Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2017 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2017 Volume 39 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

PINK1 signaling in mitochondrial homeostasis and in aging (Review)

  • Authors:
    • Yasuko Kitagishi
    • Noriko Nakano
    • Mako Ogino
    • Mayuko Ichimura
    • Akari Minami
    • Satoru Matsuda
  • View Affiliations / Copyright

    Affiliations: Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan
  • Pages: 3-8
    |
    Published online on: December 12, 2016
       https://doi.org/10.3892/ijmm.2016.2827
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitochondrial dysfunction is involved in the pathology of Parkinson's disease, an age-associated neurodegenerative disorder. Phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1 (PINK1) is responsible for the most common form of recessive Parkinson's disease. PINK1 is a mitochondrial kinase that is involved in mitrochondrial quality control and promotes cell survival. PINK1 has been shown to protect against neuronal cell death induced by oxidative stress. Accordingly, PINK1 deficiency is associated with mitochondrial dysfunction as well as increased oxidative cellular stress and subsequent neuronal cell death. In addition, several mitochondrial chaperone proteins have been shown to be substrates of the PINK1 kinase. In this review, we discuss recent studies concerning the signaling cascades and molecular mechanisms involved in the process of mitophagy, which is implicated in neurodegeneration and in related aging associated with oxidative stress. Particular attention will be given to the molecular mechanisms proposed to explain the effects of natural compounds and/or food ingredients against oxidative stress. Knowledge of the molecular mechanisms involved in this cellular protection could be critical for developing treatments to prevent and control excessive progression of neurodegenerative disorders.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Prasad AS: Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol. 28:364–371. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT and Hayes JD: Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 88:108–146. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Campbell GR, Worrall JT and Mahad DJ: The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult Scler. 20:1806–1813. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Erpapazoglou Z and Corti O: The endoplasmic reticulum/mitochondria interface: A subcellular platform for the orchestration of the functions of the PINK1-Parkin pathway? Biochem Soc Trans. 43:297–301. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Kaminsky YG, Tikhonova LA and Kosenko EA: Critical analysis of Alzheimer's amyloid-beta toxicity to mitochondria. Front Biosci (Landmark Ed). 20:173–197. 2015. View Article : Google Scholar

6 

Oyewole AO and Birch-Machin MA: Mitochondria-targeted antioxidants. FASEB J. 29:4766–4771. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Tocchi A, Quarles EK, Basisty N, Gitari L and Rabinovitch PS: Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta. 1847:1424–1433. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Pan Y, Nishida Y, Wang M and Verdin E: Metabolic regulation, mitochondria and the life-prolonging effect of rapamycin: A mini-review. Gerontology. 58:524–530. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Quirós PM, Langer T and López-Otín C: New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 16:345–359. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Durcan TM and Fon EA: The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29:989–999. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Wilhelmus MM, van der Pol SM, Jansen Q, Witte ME, van der Valk P, Rozemuller AJ, Drukarch B, de Vries HE and Van Horssen J: Association of Parkinson disease-related protein PINK1 with Alzheimer disease and multiple sclerosis brain lesions. Free Radic Biol Med. 50:469–476. 2011. View Article : Google Scholar

12 

Russell AP, Foletta VC, Snow RJ and Wadley GD: Skeletal muscle mitochondria: A major player in exercise, health and disease. Biochim Biophys Acta. 1840:1276–1284. 2014. View Article : Google Scholar

13 

Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP and Youle RJ: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol. 191:933–942. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, et al: Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem. 287:34635–34645. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Farrer M, McQuibban GA and Bulman DE: Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum Mol Genet. 20:1966–1974. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Pickrell AM and Youle RJ: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 85:257–273. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI and Youle RJ: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 524:309–314. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Weihofen A, Ostaszewski B, Minami Y and Selkoe DJ: Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet. 17:602–616. 2008. View Article : Google Scholar

19 

d'Amora M, Angelini C, Marcoli M, Cervetto C, Kitada T and Vallarino M: Expression of PINK1 in the brain, eye and ear of mouse during embryonic development. J Chem Neuroanat. 41:73–85. 2011. View Article : Google Scholar

20 

Narendra D, Walker JE and Youle R: Mitochondrial quality control mediated by PINK1 and Parkin: Links to parkinsonism. Cold Spring Harb Perspect Biol. 4:a0113382012. View Article : Google Scholar : PubMed/NCBI

21 

Sim CH, Lio DS, Mok SS, Masters CL, Hill AF, Culvenor JG and Cheng HC: C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet. 15:3251–3262. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, et al: PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun. 3:10162012. View Article : Google Scholar : PubMed/NCBI

23 

Pridgeon JW, Olzmann JA, Chin LS and Li L: PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5:e1722007. View Article : Google Scholar : PubMed/NCBI

24 

Gaki GS and Papavassiliou AG: Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson's disease. Neuromolecular Med. 16:217–230. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, et al: The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol. 9:1243–1252. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Lenzi P, Marongiu R, Falleni A, Gelmetti V, Busceti CL, Michiorri S, Valente EM and Fornai F: A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch Ital Biol. 150:194–217. 2012.PubMed/NCBI

