|
1
|
Prasad AS: Zinc: an antioxidant and
anti-inflammatory agent: role of zinc in degenerative disorders of
aging. J Trace Elem Med Biol. 28:364–371. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tebay LE, Robertson H, Durant ST, Vitale
SR, Penning TM, Dinkova-Kostova AT and Hayes JD: Mechanisms of
activation of the transcription factor Nrf2 by redox stressors,
nutrient cues, and energy status and the pathways through which it
attenuates degenerative disease. Free Radic Biol Med. 88:108–146.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Campbell GR, Worrall JT and Mahad DJ: The
central role of mitochondria in axonal degeneration in multiple
sclerosis. Mult Scler. 20:1806–1813. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Erpapazoglou Z and Corti O: The
endoplasmic reticulum/mitochondria interface: A subcellular
platform for the orchestration of the functions of the PINK1-Parkin
pathway? Biochem Soc Trans. 43:297–301. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kaminsky YG, Tikhonova LA and Kosenko EA:
Critical analysis of Alzheimer's amyloid-beta toxicity to
mitochondria. Front Biosci (Landmark Ed). 20:173–197. 2015.
View Article : Google Scholar
|
|
6
|
Oyewole AO and Birch-Machin MA:
Mitochondria-targeted antioxidants. FASEB J. 29:4766–4771. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tocchi A, Quarles EK, Basisty N, Gitari L
and Rabinovitch PS: Mitochondrial dysfunction in cardiac aging.
Biochim Biophys Acta. 1847:1424–1433. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pan Y, Nishida Y, Wang M and Verdin E:
Metabolic regulation, mitochondria and the life-prolonging effect
of rapamycin: A mini-review. Gerontology. 58:524–530. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Quirós PM, Langer T and López-Otín C: New
roles for mitochondrial proteases in health, ageing and disease.
Nat Rev Mol Cell Biol. 16:345–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Durcan TM and Fon EA: The three ‘P's of
mitophagy: PARKIN, PINK1, and post-translational modifications.
Genes Dev. 29:989–999. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wilhelmus MM, van der Pol SM, Jansen Q,
Witte ME, van der Valk P, Rozemuller AJ, Drukarch B, de Vries HE
and Van Horssen J: Association of Parkinson disease-related protein
PINK1 with Alzheimer disease and multiple sclerosis brain lesions.
Free Radic Biol Med. 50:469–476. 2011. View Article : Google Scholar
|
|
12
|
Russell AP, Foletta VC, Snow RJ and Wadley
GD: Skeletal muscle mitochondria: A major player in exercise,
health and disease. Biochim Biophys Acta. 1840:1276–1284. 2014.
View Article : Google Scholar
|
|
13
|
Jin SM, Lazarou M, Wang C, Kane LA,
Narendra DP and Youle RJ: Mitochondrial membrane potential
regulates PINK1 import and proteolytic destabilization by PARL. J
Cell Biol. 191:933–942. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sekine S, Kanamaru Y, Koike M, Nishihara
A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y,
Ishihara N, et al: Rhomboid protease PARL mediates the
mitochondrial membrane potential loss-induced cleavage of PGAM5. J
Biol Chem. 287:34635–34645. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shi G, Lee JR, Grimes DA, Racacho L, Ye D,
Yang H, Ross OA, Farrer M, McQuibban GA and Bulman DE: Functional
alteration of PARL contributes to mitochondrial dysregulation in
Parkinson's disease. Hum Mol Genet. 20:1966–1974. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pickrell AM and Youle RJ: The roles of
PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.
Neuron. 85:257–273. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lazarou M, Sliter DA, Kane LA, Sarraf SA,
Wang C, Burman JL, Sideris DP, Fogel AI and Youle RJ: The ubiquitin
kinase PINK1 recruits autophagy receptors to induce mitophagy.
Nature. 524:309–314. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Weihofen A, Ostaszewski B, Minami Y and
Selkoe DJ: Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones
and Parkin all influence the maturation or subcellular distribution
of Pink1. Hum Mol Genet. 17:602–616. 2008. View Article : Google Scholar
|
|
19
|
d'Amora M, Angelini C, Marcoli M, Cervetto
C, Kitada T and Vallarino M: Expression of PINK1 in the brain, eye
and ear of mouse during embryonic development. J Chem Neuroanat.
