Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2017 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2017 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells

  • Authors:
    • Ting Zhang
    • Linglin Zhao
    • Shengyuan Zeng
    • Lu Bai
    • Junxia Chen
    • Zheng Zhang
    • Yalan Wang
    • Changzhu Duan
  • View Affiliations / Copyright

    Affiliations: Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 126-134
    |
    Published online on: November 17, 2016
       https://doi.org/10.3892/ijmm.2016.2805
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) is a multi-domain E3 ubiquitin ligase which is involved in epigenetic regulation and plays an essential role in tumorigenesis. However, the role of UHRF2 in histone H3 acetylation has not yet been fully elucidated and few studies have reported its role in hepatocellular carcinoma (HCC). In this study, we examined the correlation between UHRF2 and acetylated H3 in HCC. Immunohistochemistry and western blot analysis demonstrated that the levels of histone H3 lysine 9 acetylation (H3K9ac) and histone H3 lysine 14 acetylation (H3K14ac) were higher in the HCC tissues and HepG2 HCC cells compared with the adjacent non-tumor tissues and L02 normal cells. The level of UHRF2 was higher in the HCC tissues compared with the adjacent non-tumor tissues, but its expression did not exhibit a significant difference between the HepG2 HCC cells and the L02 normal cells. In addition, when comparing the HCC tissues, a higher expression of UHRF2 correlated with a lower expression of H3K9ac in the HCC tissues. The overexpression of UHRF2 increased the expression of H3K9ac in L02 normal cells (P<0.01), but decreased the expression of H3K9ac in HepG2 cancer cells (P<0.05). Moreover, immunofluorescence staining and co-immunoprecipitation assay indicated that UHRF2 co-localized and interacted with H3K9ac in L02 and HepG2 cells and the plant homeodomain (PHD) finger domain was the key domain for UHRF2 directly binding to H3K9ac. Taken together, these results suggest that UHRF2 decreases the expression of H3K9ac in HepG2 HCC cells and interacts with it through the PHD domain.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Ma L, Chua MS, Andrisani O and So S: Epigenetics in hepatocellular carcinoma: An update and future therapy perspectives. World J Gastroenterol. 20:333–345. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Puszyk WM, Trinh TL, Chapple SJ and Liu C: Linking metabolism and epigenetic regulation in development of hepatocellular carcinoma. Lab Invest. 93:983–990. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Kratz A, Arner E, Saito R, Kubosaki A, Kawai J, Suzuki H, Carninci P, Arakawa T, Tomita M, Hayashizaki Y and Daub CO: Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns. BMC Genomics. 11:2572010. View Article : Google Scholar : PubMed/NCBI

5 

Shahbazian MD and Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 76:75–100. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, Soria D, Garibaldi JM, Paish CE, Ammar AA, et al: Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69:3802–3809. 2009. View Article : Google Scholar : PubMed/NCBI

7 

He C, Xu J, Zhang J, Xie D, Ye H, Xiao Z, Cai M, Xu K, Zeng Y, Li H and Wang J: High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum Pathol. 43:1425–1435. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Neureiter D, Jäger T, Ocker M and Kiesslich T: Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J Gastroenterol. 20:7830–7848. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Hung SY, Lin HH, Yeh KT and Chang JG: Histone-modifying genes as biomarkers in hepatocellular carcinoma. Int J Clin Exp Pathol. 7:2496–2507. 2014.PubMed/NCBI

10 

Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H and Tora L: H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 13:4242012. View Article : Google Scholar : PubMed/NCBI

11 

Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, et al: Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 122:517–527. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ and Zhao K: Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 40:897–903. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Mori T, Ikeda DD, Yamaguchi Y and Unoki M: NIRF/UHRF2 occupies a central position in the cell cycle network and allows coupling with the epigenetic landscape. FEBS Lett. 586:1570–1583. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Zhang J, Gao Q, Li P, Liu X, Jia Y, Wu W, Li J, Dong S, Koseki H and Wong J: S phase-dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance. Cell Res. 21:1723–1739. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Bronner C, Achour M, Arima Y, Chataigneau T, Saya H and Schini-Kerth VB: The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 115:419–434. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Karagianni P, Amazit L, Qin J and Wong J: ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol. 28:705–717. 2008. View Article : Google Scholar :

17 

Pichler G, Wolf P, Schmidt CS, Meilinger D, Schneider K, Frauer C, Fellinger K, Rottach A and Leonhardt H: Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem. 112:2585–2593. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Qian G, Jin F, Chang L, Yang Y, Peng H and Duan C: NIRF, a novel ubiquitin ligase, interacts with hepatitis B virus core protein and promotes its degradation. Biotechnol Lett. 34:29–36. 2012. View Article : Google Scholar

