura S, Harata S and Toh S: Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther. 305:818–824. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Furukawa K: Current topics in pharmacological research on bone metabolism: Molecular basis of ectopic bone formation induced by mechanical stress. J Pharmacol Sci. 100:201–204. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Zhang W, Wei P, Chen Y, Yang L, Jiang C, Jiang P and Chen D: Down-regulated expression of vimentin induced by mechanical stress in fibroblasts derived from patients with ossification of the posterior longitudinal ligament. Eur Spine J. 23:2410–2415. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Pagani F, Francucci CM and Moro L: Markers of bone turnover: Biochemical and clinical perspectives. J Endocrinol Invest. 28(Suppl 10): 8–13. 2005.

35 

Hayashi K, Ishidou Y, Yonemori K, Nagamine T, Origuchi N, Maeda S, Imamura T, Kato M, Yoshida H, Sampath TK, et al: Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone. 21:23–30. 1997. View Article : Google Scholar : PubMed/NCBI

36 

Fu H, Doll B, McNelis T and Hollinger JO: Osteoblast differentiation in vitro and in vivo promoted by Osterix. J Biomed Mater Res A. 83:770–778. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Komaki M, Karakida T, Abe M, Oida S, Mimori K, Iwasaki K, Noguchi K, Oda S and Ishikawa I: Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. J Cell Biochem. 100:303–314. 2007. View Article : Google Scholar

38 

Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, Nifuji A, Ezura Y and Noda M: Osteopontin is required for mechanical stress-dependent signals to bone marrow cells. J Endocrinol. 193:235–243. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Inamasu J and Guiot BH: A review of factors predictive of surgical outcome for ossification of the ligamentum flavum of the thoracic spine. J Neurosurg Spine. 5:133–139. 2006. View Article : Google Scholar : PubMed/NCBI

40 

He S, Hussain N, Li S and Hou T: Clinical and prognostic analysis of ossified ligamentum flavum in a Chinese population. J Neurosurg Spine. 3:348–354. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ning S, Chen Z, Fan D, Sun C, Zhang C, Zeng Y, Li W, Hou X, Qu X, Ma Y, Ma Y, et al: Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. Int J Mol Med 39: 135-143, 2017.
APA
Ning, S., Chen, Z., Fan, D., Sun, C., Zhang, C., Zeng, Y. ... Yu, H. (2017). Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. International Journal of Molecular Medicine, 39, 135-143. https://doi.org/10.3892/ijmm.2016.2803
MLA
Ning, S., Chen, Z., Fan, D., Sun, C., Zhang, C., Zeng, Y., Li, W., Hou, X., Qu, X., Ma, Y., Yu, H."Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress". International Journal of Molecular Medicine 39.1 (2017): 135-143.
Chicago
Ning, S., Chen, Z., Fan, D., Sun, C., Zhang, C., Zeng, Y., Li, W., Hou, X., Qu, X., Ma, Y., Yu, H."Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress". International Journal of Molecular Medicine 39, no. 1 (2017): 135-143. https://doi.org/10.3892/ijmm.2016.2803
Copy and paste a formatted citation
x
Spandidos Publications style
Ning S, Chen Z, Fan D, Sun C, Zhang C, Zeng Y, Li W, Hou X, Qu X, Ma Y, Ma Y, et al: Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. Int J Mol Med 39: 135-143, 2017.
APA
Ning, S., Chen, Z., Fan, D., Sun, C., Zhang, C., Zeng, Y. ... Yu, H. (2017). Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. International Journal of Molecular Medicine, 39, 135-143. https://doi.org/10.3892/ijmm.2016.2803
MLA
Ning, S., Chen, Z., Fan, D., Sun, C., Zhang, C., Zeng, Y., Li, W., Hou, X., Qu, X., Ma, Y., Yu, H."Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress". International Journal of Molecular Medicine 39.1 (2017): 135-143.
Chicago
Ning, S., Chen, Z., Fan, D., Sun, C., Zhang, C., Zeng, Y., Li, W., Hou, X., Qu, X., Ma, Y., Yu, H."Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress". International Journal of Molecular Medicine 39, no. 1 (2017): 135-143. https://doi.org/10.3892/ijmm.2016.2803
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team