41:73–85. 2011. View Article : Google Scholar
|
|
20
|
Narendra D, Walker JE and Youle R:
Mitochondrial quality control mediated by PINK1 and Parkin: Links
to parkinsonism. Cold Spring Harb Perspect Biol. 4:a0113382012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sim CH, Lio DS, Mok SS, Masters CL, Hill
AF, Culvenor JG and Cheng HC: C-terminal truncation and Parkinson's
disease-associated mutations down-regulate the protein
serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol
Genet. 15:3251–3262. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Okatsu K, Oka T, Iguchi M, Imamura K,
Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, et al:
PINK1 autophosphorylation upon membrane potential dissipation is
essential for Parkin recruitment to damaged mitochondria. Nat
Commun. 3:10162012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pridgeon JW, Olzmann JA, Chin LS and Li L:
PINK1 protects against oxidative stress by phosphorylating
mitochondrial chaperone TRAP1. PLoS Biol. 5:e1722007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gaki GS and Papavassiliou AG: Oxidative
stress-induced signaling pathways implicated in the pathogenesis of
Parkinson's disease. Neuromolecular Med. 16:217–230. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Plun-Favreau H, Klupsch K, Moisoi N,
Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald
N, et al: The mitochondrial protease HtrA2 is regulated by
Parkinson's disease-associated kinase PINK1. Nat Cell Biol.
9:1243–1252. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lenzi P, Marongiu R, Falleni A, Gelmetti
V, Busceti CL, Michiorri S, Valente EM and Fornai F: A subcellular
analysis of genetic modulation of PINK1 on mitochondrial
alterations, autophagy and cell death. Arch Ital Biol. 150:194–217.
2012.PubMed/NCBI
|
|
27
|
Chu CT: A pivotal role for PINK1 and
autophagy in mitochondrial quality control: Implications for
Parkinson disease. Hum Mol Genet. 19:R28–R37. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Choi I, Kim J, Jeong HK, Kim B, Jou I,
Park SM, Chen L, Kang UJ, Zhuang X and Joe EH: PINK1 deficiency
attenuates astrocyte proliferation through mitochondrial
dysfunction, reduced AKT and increased p38 MAPK activation, and
down-regulation of EGFR. Glia. 61:800–812. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lin W and Kang UJ: Characterization of
PINK1 processing, stability, and subcellular localization. J
Neurochem. 106:464–474. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wei H, Liu L and Chen Q: Selective removal
of mitochondria via mitophagy: Distinct pathways for different
mitochondrial stresses. Biochim Biophys Acta. 1853:2784–2790. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Eiyama A and Okamoto K:
PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell
Biol. 33:95–101. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dias V, Junn E and Mouradian MM: The role
of oxidative stress in Parkinson's disease. J Parkinsons Dis.
3:461–491. 2013.PubMed/NCBI
|
|
33
|
McCoy MK, Kaganovich A, Rudenko IN, Ding J
and Cookson MR: Hexokinase activity is required for recruitment of
parkin to depolarized mitochondria. Hum Mol Genet. 23:145–156.
2014. View Article : Google Scholar
|
|
34
|
Michiorri S, Gelmetti V, Giarda E,
Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R,
Arena G, et al: The Parkinson-associated protein PINK1 interacts
with Beclin1 and promotes autophagy. Cell Death Differ. 17:962–974.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cherra SJ III and Chu CT: Autophagy in
neuroprotection and neurodegeneration: A question of balance.
Future Neurol. 3:309–323. 2008.PubMed/NCBI
|
|
36
|
Cherra SJ III, Dagda RK and Chu CT:
Review: autophagy and neurodegeneration: survival at a cost?
Neuropathol Appl Neurobiol. 36:125–132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Moriwaki Y, Kim YJ, Ido Y, Misawa H,
Kawashima K, Endo S and Takahashi R: L347P PINK1 mutant that fails
to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a
proteasome-dependent manner. Neurosci Res. 61:43–48. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sun F, Kanthasamy A, Anantharam V and
Kanthasamy AG: Environmental neurotoxic chemical-induced ubiquitin
proteasome system dysfunction in the pathogenesis and progression
of Parkinson's disease. Pharmacol Ther. 114:327–344. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Meissner C, Lorenz H, Weihofen A, Selkoe
DJ and Lemberg MK: The mitochondrial intramembrane protease PARL
cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem.