19 

Qian G, Hu B, Zhou D, Xuan Y, Bai L and Duan C: NIRF, a novel ubiquitin ligase, inhibits hepatitis B virus replication through effect on HBV core protein and H3 histones. DNA Cell Biol. 34:327–332. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Lu JC, Chang YT, Wang CT, Lin YC, Lin CK and Wu ZS: Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes. PLoS One. 8:e715172013. View Article : Google Scholar

21 

Sailaja BS, Cohen-Carmon D, Zimmerman G, Soreq H and Meshorer E: Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc Natl Acad Sci USA. 109:E3687–E3695. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Musselman CA and Kutateladze TG: Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res. 39:9061–9071. 2011. View Article : Google Scholar : PubMed/NCBI

23 

He X, Duan C, Chen J, Ou-Yang X, Zhang Z, Li C and Peng H: Let-7a elevates p21(WAF1) levels by targeting of NIRF and suppresses the growth of A549 lung cancer cells. FEBS Lett. 583:3501–3507. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Wu J, Liu S, Liu G, Dombkowski A, Abrams J, Martin-Trevino R, Wicha MS, Ethier SP and Yang ZQ: Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene. 333–341. 2012. View Article : Google Scholar

25 

Wang F, Zhang P, Ma Y, Yang J, Moyer MP, Shi C, Peng J and Qin H: NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett. 314:223–231. 2012. View Article : Google Scholar

26 

Lu S, Yan D, Wu Z, Jiang T, Chen J, Yuan L, Lin J, Peng Z and Tang H: Ubiquitin-like with PHD and ring finger domains 2 is a predictor of survival and a potential therapeutic target in colon cancer. Oncol Rep. 31:1802–1810. 2014.PubMed/NCBI

27 

Wu TF, Zhang W, Su ZP, Chen SS, Chen GL, Wei YX, Sun T, Xie XS, Li B, Zhou YX, et al: UHRF2 mRNA expression is low in malignant glioma but silencing inhibits the growth of U251 glioma cells in vitro. Asian Pac J Cancer Prev. 13:5137–5142. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Venturelli S, Armeanu S, Pathil A, Hsieh CJ, Weiss TS, Vonthein R, Wehrmann M, Gregor M, Lauer UM and Bitzer M: Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma. Cancer. 109:2132–2141. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F and Turner BM: Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem. 282:4408–4416. 2007. View Article : Google Scholar

30 

Luo T, Cui S, Bian C and Yu X: Uhrf2 is important for DNA damage response in vascular smooth muscle cells. Biochem Biophys Res Commun. 441:65–70. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, et al: PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell. 43:275–284. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R, Di Fiore PP and Bonapace IM: Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol. 24:2526–2535. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang T, Zhao L, Zeng S, Bai L, Chen J, Zhang Z, Wang Y and Duan C: UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells. Int J Mol Med 39: 126-134, 2017.
APA
Zhang, T., Zhao, L., Zeng, S., Bai, L., Chen, J., Zhang, Z. ... Duan, C. (2017). UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells. International Journal of Molecular Medicine, 39, 126-134. https://doi.org/10.3892/ijmm.2016.2805
MLA
Zhang, T., Zhao, L., Zeng, S., Bai, L., Chen, J., Zhang, Z., Wang, Y., Duan, C."UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells". International Journal of Molecular Medicine 39.1 (2017): 126-134.
Chicago
Zhang, T., Zhao, L., Zeng, S., Bai, L., Chen, J., Zhang, Z., Wang, Y., Duan, C."UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells". International Journal of Molecular Medicine 39, no. 1 (2017): 126-134. https://doi.org/10.3892/ijmm.2016.2805
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang T, Zhao L, Zeng S, Bai L, Chen J, Zhang Z, Wang Y and Duan C: UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells. Int J Mol Med 39: 126-134, 2017.
APA
Zhang, T., Zhao, L., Zeng, S., Bai, L., Chen, J., Zhang, Z. ... Duan, C. (2017). UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells. International Journal of Molecular Medicine, 39, 126-134. https://doi.org/10.3892/ijmm.2016.2805
MLA
Zhang, T., Zhao, L., Zeng, S., Bai, L., Chen, J., Zhang, Z., Wang, Y., Duan, C."UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells". International Journal of Molecular Medicine 39.1 (2017): 126-134.
Chicago
Zhang, T., Zhao, L., Zeng, S., Bai, L., Chen, J., Zhang, Z., Wang, Y., Duan, C."UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells". International Journal of Molecular Medicine 39, no. 1 (2017): 126-134. https://doi.org/10.3892/ijmm.2016.2805
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team