27 

Chu CT: A pivotal role for PINK1 and autophagy in mitochondrial quality control: Implications for Parkinson disease. Hum Mol Genet. 19:R28–R37. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Choi I, Kim J, Jeong HK, Kim B, Jou I, Park SM, Chen L, Kang UJ, Zhuang X and Joe EH: PINK1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced AKT and increased p38 MAPK activation, and down-regulation of EGFR. Glia. 61:800–812. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Lin W and Kang UJ: Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem. 106:464–474. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Wei H, Liu L and Chen Q: Selective removal of mitochondria via mitophagy: Distinct pathways for different mitochondrial stresses. Biochim Biophys Acta. 1853:2784–2790. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Eiyama A and Okamoto K: PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol. 33:95–101. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Dias V, Junn E and Mouradian MM: The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 3:461–491. 2013.PubMed/NCBI

33 

McCoy MK, Kaganovich A, Rudenko IN, Ding J and Cookson MR: Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum Mol Genet. 23:145–156. 2014. View Article : Google Scholar

34 

Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R, Arena G, et al: The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ. 17:962–974. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Cherra SJ III and Chu CT: Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurol. 3:309–323. 2008.PubMed/NCBI

36 

Cherra SJ III, Dagda RK and Chu CT: Review: autophagy and neurodegeneration: survival at a cost? Neuropathol Appl Neurobiol. 36:125–132. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Moriwaki Y, Kim YJ, Ido Y, Misawa H, Kawashima K, Endo S and Takahashi R: L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner. Neurosci Res. 61:43–48. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Sun F, Kanthasamy A, Anantharam V and Kanthasamy AG: Environmental neurotoxic chemical-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease. Pharmacol Ther. 114:327–344. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Meissner C, Lorenz H, Weihofen A, Selkoe DJ and Lemberg MK: The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem. 117:856–867. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Matsuda S, Kitagishi Y and Kobayashi M: Function and characteristics of PINK1 in mitochondria. Oxid Med Cell Longev. 2013:6015872013. View Article : Google Scholar : PubMed/NCBI

41 

Dagda RK and Chu CT: Mitochondrial quality control: Insights on how Parkinson's disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. J Bioenerg Biomembr. 41:473–479. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM and Chung J: PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 377:975–980. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Narendra D, Tanaka A, Suen DF and Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795–803. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Narendra DP and Youle RJ: Targeting mitochondrial dysfunction: Role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 14:1929–1938. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S and Youle RJ: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 205:143–153. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M and Muqit MM: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 460:127–139. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, et al: Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510:162–166. 2014.PubMed/NCBI

48 

Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL and Bohr VA: Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 157:882–896. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Scheibye-Knudsen M, Fang EF, Croteau DL and Bohr VA: Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders. Autophagy. 10:1468–1469. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Tang BL: Sirt1 and the mitochondria. Mol Cells. 39:87–95. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS and Fon EA: Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13:378–385. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Das S, Mitrovsky G, Vasanthi HR and Das DK: Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid Med Cell Longev. 2014:3451052014. View Article : Google Scholar : PubMed/NCBI

53 

Mei Y, Zhang Y, Yamamoto K, Xie W, Mak TW and You H: FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc Natl Acad Sci USA. 106:5153–5158. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Sengupta A, Molkentin JD, Paik JH, DePinho RA and Yutzey KE: FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 286:7468–7478. 2011. View Article : Google Scholar :

55 

Requejo-Aguilar R, Lopez-Fabuel I, Jimenez-Blasco D, Fernandez E, Almeida A and Bolaños JP: DJ1 represses glycolysis and cell proliferation by transcriptionally upregulating Pink1. Biochem J. 467:303–310. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Sin TK, Yung BY, Yip SP, Chan LW, Wong CS, Tam EW and Siu PM: SIRT1-dependent myoprotective effects of resveratrol on muscle injury induced by compression. Front Physiol. 6:2932015. View Article : Google Scholar : PubMed/NCBI

57 

Lin CH, Lin CC, Ting WJ, Pai PY, Kuo CH, Ho TJ, Kuo WW, Chang CH, Huang CY and Lin WT: Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age (Dordr). 36:97052014. View Article : Google Scholar

58 

Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, et al: Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep. 15:638–650. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E and Buffenstein R: Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci USA. 112:3722–3727. 2015.PubMed/NCBI

60 

Murata H, Takamatsu H, Liu S, Kataoka K, Huh NH and Sakaguchi M: NRF2 regulates PINK1 expression under oxidative stress conditions. PLoS One. 10:e01424382015. View Article : Google Scholar : PubMed/NCBI