117:856–867. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Matsuda S, Kitagishi Y and Kobayashi M:
Function and characteristics of PINK1 in mitochondria. Oxid Med
Cell Longev. 2013:6015872013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dagda RK and Chu CT: Mitochondrial quality
control: Insights on how Parkinson's disease related genes PINK1,
parkin, and Omi/HtrA2 interact to maintain mitochondrial
homeostasis. J Bioenerg Biomembr. 41:473–479. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee
SH, Kitada T, Kim JM and Chung J: PINK1 controls mitochondrial
localization of Parkin through direct phosphorylation. Biochem
Biophys Res Commun. 377:975–980. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Narendra D, Tanaka A, Suen DF and Youle
RJ: Parkin is recruited selectively to impaired mitochondria and
promotes their autophagy. J Cell Biol. 183:795–803. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Narendra DP and Youle RJ: Targeting
mitochondrial dysfunction: Role for PINK1 and Parkin in
mitochondrial quality control. Antioxid Redox Signal. 14:1929–1938.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano
K, Sarraf SA, Banerjee S and Youle RJ: PINK1 phosphorylates
ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell
Biol. 205:143–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kazlauskaite A, Kondapalli C, Gourlay R,
Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M
and Muqit MM: Parkin is activated by PINK1-dependent
phosphorylation of ubiquitin at Ser65. Biochem J. 460:127–139.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Koyano F, Okatsu K, Kosako H, Tamura Y, Go
E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, et al:
Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature.
510:162–166. 2014.PubMed/NCBI
|
|
48
|
Fang EF, Scheibye-Knudsen M, Brace LE,
Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL and Bohr
VA: Defective mitophagy in XPA via PARP-1 hyperactivation and
NAD(+)/SIRT1 reduction. Cell. 157:882–896. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Scheibye-Knudsen M, Fang EF, Croteau DL
and Bohr VA: Contribution of defective mitophagy to the
neurodegeneration in DNA repair-deficient disorders. Autophagy.
10:1468–1469. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang BL: Sirt1 and the mitochondria. Mol
Cells. 39:87–95. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Greene AW, Grenier K, Aguileta MA, Muise
S, Farazifard R, Haque ME, McBride HM, Park DS and Fon EA:
Mitochondrial processing peptidase regulates PINK1 processing,
import and Parkin recruitment. EMBO Rep. 13:378–385. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Das S, Mitrovsky G, Vasanthi HR and Das
DK: Antiaging properties of a grape-derived antioxidant are
regulated by mitochondrial balance of fusion and fission leading to
mitophagy triggered by a signaling network of
Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid Med Cell Longev.
2014:3451052014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mei Y, Zhang Y, Yamamoto K, Xie W, Mak TW
and You H: FOXO3a-dependent regulation of Pink1 (Park6) mediates
survival signaling in response to cytokine deprivation. Proc Natl
Acad Sci USA. 106:5153–5158. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sengupta A, Molkentin JD, Paik JH, DePinho
RA and Yutzey KE: FoxO transcription factors promote cardiomyocyte
survival upon induction of oxidative stress. J Biol Chem.
286:7468–7478. 2011. View Article : Google Scholar :
|
|
55
|
Requejo-Aguilar R, Lopez-Fabuel I,
Jimenez-Blasco D, Fernandez E, Almeida A and Bolaños JP: DJ1
represses glycolysis and cell proliferation by transcriptionally
upregulating Pink1. Biochem J. 467:303–310. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sin TK, Yung BY, Yip SP, Chan LW, Wong CS,
Tam EW and Siu PM: SIRT1-dependent myoprotective effects of
resveratrol on muscle injury induced by compression. Front Physiol.
6:2932015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lin CH, Lin CC, Ting WJ, Pai PY, Kuo CH,
Ho TJ, Kuo WW, Chang CH, Huang CY and Lin WT: Resveratrol enhanced
FOXO3 phosphorylation via synergetic activation of SIRT1 and
PI3K/Akt signaling to improve the effects of exercise in elderly
rat hearts. Age (Dordr). 36:97052014. View Article : Google Scholar
|
|
58
|
Castillo-Quan JI, Li L, Kinghorn KJ,
Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy
J, et al: Lithium promotes longevity through GSK3/NRF2-dependent
hormesis. Cell Rep. 15:638–650. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lewis KN, Wason E, Edrey YH, Kristan DM,
Nevo E and Buffenstein R: Regulation of Nrf2 signaling and
longevity in naturally long-lived rodents. Proc Natl Acad Sci USA.