61 

Huang ST, Ho CS, Lin CM, Fang HW and Peng YX: Development and biological evaluation of C(60) fulleropyrrolidine-thalidomide dyad as a new anti-inflammation agent. Bioorg Med Chem. 16:8619–8626. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Amorati R, Valgimigli L, Panzella L, Napolitano A and d'Ischia M: 5-S-lipoylhydroxytyrosol, a multidefense antioxidant featuring a solvent-tunable peroxyl radical-scavenging 3-thio-1,2-dihydroxybenzene motif. J Org Chem. 78:9857–9864. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Kenneth NS, Hucks GE Jr, Kocab AJ, McCollom AL and Duckett CS: Copper is a potent inhibitor of both the canonical and non-canonical NFκB pathways. Cell Cycle. 13:1006–1014. 2014. View Article : Google Scholar :

64 

Deng ZY, Hu MM, Xin YF and Gang C: Resveratrol alleviates vascular inflammatory injury by inhibiting inflammasome activation in rats with hypercholesterolemia and vitamin D2 treatment. Inflamm Res. 64:321–332. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Baolin L, Inami Y, Tanaka H, Inagaki N, Iinuma M and Nagai H: Resveratrol inhibits the release of mediators from bone marrow-derived mouse mast cells in vitro. Planta Med. 70:305–309. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY and Sun AY: Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 958:439–447. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Eid N, Ito Y, Maemura K and Otsuki Y: Elevated autophagic sequestration of mitochondria and lipid droplets in steatotic hepatocytes of chronic ethanol-treated rats: An immunohistochemical and electron microscopic study. J Mol Histol. 44:311–326. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Song YM, Lee WK, Lee YH, Kang ES, Cha BS and Lee BW: Metformin restores Parkin-mediated mitophagy, suppressed by cytosolic p53. Int J Mol Sci. 17:E1222016. View Article : Google Scholar : PubMed/NCBI

69 

Khang R, Park C and Shin JH: Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice. Neuroscience. 294:182–192. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Luo X, Jia R, Yao Q, Xu Y, Luo Z, Luo X and Wang N: Docosahexaenoic acid attenuates adipose tissue angiogenesis and insulin resistance in high fat diet-fed middle-aged mice via a sirt1-dependent mechanism. Mol Nutr Food Res. 60:871–885. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Borengasser SJ, Faske J, Kang P, Blackburn ML, Badger TM and Shankar K: In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring. Physiol Genomics. 46:841–850. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Ono K and Yamada M: Vitamin A potently destabilizes preformed alpha-synuclein fibrils in vitro: Implications for Lewy body diseases. Neurobiol Dis. 25:446–454. 2007. View Article : Google Scholar

73 

Casarejos MJ, Menéndez J, Solano RM, Rodríguez-Navarro JA, García de Yébenes J and Mena MA: Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem. 97:934–946. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Sonia Angeline M, Chaterjee P, Anand K, Ambasta RK and Kumar P: Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience. 220:291–301. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Zhang YY, Huang J, Yang M, Gu LJ, Ji JY, Wang LJ and Yuan WJ: Effect of a low-protein diet supplemented with keto-acids on autophagy and inflammation in 5/6 nephrectomized rats. Biosci Rep. 35:e002632015. View Article : Google Scholar : PubMed/NCBI

76 

Koh H and Chung J: PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol Cells. 34:7–13. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kitagishi Y, Nakano N, Ogino M, Ichimura M, Minami A and Matsuda S: PINK1 signaling in mitochondrial homeostasis and in aging (Review). Int J Mol Med 39: 3-8, 2017.
APA
Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., & Matsuda, S. (2017). PINK1 signaling in mitochondrial homeostasis and in aging (Review). International Journal of Molecular Medicine, 39, 3-8. https://doi.org/10.3892/ijmm.2016.2827
MLA
Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., Matsuda, S."PINK1 signaling in mitochondrial homeostasis and in aging (Review)". International Journal of Molecular Medicine 39.1 (2017): 3-8.
Chicago
Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., Matsuda, S."PINK1 signaling in mitochondrial homeostasis and in aging (Review)". International Journal of Molecular Medicine 39, no. 1 (2017): 3-8. https://doi.org/10.3892/ijmm.2016.2827
Copy and paste a formatted citation
x
Spandidos Publications style
Kitagishi Y, Nakano N, Ogino M, Ichimura M, Minami A and Matsuda S: PINK1 signaling in mitochondrial homeostasis and in aging (Review). Int J Mol Med 39: 3-8, 2017.
APA
Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., & Matsuda, S. (2017). PINK1 signaling in mitochondrial homeostasis and in aging (Review). International Journal of Molecular Medicine, 39, 3-8. https://doi.org/10.3892/ijmm.2016.2827
MLA
Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., Matsuda, S."PINK1 signaling in mitochondrial homeostasis and in aging (Review)". International Journal of Molecular Medicine 39.1 (2017): 3-8.
Chicago
Kitagishi, Y., Nakano, N., Ogino, M., Ichimura, M., Minami, A., Matsuda, S."PINK1 signaling in mitochondrial homeostasis and in aging (Review)". International Journal of Molecular Medicine 39, no. 1 (2017): 3-8. https://doi.org/10.3892/ijmm.2016.2827
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team