112:3722–3727. 2015.PubMed/NCBI
|
|
60
|
Murata H, Takamatsu H, Liu S, Kataoka K,
Huh NH and Sakaguchi M: NRF2 regulates PINK1 expression under
oxidative stress conditions. PLoS One. 10:e01424382015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huang ST, Ho CS, Lin CM, Fang HW and Peng
YX: Development and biological evaluation of C(60)
fulleropyrrolidine-thalidomide dyad as a new anti-inflammation
agent. Bioorg Med Chem. 16:8619–8626. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Amorati R, Valgimigli L, Panzella L,
Napolitano A and d'Ischia M: 5-S-lipoylhydroxytyrosol, a
multidefense antioxidant featuring a solvent-tunable peroxyl
radical-scavenging 3-thio-1,2-dihydroxybenzene motif. J Org Chem.
78:9857–9864. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kenneth NS, Hucks GE Jr, Kocab AJ,
McCollom AL and Duckett CS: Copper is a potent inhibitor of both
the canonical and non-canonical NFκB pathways. Cell Cycle.
13:1006–1014. 2014. View Article : Google Scholar :
|
|
64
|
Deng ZY, Hu MM, Xin YF and Gang C:
Resveratrol alleviates vascular inflammatory injury by inhibiting
inflammasome activation in rats with hypercholesterolemia and
vitamin D2 treatment. Inflamm Res. 64:321–332. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Baolin L, Inami Y, Tanaka H, Inagaki N,
Iinuma M and Nagai H: Resveratrol inhibits the release of mediators
from bone marrow-derived mouse mast cells in vitro. Planta Med.
70:305–309. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang Q, Xu J, Rottinghaus GE, Simonyi A,
Lubahn D, Sun GY and Sun AY: Resveratrol protects against global
cerebral ischemic injury in gerbils. Brain Res. 958:439–447. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Eid N, Ito Y, Maemura K and Otsuki Y:
Elevated autophagic sequestration of mitochondria and lipid
droplets in steatotic hepatocytes of chronic ethanol-treated rats:
An immunohistochemical and electron microscopic study. J Mol
Histol. 44:311–326. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Song YM, Lee WK, Lee YH, Kang ES, Cha BS
and Lee BW: Metformin restores Parkin-mediated mitophagy,
suppressed by cytosolic p53. Int J Mol Sci. 17:E1222016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Khang R, Park C and Shin JH: Dysregulation
of parkin in the substantia nigra of db/db and high-fat diet mice.
Neuroscience. 294:182–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Luo X, Jia R, Yao Q, Xu Y, Luo Z, Luo X
and Wang N: Docosahexaenoic acid attenuates adipose tissue
angiogenesis and insulin resistance in high fat diet-fed
middle-aged mice via a sirt1-dependent mechanism. Mol Nutr Food
Res. 60:871–885. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Borengasser SJ, Faske J, Kang P, Blackburn
ML, Badger TM and Shankar K: In utero exposure to prepregnancy
maternal obesity and postweaning high-fat diet impair regulators of
mitochondrial dynamics in rat placenta and offspring. Physiol
Genomics. 46:841–850. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ono K and Yamada M: Vitamin A potently
destabilizes preformed alpha-synuclein fibrils in vitro:
Implications for Lewy body diseases. Neurobiol Dis. 25:446–454.
2007. View Article : Google Scholar
|
|
73
|
Casarejos MJ, Menéndez J, Solano RM,
Rodríguez-Navarro JA, García de Yébenes J and Mena MA:
Susceptibility to rotenone is increased in neurons from parkin null
mice and is reduced by minocycline. J Neurochem. 97:934–946. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sonia Angeline M, Chaterjee P, Anand K,
Ambasta RK and Kumar P: Rotenone-induced parkinsonism elicits
behavioral impairments and differential expression of parkin, heat
shock proteins and caspases in the rat. Neuroscience. 220:291–301.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang YY, Huang J, Yang M, Gu LJ, Ji JY,
Wang LJ and Yuan WJ: Effect of a low-protein diet supplemented with
keto-acids on autophagy and inflammation in 5/6 nephrectomized
rats. Biosci Rep. 35:e002632015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Koh H and Chung J: PINK1 as a molecular
checkpoint in the maintenance of mitochondrial function and
integrity. Mol Cells. 34:7–13. 2012. View Article : Google Scholar : PubMed/NCBI
|